
The RAxML-VI-HPC Version 2.2.3 Manual

Alexandros Stamatakis

École Polytechnique Fédérale de Lausanne
School of Computer & Communication Sciences
Laboratory for Computational Biology and Bioinformatics (LCBB)
Alexandros.Stamatakis@epfl.ch

1 About RAxML

RAxML (Randomized Axelerated Maximum Likelihood) is a program for
sequential and parallel Maximum Likelihood-based inference of large phylo-
genetic trees. It has originally been derived from fastDNAml.

1.1 What’s new in the in version 2.2.3?

– Minor bug fixed in estimation of alpha parameter (does not affect the vast
majority of datasets)

– New option (-k) to optimize model parameters, likelihood and printout
branch lengths of bootstrapped trees

– New option to define outgroup(s) (-o outgroupName(s))
– Improved tree format for trees with support values computed with -f b

– The program will now also generate an appropriately adapted reduced
model file, in case completely undetermined columns have been removed
from the alignment.

1.2 RAxML-VI-HPC

HPC stands for High Performance Computing because RAxML offers two
ways to exploit parallelism (fine-grained and coarse-grained parallelism). The
current version of RAxML is a highly optimized program, which handles DNA
and AA alignments under various models of substitution and two distinct
methods of rate heterogeneity.

In addition, it only implements the novel, fast rapid hill climbing algo-
rithm [1], which yields significant performance improvements on huge align-
ments compared to the previous search algorithms. A run-time improvement
of factor 67 has been measured for a 25,000-taxon dataset.

The program has been developed to be able to handle extremely large
datasets, such as a 25,000-taxon alignment of protobacteria (length approxi-
mately 1,500 base pairs, run time on a single CPU: 13.5 days, memory con-
sumption: 1.5GB) or a large multi-gene alignment of 2,100 mammals with a
length of over 50,000 base pairs (run time: 1 week with the OpenMP version

2 Alexandros Stamatakis

of RAxML on 4 CPUs, memory consumption: 2.9GB). However, it also does
fine on smaller datasets.

1.3 Wrapper-Scripts for RAxML

Here is a list with scripts by colleagues which make using RAxML easier and
more comfortable.

– My colleague Frank Kauff (now at University of Kaiserslautern, fkauff@rhrk.uni-
kl.de, previously at Duke University) has written a cool biopython wrap-
per called PYRAXML2. This is a script that reads NEXUS-style data
files and prepares the necessary input files and command-line options for
RAxML.You can download the Beta-version at www.lutzonilab.net/downloads/
.

– My colleague Olaf Bininda-Emonds has written a perl script that provides
a wrapper around RAxML to easily analyze a set of data files according to
a common set of the search criteria. It also organizes the RAxML output
into a set of subdirectories. You can download it at www.personal.uni-
jena.de/˜b6biol2/ProgramsMain.html

1.4 Citing RAxML

If you use the sequential or MPI-based version of RAxML-VI-HPC please
cite Alexandros Stamatakis :”RAxML-VI-HPC: Maximum Likelihood-based
Phylogenetic Analyses with Thousands of Taxa and Mixed Models”, Bioin-
formatics 22(21):2688–2690, 2006. In case you are using the OpenMP version
of RAxML please also cite [2].

2 IMPORTANT WARNINGS

2.1 RAxML Likelihood Values

It is very important to note that the likelihood values produced by RAxML
can not be directly compared to likelihood values of other ML programs.
However, the likelihood values of the current version are much more similar
to those obtained by other programs (usually between +/− 1.0 log likeli-
hood units of those obtained e.g. by PHYML). Also note, that likelihood
values obtained by different RAxML-VI-HPC versions, especially those prior
to version 2.1.0 should not be directly compared with each other either. This
is due to frequent code changes in the likelihood function implementation
and model parameter optimization procedure!

Thus, if you want to compare topologies obtained by distinct ML pro-
grams make sure that you optimize branch lengths and model parameters of
final topologies with one and the same program. This can be done by

The RAxML Manual 3

either using the respective RAxML option (-f e) or e.g. the corresponding
option in PHYML [3].

PERSONAL OPINION: Differences in Likelihood scores:
In theory all ML programs implement the same mathematical function

and should thus yield the same likelihood score for a fixed model and a
given tree topology. However, if we try to implement a numerical function
on a finite machine we will unavoidably obtain rounding errors. Even if we
change the sequence (or if it is changed by the compiler) of some operations
applied to floating point or double precision arithmetics in our computer
we will probably get different results 1. In my experiments I have observed
differences among final likelihood values between GARLI, IQPNNI, PHYML,
RAxML (every program showed a different value).

RAxML likelihood values typically differ by a greater amount from those
obtained by other programs. The rationale for this is that the general strat-
egy adopted in RAxML is to trade exactness of the likelihood score for speed
with respect to the calculations (re-ordering of instructions, low-level opti-
mizations etc). My personal opinion is that the topological search (number
of topologies analyzed) is much more important than exact likelihood scores
to obtain “good” final ML trees. Especially on large trees with more than
1,000 sequences the differences in likelihood scores induced by the topology
are usually so large that a very rough parameter optimization with an ε of 1
log likelihood unit will already clearly show the differences.

Note that, if you perform a bootstrap analysis you don’t need to worry too
much about likelihood values anyway, since usually you are only interested
in the bootstrapped topologies.

2.2 The GTRCAT Mystery

There is a paper available now [4] which describes what GTRCAT is and why I
don’t like GTRGAMMA despite the fact that its is a beautiful Greek letter. The
main idea behind GTRCAT is to allow for integration of rate heterogeneity into
phylogenetic analyses at a significantly lower computational cost (about 4
times faster) and memory consumption (4 times lower). However, due to the
way individual rates are optimized and assigned to rate categories in GTRCAT

(for details on this please read the paper), this approximation is numerically
instable. This means:

DO NOT COMPARE ALTERNATIVE TREE TOPOLOGIES USING
THEIR CAT-based LIKELIHOOD VALUES!

There is a large possibility for a biased assessment of trees. This is the rea-
son why GTRCAT is called approximation instead of model. The same applies
to the CAT approximation when used with AA data.

1 As an example for this you might want to implement a dense matrix multiplica-
tion on doubles and then re-order the instructions

4 Alexandros Stamatakis

3 Installation, Compilers, Platforms

RAxML-VI-HPC can be download at icwww.epfl.ch/˜stamatak as open
source code. To install RAxML-VI download the RAxML-VI-HPC-2.2.3.tar.gz
archive and uncompress it.

This version comes in three flavors:

1. raxmlHPC just the standard sequential version, compile it with gcc by
typing make (works on LINUX and MAC).

2. raxmlHPC-OMP the OpenMP-parallelized version of RAxML which runs
on 2-way (or dual processor), 4-way, and 8-way CPUs. It is best compiled
with the pgcc (PGI) compiler by typing make -f Makefile.OMP.PGI. To
compile with the icc compiler type make -f Makefile.OMP.ICC

3. raxmlHPC-MPI the MPI-parallelized version for all types of clusters to per-
form parallel bootstraps or multiple inferences on the original alignment,
compile with the mpicc (MPI) compiler by typing make -f Makefile.MPI.

IMPORTANT WARNING FOR MPI-VERSION: If you want to compile
the MPI version of RAxML but have previously compiled the sequential ver-
sion, make sure to remove all object files of the sequential code by typing
“rm *.o”, everything needs to be re-compiled for MPI!

3.1 When to use which version?

The use of the sequential version is for small datasets and for initial experi-
ments to determine appropriate search parameters.

The OpenMP version will work well for very long alignments (rules of
thump: ≥ 3, 000 base pairs under GTRGAMMA and ≥ 5, 000 base pairs under
GTRCAT). For AA models which perform much more computational work per
iteration, i.e. per base pair, you might observe this threshold to be situated
around 1,000–2,000 bp.

If your alignments are not that long and you have e.g. a dual-processor
available it is better to run independent parallel booststraps or multiple anal-
yses on them using the sequential version. When using the OpenMP ver-
sion do not forget to set the number of threads OMP_NUM_THREADS that will
be executed per node to the number of CPUs. If you have a bash shell and
a 4-way Opteron make sure to set export OMP_NUM_THREADS=4.

The MPI-version is for executing your production runs (i.e. 100 or 1,000
bootstraps) on a LINUX cluster. You can also perform multiple inferences
on larger datasets in parallel to find a best-known ML tree for your dataset.
WARNING: The current MPI-version will only work properly if you spec-
ify the “-#” option in the command line, since it has been designed to do
multiple inferences in parallel!

The best hardware to run RAxML on is currently the AMD Opteron [2]
architecture.

The RAxML Manual 5

3.2 Processor Affinity with the OpenMP Version

An important aspect if you want to use the OpenMP version of the program
is to find out how your operating system/platform handles processor affinity
of threads. Within the shared-memory context processor affinity means that
if you run e.g. 4 threads on a 4-way CPU the threads should always run on the
same CPU, i.e. thread0 on CPU0, thread1 on CPU1 etc. This is important for
efficiency, since cache entries can be continuously re-used if a thread, which
works on the same part of the shared memory, remains on the same CPU.
If threads are moved around e.g. thread0 is initially executed on CPU0 but
then on CPU4 etc. the cache memory of the CPU will have to be re-filled
every time a thread is moved. With processor affinity enabled, performance
improvements of ≈ 5% have been measured on sufficiently large and thus
memory-intensive datasets.

Note, that methods to enforce processor affinity vary among operating
systems and installations. Thus, the best thing to do is to contact your system
administrator or supercomputing center.

4 The RAxML Options

4.1 Input Alignment Format

The input alignment format of RAxML is relaxed interleaved or sequential
PHYLIP. “Relaxed” means that sequence names can be of variable length
between 1 up to 100 characters. If you need longer taxon names you can adapt
the constant #define nmlngth 100 in file axml.h appropriately. Moreover,
RAxML should be less sensitive with respect to the formatting (tabs, insets,
etc) of interleaved PHYLIP files.

The input tree format is Newick, the trees must not be comprehensive,
i.e. contain all taxa.

4.2 Program Options

raxmlHPC[-MPI|-OMP] -s sequenceFileName

-n outputFileName

-m substitutionModel

[-a weightFileName]

[-b bootstrapRandomNumberSeed]

[-c numberOfCategories]

[-d]

[-e likelihoodEpsilon]

[-f b|c|d|e|o|s]

[-g groupingFileName]

6 Alexandros Stamatakis

[-h]

[-i initialRearrangementSetting]

[-j]

[-k]

[-o outgroupName(s)]

[-q multipleModelFileName]

[-r constraintFileName]

[-t userStartingTree]

[-w workingDirectory]

[-v]

[-y]

[-z multipleTreesFile]

[-# numberOfRuns]

Depending on the compiler you used and the platforms that are at your
disposal, you will have three alternative executables:

1. raxmlHPC is just the sequential version.
2. raxmlHPC-MPI is the parallel coarse-grained version. It can be used if you

have a LINUX cluster available and want to perform multiple analysis
or multiple bootstraps, i.e. in combination with the -# or -# and -b

options. Note, that if you do not specify -# the parallel code will not
work properly!

3. raxmlHPC-OMP only makes sense if you have a really long alignment (in
terms of base pairs) and you have access to 2-way or 4-way CPUs.

The options in brackets [] are optional, i.e. must not be specified, whereas
RAxML must be provided the sequence file name with -s and the output
file(s) name appendix with -n and the desired model of DNA or AA substi-
tution with -m.

Let’s have a look at the individual options now:

-a weightFileName

This option specifies the name of a column weight file, which allows you to
assign individual weights to each column of the alignment. The default is that
each column has the weight 1. The weights in the weight file must be integers
separated by any type and number of whitespaces within a separate file. In
addition, there must of course be as many weights as there are columns in
your alignment.

The contents of an example weight file would look like this:

5 1 1 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1

The RAxML Manual 7

-b bootstrapRandomNumberSeed

This option allows you to turn on non-parametric bootstrapping. To allow
for reproducibility of runs in the sequential program, you have to specify a
random number seed, e.g. -b 123476. Note however, that parallel bootstraps
with the parallel version raxmlHPC-MPI are not reproducable despite the fact
that you specify a random number seed. They are also not reproducable for
the sequential version in case you do not provide a fixed starting tree with
-t.

-c numberOfCategories

This option allows you to specify the number of distinct rate categories
used into which the individually optimized rates for each individual site are
“thrown” under -m GTRCAT. The results in [4] indicate that the default of
-c 25 works fine in most practical cases.

-d

This option allows you to start the RAxML search with a complete random
starting tree instead of the default Maximum Parsimony Starting tree. On
smaller datasets (around 100–200 taxa) it has been observed that this might
sometimes yield topologies of distinct local likelihood maxima which better
correspond to empirical expectations.

-e likelihoodEpsilon

This allows you to specify up to which likelihood difference, i.e. ε, the model
parameters will be optimized when you use either the GTRGAMMA or GTRMIX

models or when you just evaluate final trees with the -f e option. This has
shown to be useful to quickly evaluate the likelihood of a bunch of large
final trees of more than 1,000 taxa because it will run much more quickly.
I typically use e.g. -e 1.0 or -e 2.0 in order to rapidly compare distinct
final tree topologies based on their likelihood values. Note that, topology-
dependent likelihood-differences are typically far larger than 1.0 or 2.0 log
likelihood units. The default setting is 0.1 log likelihood units which proves
to be sufficient in most practical cases.

-f algorithm

This option allows you to select the type of algorithm you want RAxML to
execute. When you specify -f d which is also the default, RAxML will exe-
cute the new (as of version 2.2.1) and significantly faster rapid hill-climbing
algorithm. If you specify -f o RAxML will execute the slower old search
algorithm of version 2.1.3. When -f e is specified RAxML will optimize
the model parameters and branch lengths of a topology provided via the -t

option under GTRGAMMA. When —-f b— is specified RAxML will draw the

8 Alexandros Stamatakis

bipartitions using a bunch of topologies (typically bootstrapped trees) speci-
fied with -z (see below) onto a single tree topology specified by -t (typically
the best-scoring ML tree). The new -f c option just checks if RAxML can
read the alignment. Finally the new -f s option can be used to split a multi-
gene alignment into individual genes, provided a model file with -q. This
might be useful to select best-fitting models for individual partitions of an
AA multi-gene alignment.

-g groupingFileName

This option allows you to specify an incomplete or comprehensive multifur-
cating constraint tree for the RAxML search in NEWICK format. Initially,
multifurcations are resolved randomly. If the tree is incomplete (does not
contain all taxa) the remaining taxa are added by using the MP criterion.
Once a comprehensive (containing all taxa) bifurcating tree is computed, it
is further optimized under ML respecting the given constraints.

-i initialRearrangementSetting

This allows you to specify an initial rearrangement setting for the initial
phase of the search algorithm. If you specify e.g. -i 10 the pruned subtrees
will be inserted up to a distance of 10 nodes away from their original pruning
point. If you don’t specify -i, a “good” initial rearrangement setting will
automatically be determined by RAxML (see Section 5.1 for further details).

-j

Specifies that RAxML shall write intermediate trees found during the search
to a separate file after each iteration of the search algorithm. The default
setting, i.e. if you do not specify -j is that no checkpoints will be written.

-k

Specifies that RAxML shall optimize branches and model parameters on
bootstrapped trees as well as print out the optimized likelihood. Note, that
this option only makes sense when used with the GTRMIX or GTRGAMMA models
(or the respective AA models)!

-h

If you call raxmlHPC -h this will print a summary of the program options to
your terminal.

-m modelOfEvolution

Selection of the model of nucleotide substitution or amino acid substitution
to be used.

The RAxML Manual 9

NUCLEOTIDE MODELS

-m GTRCAT: GTR approximation with optimization of individual per–
site substitution rates and classification of those individual rates into the
number of rate categories specified by -c. This is only a work-around
for GTRGAMMA so make sure not to compare alternative topologies based
on their GTRCAT likelihood values. Therefore, you can not use GTRCAT in
combination with -f e (tree evaluation) and not in combination with
multiple analyses on the original alignment (-#) option. This is due to
the fact that the author assumes that you want to compare trees based
on likelihoods if you do a multiple run on the original alignment. If you
specify e.g. -m GTRCAT and -# 10 the program will automatically use
GTRMIX (see below).

-m GTRMIX: This option will make RAxML perform a tree inference (search
for a good topology) under GTRCAT. When the analysis is finished RAxML
will switch its model to GTRGAMMA and evaluate the final tree topology
under GTRGAMMA such that it yields stable likelihood values.

-m GTRGAMMA: GTR model of nucleotide substitution with the Γ model
of rate heterogeneity. All model parameters are estimated by RAxML.
The GTRGAMMA implementation uses 4 discrete rate categories which
represents an acceptable trade-off between speed and accuracy. Note that,
this has been hard-coded for performance reasons, i.e. the number of
discrete rate categories can not be changed by the user.

AMINO ACID MODELS

Available AA models: Values for matrixName (see below): DAYHOFF, DCMUT,
JTT, MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, GTR. With the op-
tional F appendix you can specify if you want to use empirical base fre-
quencies. Please note, that for mixed models you can in addition specify
the per-gene AA model in the mixed model file (see -q option below).

-m PROTCATmatrixName[F]: AA matrix specified by matrixName (see above
for a list) with optimization of individual per–site substitution rates and
classification of those individual rates into the number of rate categories
specified by -c. This is only a work-around for the GAMMA model of rate
heterogeneity, so make sure not to compare alternative topologies based
on their PROTCAT-based likelihood values. Therefore, you can not use
PROTCAT in combination with -f e (tree evaluation) and not in combina-
tion with multiple analyses on the original alignment (-#) option. This is
due to the fact that the author assumes that you want to compare trees
based on likelihoods if you do a multiple run on the original alignment. If
you specify e.g. one of the -m PROTCAT...models and -# 10 the program
will automatically use the respective PROTMIX... model (see below).

10 Alexandros Stamatakis

-m PROTMIXmatrixName[F]: This option will make RAxML perform a
tree inference (search for a good topology) under PROTCAT... . When
the analysis is finished RAxML will switch its model to the respec-
tive PROTGAMMA... model and evaluate the final tree topology under
PROTGAMMA... such that it yields stable likelihood values.

-m PROTGAMMAmatrixName[F]: AA matrix specified by matrixNamewith
the Γ model of rate heterogeneity. All free model parameters are es-
timated by RAxML. The GAMMA implementation uses 4 discrete rate
categories which represents an acceptable trade-off between speed and
accuracy. Note that, this has been hard-coded for performance reasons,
i.e. the number of discrete rate categories can not be changed by the user.

-n outputFileName

Specify the name of this run, according to which the various output files will
be named.

-o outgroupName(s)

Specify the name/names of the outgroup taxa, e.g.-o Mouse or -o Mouse,Rat.
Don’t leave spaces between the taxon names in the list! If there is more than
one outgroup a check for monophyly will be performed. If the outgroups are
not monophyletic the tree will be rooted at the first outgroup in the list and
a respective warning will be printed.

-q multipleModelFileName

This allows you to specify the regions of your alignment for which an individ-
ual model of nucleotide substitution should be estimated. This will typically
be useful to infer trees for long (in terms of base–pairs) multi-gene alignments.
If e.g. -m GTRGAMMA is used, individual α-shape parameters, GTR-rates, and
base frequencies will be estimated and optimized for each partition. If you
have an alignment with 1,000bp from two genes gene1 (positions 1–500) and
gene2 (positions 501–1,000) the information in the multiple model file should
look as follows:

gene1 = 1-500

gene2 = 501-1000

If gene1 is scattered through the alignment, e.g. positions 1–200, and
800–1,000 you specify this with:

gene1 = 1-200, 800-1,000

gene2 = 201-799

You can also assign distinct models to the codon positions, i.e. if you want
a distinct model to be estimated for each codon position in gene1 you can
specify:

The RAxML Manual 11

gene1codon1 = 1-500\3

gene1codon2 = 2-500\3

gene1codon3 = 3-500\3

gene2 = 501-1000

If you only need a distinct model for the 3rd codon position you can write:

gene1codon1andcodon2 = 1-500\3, 2-500\3

gene1codon3 = 3-500\3

gene2 = 501-1000

Finally, only for AA data its is also possible to specify fixed transition
matrices for each partition:

JTT, gene1 = 1-500

WAGF, gene2 = 501-800

gene3 = 801-1000

The AA substitution model must be the first entry in each line and must
be separated by a comma from the gene name. If like in the example you do
not specify a matrix for gene3 the model for gene3 will default to the model
specified by -m. You can not assign different models of rate heterogeneity to
different partitions, i.e. it will be either CAT or GAMMA as specified with -m.

-r constraintFileName

This option allows you to pass a binary/bifurcating constraint/backbone
tree in NEWICK format to RAxML. Note, that using this option only makes
sense if this tree contains less taxa than the input alignment. The remaining
taxa will initially be added by using the MP criterion. Once a comprehensive
tree with all taxa has been obtained it will be optimized under ML respecting
the restrictions of the constraint tree.

-s sequenceFileName

Specify the name of the alignment data file which must be in relaxed PHYLIP
format. Relaxed means that you don’t have to worry if the sequence file is
interleaved or sequential and that the taxon names are too long.

-t userStartingTree

Specifies a user starting tree file name which must be in Newick format.
Branch lengths of that tree will be ignored. Note, that you can also specify
a non-comprehensive (not containing all taxa in the alignment) starting tree
now. This might be useful if newly aligned/sequenced taxa have been added
to your alignment. Initially, taxa will be added to the tree using the MP
criterion. The comprehensive tree will then be optimized under ML.

12 Alexandros Stamatakis

-v

Displays version information.

-w workingDirectory

Name of the working directory where RAxML shall write its output files to.

-y

If you want to only compute a randomized parsimony starting tree with
RAxML and not execute an ML analysis of the tree specify -y. The program
will exit after computation of the starting tree. This option can be useful
if you want to assess the impact of randomized MP and Neighbor Joining
starting trees on your search algorithm. They can also be used e.g. as starting
trees for Derrick Zwickl’s GARLI program for ML inferences, which needs
comparatively “good” starting trees to work well above approximately 500
taxa.

-z multipleTreesFile

Only effective in combination with the -f b option. This file should contain
a number of trees in NEWICK format. The file should contain one tree per
line without blank lines between trees. For example you can directly read in
a RAxML bootstrap result file with -z.

-# numberOfRuns

Specifies the number of alternative runs on distinct starting trees. E.g. if
-# 10 is specified RAxML will compute 10 distinct ML trees starting from
10 distinct randomized maximum parsimony starting trees. In combination
with the -b option, this will invoke a multiple bootstrap analysis

4.3 Output Files

Depending on the search parameter settings RAxML will write a number of
output files. The files a run named -n exampleRunwill write are listed below:

– RAxML_log.exampleRun: A file that prints out the time, likelihood value of
the current tree and number of the checkpoint file (if the use of checkpoints
has been specified) after each iteration of the search algorithm. In the last
line it also contains the final likelihood value of the final tree topology after
thorough model optimization, but only if -m GTRMIX or -m GTRGAMMA have
been used. This file is not written if multiple bootstraps are executed,
i.e. -# and -b have been specified. In case of a multiple inference on the
original alignment (-# option) the Log-Files are numbered accordingly.

The RAxML Manual 13

– RAxML_result.exampleRunContains the final tree topology of the current
run. This file is also written after each iteration of the search algorithm,
such that you can restart your run with -t in case your computer crashed.
This file is not written if multiple bootstraps are executed, i.e. -# and -b

have been specified.
– RAxML_info.exampleRun contains information about the model and algo-

rithm used and how RAxML was called. The final GTRGAMMA likelihood(s)
(only if -m GTRGAMMA or -m GTRMIX have been used) as well as the alpha
shape parameter(s) are printed to this file. In addition, if the rearrange-
ment setting was determined automatically (-i has not been used) the
rearrangement setting found by the program will be indicated as well.

– RAxML_parsimonyTree.exampleRun contains the randomized parsimony
starting tree if the program has not been provided a starting tree by -t.
However, this file will not be written if a multiple bootstrap is executed
using the -# and -b options.

– RAxML_randomTree.exampleRun contains the completely random starting
tree if the program was executed with -d.

– RAxML_checkpoint.exampleRun.checkpointNumber if it has been speci-
fied by -j that checkpoints shall be written. Checkpoints are numbered
from 0 to n where n is the number of iterations of the search algorithm.
Moreover, the checkpoint files are additionally numbered if a multiple in-
ference on the original alignment has been specified using -#. Writing of
checkpoint files is disabled when a multiple bootstrap is executed.

– RAxML_bootstrap.exampleRun If a multiple bootstrap is executed by -#

and -b all final bootstrapped trees will be written to this one, single file.
– RAxML_bipartitions.exampleRun If you used the -f b option, this file

will contain the input tree with confidence values from 0.0 to 1.0 drawn on
it.

4.4 Alignment Error Checking

I recently noticed that a lot of alignments should be checked for the following
errors/insufficiencies before running an analysis with RAxML.

RAxML will now analyze the alignment and check for the following errors:

Identic Sequence name(s) appearing multiple times in an alignment, this can
happen when you exported a standard PHYLIP-file from some tool which
truncated the sequence names to 8 or 10 characters.

Identic Sequence(s) that have different names but are exactly identical. This
mostly happens when you excluded some hard-to-align alignment regions
from your alignment.

Undetermined Column(s) that contain only ambiguous characters that will
be treated as missing data, i.e. columns that entirely consist of X, ?, *, -

for AA data and N, O, X, ?, - for DNA data.

14 Alexandros Stamatakis

Undetermined Sequence(s) that contain that contain only ambiguous char-
acters that will be treated as missing data.

In case that RAxML detects Identic Sequences and/or Undetermined
Columns and was executed e.g. with -n alignmentName it will automat-
ically write an alignment file called alignmentName.reduced with Identic
Sequences and/or Undetermined Columns removed. If this is detected for a
multiple model analysis a respective model file modelFileName.reduced will
also be written. In case RAxML encounters identic sequence names or unde-
termined sequences it will exit with an error and you will have to fix your
alignment.

5 How to set up and run a typical Analysis

This is a HOW-TO, which describes how RAxML should best be used for a
real-world biological analysis, given an example alignment named ex_al.

Despite the observation that the default parameters work well in most
practical cases, the first thing to do is to adapt the program parameters to
your alignment. This refers to a “good” setting for the rate categories of
-m GTRCAT and the initial rearrangement setting. If you use mixed models
you should add -q modelFileName to all of the following commands.

5.1 Getting the Initial Rearrangement Setting right

If you don’t specify an initial rearrangement setting with the -i option the
program will automatically determine a good setting based upon the random-
ized MP starting tree. It will take the starting tree and apply lazy subtree
rearrangements with a rearrangement setting of 5, 10, 15, 20, 25. The min-
imum setting that yields the best likelihood improvement on the starting
trees will be used as initial rearrangement setting. This procedure can have
two disadvantages: Firstly, the initial setting might be very high (e.g. 20 or
25) and the program will slow down considerably. Secondly, a rearrangement
setting that yields a high improvement of likelihood scores on the starting
tree might let the program get stuck earlier in some local maximum (this
behavior could already be observed on a real dataset with about 1,900 taxa).

Therefore, you should run RAxML a couple of times (the more the better)
with the automatic determination of the rearrangement setting and with a
pre-defined value of 10 which proved to be sufficiently large and efficient in
many practical cases. In the example below we will do this based on 5 fixed
starting trees.

So let’s first generate a couple of randomized MP starting trees. Note that
in RAxML-VI-HPC 2.2.3 you also always have to specify a substitution
model, regardless of whether you only want to compute an MP starting tree
with the -y option.

The RAxML Manual 15

raxmlHPC -y -s ex_al -m GTRCAT -n ST0

...

raxmlHPC -y -s ex_al -m GTRCAT -n ST4

Then, infer the ML trees for those starting trees using a fixed setting
-i 10 ...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n FI0

...

raxmlHPC -f d -i 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n FI4

and then using the automatically determined setting on the same starting
trees:

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n AI0

...

raxmlHPC -f d -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n AI4

Here, we use the GTRMIX model, i.e. inference under GTRCAT and evalu-
ation of the final tree under GTRGAMMA such that we can compare the final
likelihoods for the fixed setting FI0-FI4 and the automatically determined
setting AI0-AI4.

The setting that yields the best likelihood scores should be used in the
further analyses.

5.2 Getting the Number of Categories right

Another issue is to get the number of rate categories right. Due to the reduced
memory footprint and significantly reduced inference times the recommended
model to use with RAxML on large dataset is GTRMIX if you are doing runs
to find the best-known ML tree on the original alignment and GTRCAT for
bootstrapping.

Thus, you should experiment with a couple of -c settings and then look
which gives you the best Γ likelihood value.

Suppose that in the previous Section 5.1 you found that automatically
determining the rearrangement setting works best for your alignment.

You should then re-run the analyses with distinct -c settings by incre-
ments of e.g. 15 rate categories e.g.:

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C10_0

...

raxmlHPC -f d -c 10 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C10_4

You don’t need to run it with the default setting of -c 25 since you
already have that data, such that you can continue with ...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST0 -n C40_0

...

raxmlHPC -f d -c 40 -m GTRMIX -s ex_al -t RAxML_parsimonyTree.ST4 -n C40_4

and so on and so forth.
Since the GTRCAT approximation is still a new concept little is known

about the appropriate setting for -c 25. However, empirically -c 25 worked
best on 19 real-world alignments. So testing up to -c 55 should usually be
sufficient, except if you notice a tendency for final GTRGAMMA likelihood values
to further improve with increasing rate category number.

16 Alexandros Stamatakis

Thus, the assessment of the “good” -c setting should once again be based
on the final GTRGAMMA likelihood values.

If you don’t have the time or computational power to determine both
“good” -c and -i settings you should rather stick to determining -i since it
has shown to have a greater impact on the final results.

Also note, that increasing the number of distinct rate categories has a
negative impact on execution times.

Finally, if the runs with the automatic determination of the rearrangement
settings from Section 5.1 have yielded the best results you should then use
exactly the same rearrangement settings for each series of experiments to
determine a good -c setting. The automatically determined rearrangement
settings can be retrieved from file RAxML_info.AI_0 ... RAxML_info.AI_4.

5.3 Finding the Best-Known Likelihood tree (BKL)

As already mentioned RAxML uses randomized MP starting trees in which
it initiates an ML-based optimization. Those trees are obtained by using a
randomized stepwise addition sequence to insert one taxon after the other
into the tree. When all sequences have been inserted a couple of subtree
rearrangements (also called subtree pruning re-grafting) with a fixed rear-
rangement distance of 20 are executed to further improve the MP score.

The concept to use randomized MP starting trees in contrast to the NJ
(Neighbor Joining) starting trees many other ML programs use is regarded as
an advantage of RAxML. This allows the program to start ML optimizations
of the topology from a distinct starting point in the immense topological
search space each time. Therefore, RAxML is more likely to find good ML
trees if executed several times.

This also allows you to build a consensus tree out of the final tree topolo-
gies obtained from each individual run on the original alignment. By this
and by comparing the final likelihoods you can get a feeling on how stable
(prone to get caught in local maxima) the search algorithm is on the original
alignment.

Thus, if you have sufficient computing resources available, in addition to
bootstrapping, you should do multiple inferences (I executed 200 inferences in
some recent real-world analyses with Biologists) with RAxML on the original
alignment. On smaller datasets it will also be worthwhile to use the -d option
for a couple of runs to see how the program behaves on completely random
starting trees.

This is where the -# option as well as the parallel MPI version raxmlHPC-MPI

come into play.
So, to execute a multiple inference on the original alignment on a single

processor just specify:

raxmlHPC -f d -m GTRMIX -s ex_al -# 10 -n MultipleOriginal

and RAxML will do the rest for you. Note that specifying -m GTRCAT in
combination with -# is not a good idea, because you will probably want to

The RAxML Manual 17

compare the trees inferred under GTRCAT based on their likelihood values and
will have to compute the likelihood of the final trees under GTRGAMMA anyway.
Thus you should better use -m GTRMIX for those analyses.

If you have a PC cluster available you would specify,

raxmlHPC-MPI -f d -m GTRMIX -s ex_al -# 100 -n MultipleOriginal

preceeded by the respective MPI run-time commands, e.g. mpiexec or mpirun
depending on your local installation (please check with your local computer
scientist).

It is important to note that you should specify the execution of one more
process than CPUs available (e.g. you have 8 CPUs → start 9 MPI processes),
since one of those is just the master process which collects data and issues
jobs to the worker processes and does not produce significant computational
load.

5.4 Bootstrapping with RAxML

To carry out a multiple non-parametric bootstrap with the sequential version
of RAxML just type:

raxmlHPC -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

You have to specify a random number seed after -b for the random number
generator. This will allow you to generate reproducable results. Note that we
can use GTRCAT here, if we do not want to compare final trees based on ML
scores or need bootstrapped trees with branch lengths.

To do a parallel bootstrap type:

raxmlHPC-MPI -f d -m GTRCAT -s ex_al -# 100 -b 12345 -n MultipleBootstrap

once again preceeded by the appropriate MPI execution command. Note
that despite the fact that you specified a random number seed the results of
a parallel bootstrap are not reproducable.

5.5 Obtaining Confidence Values

Suppose that you have executed 200 inferences on the original alignment
and 1,000 bootstrap runs. You can now use the RAxML -f b option to
draw the information from the 1,000 bootstrapped topologies onto some tree
and obtain a topology with support values. From my point of view the most
reasonable thing to do is to draw them on the best-scoring ML tree from those
200 runs. Suppose, that the best-scoring tree was found in run number 99 and
the respective tree-file is called RAxML_result.MultipleOriginal.RUN.99.

If you have executed more than one bootstrap runs with the sequential
version of RAxML on distinct computers, i.e. 10 runs with 100 bootstraps on
10 machines you will first have to concatenate the bootstrap files. If your boot-
strap result files are called e.g. RAxML_bootstrap.MultipleBootstrap.0,
..., RAxML_bootstrap.MultipleBootstrap.9 you can easily concatenate
them by using the LINUX/UNIX cat command, e.g.

18 Alexandros Stamatakis

cat RAxML_bootstrap.MultipleBootstrap.* > RAxML_bootstrap.All

In order to get a tree with bootstrap values on it just execute RAxML as
indicated below:

raxmlHPC -f b -m GTRCAT -s ex_al -z RAxML_bootstrap.All -t RAxML_result.MultipleOriginal.RUN.99 -n BS_TREE

The new output tree format now shows the support values as inner node
labels and also displays branch lengths, it can look e.g. like this:

((((Human:0.555,((Frog:0.207,(Carp:0.129,Loach:0.192)

100:0.159)70:0.001,Chicken:0.561)100:0.259)65:0.091,

(Whale:0.108,(Cow:0.116,Seal:0.186)55:0.030)65:0.046)

95:0.144,Rat:0.068):0.045,Mouse:0.045);

6 Frequently Asked Questions

Q: Can I use NEXUS-style input files for analyses with RAxML?

Not directly, but my colleague Frank Kauff (fkauff@rhrk.uni-kl.de) at the
University of Kaiserslautern has written a cool biopython wrapper called
PYRAXML2. This is a script that reads nexus data files and prepares the
necessary input files and command-line options for RAxML. You can down-
load the Beta-version of PYRAXML2 at www.lutzonilab.net/downloads/ .

Q: Why does RAxML not implement a proportion of Invariable (P-Invar)
Sites estimate?

PERSONAL OPINION: It is unquestionable that one needs to incorpo-
rate rate heterogeneity in order to obtain “publishable” results. Put aside
the “publish-or-perish” argument, there is also strong biological evidence for
rate heterogeneity among sites. The rationale for not implementing P-Invar
in RAxML is that all three alternatives, GTRGAMMA, GTRCAT and P-Invar repre-
sent distinct approaches to incorporate rate heterogeneity. Thus, in principle
they account for the same phenomenon by different mathematical means.
Also some unpublished concerns have been raised that the usage of P-Invar
in combination with Γ can lead to a “ping-pong” effect since a change of
P-Invar leads to a change in Γ and vice versa. Gangolf Jobb has not imple-
mented P-Invar in his Treefinder [5] (www.treefinder.de) program based on
similar concerns.

Q: Why does RAxML-HPC only implement GTRCAT and GTRGAMMA
models for DNA?

For each distinct model of nucleotide substitution RAxML uses a separate,
highly optimized set of likelihood functions. The idea behind this is that GTR
is the most common and general model for real-world DNA analysis. Thus, it
is better to efficiently implement and optimize this model instead of offering

The RAxML Manual 19

a plethora of distinct models which are only special cases of GTR but are
programmed in a generic and thus inefficient way.

PERSONAL OPINION: My personal view is that using a simpler model
than GTR only makes sense with respect to the computational cost, i.e. it
is less expensive to compute. Programs such as Modeltest [6] propose the
usage of a simpler model for a specific alignment if the likelihood of a fixed
topology under that simpler model is not significantly worse than that ob-
tained by GTR based on a likelihood ratio test. My experience is that GTR
always yields a slightly better likelihood than alternative simpler models. In
addition, since RAxML has been designed for the inference of large datasets
the danger of over-parameterizing such an analysis is comparatively low. Pro-
vided these arguments the design decision was taken to rather implement the
most general model efficiently than to provide many inefficient generic imple-
mentations of models that are just special cases of GTR. Finally, the design
philosophy of RAxML is based upon the observation that a more thorough
topological search has a greater impact on final tree quality than modeling de-
tails. Thus, the efficient implementation of a rapid search mechanisms is con-
sidered to be more important than model details. Note that, Derrick Zwickl
has independently adapted the same strategy in his very good GARLI code
(www.zo.utexas.edu/faculty/antisense/Garli.html), based on similar consid-
erations (personal communication).

Q: Why does RAxML focus mainly on DNA-based tree inference?

The whole RAxML project started from a high performance computing
perspective, i.e. with the goal to compute huge trees on parallel computers.
Since DNA data has only 4 states in contrast to 20 for protein data the
computational cost (execution times and memory consumption) to compute
large trees with many taxa with DNA data is lower. Thus, we are currently
able to obtain larger trees based on DNA data.

Tips & Tricks: My colleague Olaf Bininda-Emonds has developed a
nice little script [7] (available at www.personal.uni-jena.de/˜b6biol2/) for
converting DNA sequence data to protein data, align the protein data with
ClustalW2 and then re–convert it into a DNA alignment. If you have the DNA
data available, but want to align with amino acids, and then use RAxML to
infer trees, Olaf’s script will be very helpful.

Q: How does RAxML perform compared to other programs?

RAxML has been compared to other phylogeny programs mainly based
on real-world biological datasets and best-known likelihood values. Those
analyses can be found in [8] [9] [10]. On almost all real datasets RAxML out-
performs other current programs with respect to inference times as well as
final likelihood values. An exception is Derrick Zwickl’s GARLI code which

2 The ClustalW and most other alignment algorithms typically perform much
better on protein data.

20 Alexandros Stamatakis

represents a “good” alternative to RAxML for trees containing less than
approximately 1,000–1,500 taxa. The main advantages of RAxML with re-
spect to all other programs are the highly optimized and efficient likelihood
functions and the very low memory consumption. In particular the imple-
mentation of the GTRCAT feature allows RAxML to compute huge trees under
a realistic approximation of nucleotide substitution which is currently im-
possible with competing programs due to excessive memory requirements.
An initial analysis of the large multi-gene mammalian dataset under GTRCAT
showed promising results.

Q: Why has the performance of RAxML mainly been assessed using real-
world data?

PERSONAL OPINION: Despite the unquestionable need for simulated
data and trees to verify and test the performance of current ML algorithms
the current methods available for generation of simulated alignments are not
very realistic. For example, only few methods exist that incorporate the gen-
eration of gaps in simulated alignments. Since the model according to which
the sequences are generated on the true tree is pre-defined we are actually as-
suming that ML exactly models the true evolutionary process, while in reality
we simply don’t know how sequences evolved. The above simplifications lead
to “perfect” alignment data without gaps, that evolved exactly according to
a pre-defined model and thus exhibits a very strong phylogenetic signal in
contrast to real data. In addition, the given true tree, must not necessarily be
the Maximum Likelihood tree. This difference manifests itself in substantially
different behaviors of search algorithms on real and simulated data. Typically,
search algorithms execute significantly less (factor 5–10) topological moves on
simulated data until convergence as opposed to real data, i.e. the number of
successful Nearest Neighbor Interchanges (NNIs) or subtree rearrangements
is lower. Moreover, in several cases the likelihood of trees found by RAxML
on simulated data was better than that of the true tree. Another important
observation is that program performance can be inverted by simulated data.
Thus, a program that yields “good” Robinson–Foulds distances on simulated
data can in fact perform much worse on real data than a program that does
not perform well on simulated data. If one is willing to really accept ML as
inference criterion on real data one must also be willing to assume that the
tree with the best likelihood score is the tree that is closest to the true tree.

My personal conclusion is that there is a strong need to improve simulated
data generation and methodology. In addition, the perhaps best way to assess
the validity of our tree inference methods consists in an empirical evaluation
of new results and insights obtained by real phylogenetic analysis. This should
be based on the prior knowledge of Biologists about the data and the medical
and scientific benefits attained by the computation of phylogenies.

Q: Why am I getting weird error messages from the MPI version?

The RAxML Manual 21

You probably forgot to specify the -# option in the command-line which
must be used for the MPI version to work properly.

Q: How does RAxML handle branch lengths with mixed models?

Currently, only one single branch is optimized over all partitions,
i.e. RAxML performs a joint branch length estimate over all models.

PERSONAL OPINION: There might be a risk of over-parameterization
if one estimates a separate branch length for each model.

Nonetheless, the implementation of separate branch length-estimates is
planned.

Q: When using mixed models, can I link the model parameters of distinct
partitions to be estimated jointly, in a similar as way MrBayes does it?

Currently not, but the implementation of such an option is planned.

7 Things in Preparation

A couple of things are in preparation (to be released within the next 6 months)
which will further expand the capabilities of RAxML. Please be patient with
feature requests, since I do not have anybody to help me with program de-
velopment.

– MPI-based parallelization of the actual search algorithm for parallel infer-
ence of a single huge tree on a cluster

– Per-model branch length optimization for mixed models
– Linking parameter estimation across mixed models
– ML-based estimate of base frequencies
– RAxML Web-Servers attached to large clusters with more than 100 CPUs

For any further requests or proposals that you might have please send
an email to Alexandros.Stamatakis@epfl.ch or contact me via skype internet
telephony, login: stamatak.

Acknowledgments

Many people have contributed to improve RAxML either via personal discus-
sions, email, or skype or by providing real-world alignments and answering
all sorts of CS- and biology-related questions. In the hope not to have forgot-
ten anybody I would like to thank the following colleagues (names are in no
particular order): Olivier Gascuel, Stephane Guindon, Wim Hordijk, Michael
Ott, Olaf Bininda-Emonds, Maria Charalambous, Pedro Trancoso, Tobias
Klug, Derrick Zwickl, Jarno Tuimila, Charles Robertson, Daniele Catanzaro,
Daniel Dalevi, Mark Miller, Usman Roshan, Zhihua Du, Markus Göker, Bret
Larget, Josh Wilcox, Marty J. Wolf, Aggelos Bilas, Alkiviadis Simeonidis,
Martin Reczko, Gangolf Jobb, Frank Kauff, James Munro, Peter Cordes.

22 Alexandros Stamatakis

References

1. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics (2006)
btl446

2. Stamatakis, A., Ott, M., Ludwig, T.: Raxml-omp: An efficient program for
phylogenetic inference on smps. In: Proc. of PaCT05. (2005) 288–302

3. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst. Biol. 52 (2003) 696–704

4. Stamatakis, A.: Phylogenetic models of rate heterogeneity: A high performance
computing perspective. In: Proc. of IPDPS2006, Rhodos, Greece (2006)

5. Jobb, G., Haeseler, A., Strimmer, K.: Treefinder: A powerful graphical analysis
environment for molecular phylogenetics. BMC Evolutionary Biology 4 (2004)

6. Posada, D., Crandall, K.: Modeltest: testing the model of dna substitution.
Bioinformatics 14 (1998) 817–818

7. R.P.Bininda-Emonds, O.: transalign: using amino acids to facilitate the multi-
ple alignment of protein-coding dna sequences. BMC Bioinformatics 6 (2005)

8. Stamatakis, A.: An efficient program for phylogenetic inference using simulated
annealing. In: Proc. of IPDPS2005, Denver, Colorado, USA (2005)

9. Stamatakis, A., Ludwig, T., Meier, H.: New fast and accurate heuristics for
inference of large phylogenetic trees. In: Proc. of IPDPS2004. (2004)

10. Stamatakis, A., Ludwig, T., Meier, H.: Raxml-iii: A fast program for maximum
likelihood-based inference of large phylogenetic trees. Bioinformatics 21 (2005)
456–463

