
Evolutionary Placement of Short Sequence Reads
on Multi-Core Architectures

Alexandros Stamatakis, Zsolt Komornik, Simon A. Berger
Dept. of Computer Science, Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany

Email: stamatak@in.tum.de, z.komornik@gmail.com, simon.berger@in.tum.de

Abstract—The application of high performance computing
methods in bioinformatics becomes increasingly important be-
cause of the masses of data generated by novel short-read DNA
sequencers. One important application of such short reads, is
the analysis of microbial communities where the anonymous
short reads need to be identified by sequence comparison to
a set of reference sequences. This identification is required to
analyze the microbial composition and biological diversity of the
sample. We briefly introduce a new algorithm for evolutionary
(phylogenetic) placement of short reads under the Maximum
Likelihood criterion and implement it in RAxML. While this
algorithm is significantly more accurate than plain pair-wise
sequence comparison it can become highly compute-intensive
when a typical number of 100,000 reads and more need to be
placed into an existing phylogenetic tree. Therefore, we deploy
multi-grain parallelism to improve parallel efficiency of this
algorithm on 16-core and 32-core architectures. Via this multi-
grain approach, we achieve parallel execution time improvements
of 25% and super-linear speedups on 16 cores, as well as near-
linear speedups and improvements exceeding 50% on 32-cores on
two large real-world microbial datasets. Evolutionary placement
of 100,000 reads into a tree with more than 4,000 taxa now only
requires less than 2 hours of execution time on 32 cores.

Index Terms—Evolutionary Placements; Short Reads; Maxi-
mum Likelihood; Pthreads; Multi-Grain Parallelism; RAxML;

I. INTRODUCTION

The application of high performance computing methods to
bioinformatics applications faces two challenges: the many-
core revolution and the biological data flood that is driven by
novel wet-lab sequencing techniques. These new sequencing
techniques can generate more than 100,000 short read DNA
sequences with a length ranging between 30 to 450 nucleotides
in a single run. Besides full-genome assembly (see, e.g.,
[1]), another important application is the in-vivo sampling of
microbial communities, e.g., in the human gut [2] or on human
hands [3]. Given the short reads, the first step in the analysis
process of microbial communities consists of identifying the
anonymous reads by determining to which of the known
(identified) organism sequences they are most closely related
to. This is usually done by pair-wise sequence comparisons,
i.e., each of the short reads is compared against all reference
sequences via a respective BLAST [4] search or, e.g., pairwise
sequence alignment [5]. An assignment of anonymous reads to
known organisms allows for comparison of microbial commu-
nities from different samples [2], for instance, samples from
different habitats, and allows to determine their respective
phylogenetic diversity [6].

Here we present the parallelization of a novel phyloge-
netic identification (placement) algorithm for anonymous reads
(henceforth denoted as Query Sequences (QS)), using a set
of full length Reference Sequences (RS). While, as already
mentioned, the most straight-forward approach for identifying
the QS consists of using similarity methods such as BLAST
and pair-wise alignment, this standard approach faces some
limitations: Firstly, the QS might be too short to yield sufficient
signal for a correct placement. Secondly, this approach can
yield misleading assignments of QS to RS if the RS sample
does not contain sequences that are sufficiently closely related
to the QS. Thus, the most important argument against a
BLAST-based approach is, that it will not unravel potential
problems in the sampling of the RS (see [7]). For instance,
given two RS A and B, a QS Q may be assigned to A by
BLAST, while it is in reality most closely related to a RS
C that was not included in the reference sequence set. Thus,
many studies of microbial communities deploy phylogenetic
(evolutionary) trees for QS placement, despite the significantly
higher computational cost. If a QS falls into an inner branch
of the phylogenetic reference tree comprising the RS, i.e., it is
not located near a leave of the tree that represents a currently
living species, this indicates that the sampling of the RS is
insufficient to correctly place and capture the diversity of the
QS. This also provides vital information about the parts of the
reference tree whose sampling needs to be improved. In fact,
this information can be used to guide efforts for full-length
DNA sequencing in order to improve the taxon sampling of the
organisms under study and fill in the missing parts in our view
of evolutionary history. Note that, the accuracy of phylogeny
reconstruction increases with taxon sampling [8].

To date, phylogeny-based placement of reads (environmen-
tal samples) is conducted as follows: the QS are aligned with
respect to a Reference Alignment (RA) for the Reference
Sequences (RS), and then inserted into the Reference Tree
(RT), either via a complete de novo tree reconstruction, a
constrained tree search (using the RT as a constraint topology),
or some fast and approximate QS addition algorithm as
implemented for instance in ARB [9]. This approach yields
a fully resolved bifurcating tree that can comprise more than
10,000 sequences from a single gene, typically 16S or 18S
rRNA [2], [3]. The reconstruction of large single-gene trees is
hard because of a weak signal, i.e., reconstruction accuracy
decreases for trees with many short sequences [10], [11],
and even more so for short-read QS. Hence, we advocate a

different approach that only computes the optimal insertion
branch, i.e., the optimal placement, for every QS in the RT
with respect to its Maximum Likelihood (ML [12]) score. This
approach is faster than a de novo tree reconstruction and at
the same time significantly more accurate than BLAST, in
particular when the taxon sampling of the reference tree is
sparse or inadequate with respect to the sample. Moreover,
using appropriate additional heuristics, the placement algo-
rithm is as fast as BLAST. The complexity of both alternative
approaches is O(qr), where q is the number of QS and r
the number of RS. Results regarding the accuracy assessment
of our novel algorithm including a detailed comparison to
BLAST, impact of QS length on accuracy etc. are outside
the scope of this paper. While we briefly sketch the results
here, a draft manuscript (currently under review) providing
a detailed experimental setup, accuracy assessment, and run-
time comparison is available also available [13].

The evolutionary placement algorithm, including the par-
allelization described here, is already available in the latest
open source code release of RAxML (Randomized Axelerated
Maximum Likelihood [14], version 7.2.6, February 2010,
http://wwwkramer.in.tum.de/exelixis/software.html) which is a
widely used program for phylogenetic inference (over 6,700
downloads from distinct IPs to date, approximately 700 cita-
tions of the three main papers according to Google Scholar).

In this paper we focus on deploying multi-grain parallelism
on multi-core architectures to accommodate the computational
requirements of the placement algorithm by using three real-
world 16S rRNA datasets with 4,412 [3], 16,307 [2], and
100,627 QS (unpublished) that are classified into a single-
gene bacterial reference tree with 4,874 species and a length
of 1,287 base pairs. We show that fine-grain parallelism in
the phylogenetic likelihood function [15], [16] does not scale
well for the typical input datasets (many taxa, few sites)
of our algorithm and propose a multi-grain approach that
dynamically switches from a fine-grain parallelization scheme
to a more coarse-grain scheme during program execution.
This multi-grain approach yields near-linear and even super-
linear speedups as well as parallel run time improvements of
more than 50% on two general purpose multi-core systems.
Using our evolutionary placement method in combination with
multi-grain parallelism, it is possible to conduct phylogenetic
classification runs on large numbers of QS (100,627) in under
2 hours on a 32 core system.

The remainder of this paper is organized as follows: In
Section II we cover related work on parallel phylogenetic
inference. In Sections III and IV we describe the ML method
and provide an abstract description of the novel evolutionary
placement algorithm. In Section V we summarize the results
of the accuracy assessment for the sequential algorithm and
the compare it to plain sequence similarity-based approaches.
Thereafter, we outline the multi-grain parallelization strategy
(Section VI). The experimental setup and results are covered
in Section VII and we conclude in Section VIII.

II. RELATED WORK

This paper introduces a novel algorithm for phylogenetic
placement. Thus, we are not aware of any directly related work
that covers the problems associated with the parallelization of
such an algorithm.

Own previous work mainly focused on exploiting loop-
level parallelism for the ML function (see next Section) in
RAxML on shared memory and multi-core systems [16], the
IBM Cell [17], and the IBM BlueGene/L [18]. While the fine-
grain loop-level parallelism of the ML function scales well on
very large (in terms of number of base pairs) phylogenomic
alignments up to thousands [18] of processors, scalability
is limited for large single-gene alignments. Minh et al [19]
implemented a hybrid OpenMP/MPI version of IQPNNI that
exploits loop-level and coarse-grain parallelism. The ML func-
tion in GARLI [20] has also been parallelized with OpenMP.

III. THE MAXIMUM LIKELIHOOD MODEL

The input of a phylogenetic analysis consists of a multi-
ple sequence alignment with n sequences (taxa/tips) and m
alignment columns (also called alignment sites). The output
is an unrooted binary tree; the n taxa are located at the
leaves of the tree and the inner nodes represent common
(extinct) ancestors. The branch lengths represent the relative
time of evolution between nodes in the tree. In order to
compute the likelihood on a fixed tree topology, one requires
several Maximum Likelihood (ML) model parameters: the
instantaneous nucleotide substitution matrix Q which contains
the transition probabilities for time dt between nucleotide (4x4
matrix) characters and the prior probabilities of observing
the nucleotides: πA, πC , πG, πT . Finally, one also requires the
2n− 3 branch lengths in the unrooted tree topology.

Given these parameters, to calculate the likelihood on a
fixed tree, one needs to compute the entries for all ancestral
probability vectors at inner nodes, that contain the probabilities
P (A), P (C), P (G), P (T), of observing an A, C, G or T
at a site c, where c = 1...m, of the ancestral probability
profile of this inner node. The probability vectors are computed
bottom-up from the tips towards a virtual root that can be
placed into any branch of the tree via the Felsenstein pruning
algorithm [12]. If the substitution model is time-reversible,
the likelihood score will be the same for any placement of
the virtual root and thereby greatly simplifies the computation
of the likelihood score. However, there have been proposals,
for relatively easy to compute non-reversible substitution mod-
els [21].

Given a parent (ancestral) node k, and two child nodes
i and j (with respect to the virtual root), their probability
vectors L⃗(i) and L⃗(j), the respective branch lengths leading to
the children bi and bj , and the transition probability matrices
P (bi), P (bj), the probability of observing an A at position c of
the ancestral (parent) vector L⃗(k)

A (c) is computed as follows:

L⃗
(k)
A (c) =

(T∑
S=A

PAS(bi)L⃗
(i)
S (c)

)(T∑
S=A

PAS(bj)L⃗
(j)
S (c)

)
(1)

The transition probability matrix P (b) for a given branch
length is obtained from Q via P (b) = eQb, i.e., via an Eigen-
value/Eigenvector decomposition. Once the two probability
vectors L⃗(i) and L⃗(j) to the left and right of the virtual root
(vr) have been computed, the likelihood score l(c) for an
alignment column c can be calculated as follows, given the
branch length bvr between nodes i and j:

l(c) =
T∑

R=A

(
πRL⃗

(i)
R (c)

T∑
S=A

PRS(bvr)L⃗
(j)
S (c)

)
(2)

The overall score is then computed by summing over the
per-column log likelihood scores:

LnL =

m∑
c=1

log(l(c)) (3)

An important property of the likelihood function is, that sites
evolve independently, i.e., all entries c of a vector L⃗ can be
computed simultaneously, which is the main source of fine-
grain parallelism [22], [23].

In order to compute the Maximum Likelihood value on
a fixed tree all individual branch lengths and the Q matrix
must also be optimized via ML. For Q the most common
approach in state-of-the-art ML implementations consists of
using Brent’s algorithm [24]. To evaluate changes in Q the
entire tree needs to be re-traversed, i.e., a full tree traversal
needs to be conduct to re-compute the likelihood. For the
optimization of branch lengths the Newton-Raphson method is
commonly used (see, e.g., [25]). The branches of the tree are
repeatedly visited and optimized one by one until the induced
branch length change is smaller than a pre-defined ϵ. The
Newton-Raphson method only operates on a single pair of
likelihood vectors L⃗(i), L⃗(j) that are located at either end of
the branch to be optimized. Note that in the parallel version of
RAxML, a reduction operation to compute the overall score
(over all columns) for the first and second derivative is required
at every iteration of the Newton-Raphson procedure. Hence,
we need to synchronize threads between all iterations of the
Newton-Raphson method for optimizing a single branch in a
fine-grain parallelization of the likelihood function [26].

An important issue is the assignment of memory space
for ancestral probability vectors. There exist two alternative
approaches: a separate vector can be assigned to each of the
three outgoing branches of an inner node, or only one vector
can be assigned to each inner node. In the latter case, the
probability vectors always maintain a rooted view of the tree,
i.e., they are oriented towards the current virtual root of the
tree. In the case that the virtual root is then relocated to a
different branch (for instance to optimize the respective branch
length), a certain number of vectors, for which the orientation
to the virtual root has changed need to be re-computed. If
the tree is traversed in an intelligent way for branch length
optimization, the number of probability vectors that will need
to be re-computed can be kept to a minimum. An example
for this data organization as used in RAxML is provided in
Figure 1.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

Virtual Root

Virtual Root

re−locate virtual root

re−compute
re−locate and

Fig. 1. Rooted organization of the probability vectors at inner nodes.

Virtual Root

Thread1Thread0

Sum0 Sum1w

x

y

z

z
y
x
w

Probability Vector
AAG−TT

AGG−−T

AGGGTT

GGG−−T

AGG−−G
AAGG−T

Reduction = Sum0 + Sum1
Sync

Fig. 2. Parallel fine-grain computation of the likelihood score on a given
tree with given branch lengths.

The main bulk of all of the above likelihood computations
consists of for-loops over the length m of the multiple
sequence input alignment which typically require 95% of total
execution time in all state-of-the-art likelihood-based software
packages. The general parallelization scheme of the Pthreads-
based version of RAxML is outlined in Figure 2 for a full
tree traversal. We use a cyclic distribution of the m alignment
columns to allow for better load-balance in phylogenomic
datasets that can contain DNA as well as AA (protein); protein
data requires more FLOPS per alignment site.

The master thread steers the tree search and orchestrates
the optimization of the branch lengths and model parameters.
For the model parameter optimization phase, which is relevant
to the algorithm presented here, the tree needs to be fully
traversed to optimize Q. Hence, the master thread generates a
full tree traversal list, that remains fixed during the model pa-
rameter optimization process because the tree topology is not
being changed. When a model parameter has been changed,
every worker thread can independently update its fraction of
the vector entries for the full tree traversal and the threads
only need to be synchronized when the virtual root is reached
(see Figure 2). Therefore, every thread can conduct a relatively
large fraction of independent work per alignment column dur-
ing the model parameter optimization phase. Since the branch
length optimization process requires several iterations at every
individual branch, the synchronization to computation ratio for

branch length optimization is less favorable (see [26]). While
this fine-grain parallelization approach is highly efficient and
scales up to 1,024 CPUs for large phylogenomic analyses [18],
[27] with m ≫ 1, 000, scalability for single-gene analyses
with m ≈ 1, 000 is limited. In Section VI we provide solutions
to this single-gene scalability problem for the evolutionary
placement algorithm. Note however, that similar solutions
using a scatter-gather operation on probability vectors can
potentially also be applied to improve parallel efficiency and
scalability for standard single-gene ML searches.

IV. EVOLUTIONARY PLACEMENT ALGORITHM

As already mentioned the input for our algorithm consists
of a reference tree comprising r full-length RS (Reference
Sequences), and a comprehensive alignment that contains the
r RS as well as the q QS (Query Sequences). The QS can,
e.g., be aligned to the reference alignment with ARB [9] or
NAST [28]. The sequence alignment programs MAFFT [29]
and MUSCLE [30] can also be deployed to extend and merge
alignments. One key assumption is that the reference tree is
biologically well-established or has been obtained via a pre-
ceding thorough ML analysis of the RS. Initially, the algorithm
will read in the reference tree and reference alignment and
mark all sequences of the alignment that are not contained in
the reference tree as QS. Thereafter, the ML model parameters
and branch lengths on the reference tree will be optimized.

Once the model parameters and branch lengths have been
optimized, the placement algorithm is invoked. It will visit
the 2r − 3 branches of the reference tree in depth first-
order, starting at an arbitrary branch of the tree. At each
branch, initially the probability vectors of the reference tree
to the left and the right will be computed (if they are not
already oriented towards the current branch). Thereafter, the
program will successively insert (and remove again) one QS
at a time into the current branch and compute the likelihood
(we henceforth denote this as insertion score) of the respective
tree containing r + 1 taxa. The insertion score is stored in a
q × (2r − 3) table that keeps track of the insertion scores for
all q QS into all 2r− 3 branches of the reference tree. Hence,
the complexity of our placement algorithm is O(rqm) since
we need to compute q × (2r − 3) insertion scores. Note that,
the time for the computation of an insertion score is a linear
function of the alignment length m (see Equations 2 and 3).

In order to more rapidly compute the per-branch insertions
of the QS we use an approximation that is comparable to the
Lazy Subtree Rearrangement (LSR) moves that are deployed
in the standard RAxML search algorithm [14]. After inserting
a QS into a branch of the reference tree we would normally
need to re-optimize all branch lengths of the thereby obtained
new—extended by one QS—tree topology to obtain the Maxi-
mum Likelihood insertion score. Instead, we only optimize the
three branches adjacent to the insertion node of the QS (see
Figure 3) before computing the insertion score. In analogy
to the LSR moves, we also use two methods to re-estimate
the three branches adjacent to the insertion branch, a fast
method that does not make use of the Newton-Raphson method

��
��
��

��
��
��

��
��
��

��
��
������

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

b1r b2r

bq

Query Sequence

Reference tree

Branch lengths
to be changed

Fig. 3. Local Optimization of branch lengths for the insertion of a Query
Sequences (QS) into the reference tree.

reference sequence query sequence

QS0 QS1
QS2

RS0

RS1 RS3

RS2

reference tree
Best−scoring
Assignment

of Query Sequence

Fig. 4. Evolutionary placement of 3 Query Sequences (QS0, QS1, QS2)
using a 4-taxon reference tree.

and a slow method. The fast insertion method just splits the
branch of the reference tree br into two parts br1 and br2 by
setting br1 :=

√
br, br2 :=

√
br, and the branch leading to

the QS is set to bq := 0.9, where 0.9 is the default RAxML
value to initialize branch lengths. The slow method repeatedly
applies the Newton-Raphson procedure to all three branches
br1, br2, bq until the branch length changes are ≤ ϵ, where
ϵ = 0.00001.

The output of this procedure is the input reference tree,
enhanced by assignments of the QS to the respective best-
scoring insertion branch. This means that QS are attached to
branches that yield the best insertion score for the respective
QS. Hence, the algorithm will return a potentially multi-
furcating tree, if more than one QS is assigned to the same
branch. An example output tree for 4 RS and 3 QS is provided
in Figure 4.

Moreover, RAxML can also conduct a standard phyloge-
netic bootstrap [31], i.e., repeat the evolutionary placement
procedure several times under slight perturbations of the
input alignment. This allows to account for uncertainty in the
placement of the QS as shown in Figure 5. Thus, a QS might
be placed into different branches of the reference tree with
various levels of support. For the Bootstrap replicates we also
use additional heuristics to accelerate the insertion process.
During the insertions on the original input alignment we keep
track of the insertion scores for all QS into all branches of
the reference tree. For every QS we can then sort the insertion

0.2

0.8 1.0
0.7

0.3

BS support value

RS0

RS1

RS2

RS3

QS0 QS1 QS2

QS2

QS0

Fig. 5. Evolutionary placement of 3 query sequences (QS0, QS1, QS2) into
a 4-taxon reference tree with Bootstrap support.

branches by their scores and only conduct insertions for a
specific QS into the 10% best-scoring branches. Evidently,
this reduces the number of insertion scores to be computed
per QS by 90% and yields an approximately ten-fold speedup.
The bootstrap procedure can for instance be used to compute
the distribution of the phylogenetic diversity of the QS in the
environmental sample.

Finally, we are currently also experimenting with methods
(that are already implemented) to simultaneously align and
insert QS to a specific branch of the reference tree using a
Maximum Likelihood and Maximum Parsimony-based [32]
dynamic programming algorithms. This will allow for direct
and more convenient analyses of environmental reads, because
users will be able to conduct the alignment and placement
step in one single run. Evidently, the complexity will increase
to O(rqm2) because of the dynamic programming approach.
Therefore, the framework we develop here can be used to
integrate and accelerate the future release of the simultaneous
alignment and placement procedures.

V. PERFORMANCE OF SEQUENTIAL ALGORITHM

As already mentioned, a detailed performance analysis as
well as a description of the experimental setup to assess the
accuracy of our algorithm is available [13]. We assessed the
accuracy of our evolutionary placement algorithm on 8 real-
world (mostly single-gene) datasets that were hand-aligned by
biologists. Initially, we computed best-known ML trees and
bootstrap support values on these alignments using RAxML.
We then pruned a single taxon (a virtual Query Sequence) at
a time from these trees. Thereafter, we tried to re-insert the
virtual Query Sequence into the tree using our evolutionary
placement algorithm, BLAST, and a simple sequence com-
parison algorithm. This sequence-based comparison algorithm
makes use of the aligned sequences to compute all pair-wise
edit distances to the taxa of the Reference Alignment that are
located at the leaves of the tree. We only selected taxa (virtual
QS) for pruning that had bootstrap support ≥ 75% ([13] for
selection details and rationale), i.e., taxa with a sufficiently
well-supported position in the tree. In addition, we artificially
shortened the virtual QS in order to generate sequences that

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

% non−gap characters

av
er

ag
e

no
de

−
di

st

simple seq. based
EPA

Fig. 6. Accuracy of sequence similarity-based and ML-based placement of
short-read sequences as a function of the percentage of non-gap characters,
averaged over all test datasets.

have the same length as 454 reads, i.e., approximately 200-400
base pairs.

The accuracy was then assessed by determining the number
of nodes that lie between the original “true” pruning position
of the virtual QS and the respective placement branch as com-
puted by our algorithm, BLAST and the sequence comparison
algorithm. In Figure 6, we depict the average node distance
from the correct insertion position, averaged over all datasets.
The x-axis indicates the percentage of non gap-characters
in the virtual—artificially shortened—Query Sequences with
respect to the full alignment length. Figure 6, clearly shows
that our algorithm is twice as accurate as the sequence-based
placement approach.

In a second set of experiments we shortened the full-
length virtual query sequence by generating artificial paired-
end reads, i.e., just kept 100 base-pairs of nucleotide data at
the left and right end of the full length sequence and inserted
gaps in the middle. We then used our placement algorithm
and BLAST to compute insertion positions for those query
sequences. In Figure 7, we provide a histogram for a DNA
dataset of 855 taxa that depicts the number of inserted query
sequences at distances of 0, 1, 2, etc. nodes away from the
original “correct” position. This histogram shows that ML-
based placement is also significantly more accurate than a
BLAST-based approach.

Finally, we have developed several additional heuristics to
accelerate the evolutionary placement algorithm (similar to
the procedure for the acceleration of bootstrapping outlined
in Section IV), that are only 1.5-2 times slower than BLAST
(see Figures 10.a and 10.b in [13]), but are almost as accurate
as the slow standard evolutionary placement algorithm. The
parallelization of all these additional heuristics and the boot-
strapping procedure is analogous to the general parallelization
scheme which we present in the following Section.

0 1 3 4 6 7 9 11 13 16 18 21 23 26 28 31 33 36 38

EPA
BLAST

node−distance from correct insertion position

co
un

t

0
50

10
0

15
0

20
0

Fig. 7. Accuracy of BLAST- and ML-based placement of short-read
sequences as a function of the percentage of non-gap characters, averaged
over all test datasets.

VI. MULTI-GRAIN PARALLELIZATION

The current release of RAxML (v7.2.6) contains a full fine-
grain Pthreads-based parallelization of the likelihood function
(see Section III and [16]). The initial parallelization of the
evolutionary placement algorithm was hence straight-forward
because we used the existing parallel framework. However,
the scalability of the fine-grain parallelization is limited on
datasets with few sites such as the real-world single gene
bacterial datasets we use in our experiments.

The main parallelization challenge lies in the two different
phases of the program that exhibit varying degrees of paral-
lelism: In the initial phase during which ML model parameters
are optimized, the branch length optimization procedure is
hard to be further parallelized because of intrinsic dependen-
cies between individual branch length optimization steps. The
insertion phase consists of computing the q×(2r−3) insertion
scores of the QS on the reference tree and is easier to paral-
lelize. Hence we need to deploy multi-grain parallelism using
the fine-grain parallelization scheme for the initial phase and
a more coarse-grain parallelization strategy for the insertion
phase. One can parallelize the insertion phase by essentially
conducting all q × (2r − 3) insertion score computations
simultaneously. Here, we parallelize by branches, i.e., we use a
cyclic distribution of reference tree branches to threads where
every thread computes insertion scores for insertions of all q
QS into one specific branch. Given the number of branches
in real-world reference trees (9,745 insertion branches, see
Section VII) which is expected to further increase in the future,
this represents a sufficiently fine-grain source of parallelism for
this algorithm. In order to be able to compute QS insertions
simultaneously we require to compute and store all pairs of
probability vectors for all branches in the tree. Hence, for
every branch we need a contiguous (remember that for the
fine-grain parallelization we use a cyclic distribution of the
probability vector columns) probability vectors attached to the

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

contigoous vector

contigoous vector

contigoous vector

contigoous vector

Gather

Gather

Gather

Gather

contigoous vector

contigoous vector

re−locate virtual root

Virtual Root

Virtual Root

re−locate &
re−compute

Fig. 8. Multi-grain gather operation of the per-branch probability vectors on
the reference tree.

left and right end of each branch. This allows a single thread
to independently compute all insertions of the QS into one
branch, since only those two vectors are required to compute
the insertion score.

In order to store and compute contiguous probability vectors
we initially allocate a data-structure of length 2r − 3 that
corresponds to the total number of branches in the reference
tree. For every entry of this branch data structure we allocate
two contiguous (full-length) probability vectors that are used
to store the probability vectors to the left and the right of that
branch in the reference tree. In order to fill the per-branch
probability vectors we proceed as follows: We traverse the
entire reference tree in depth-first order and place the virtual
root into the branch that is currently being visited and re-
compute the probability vectors (if necessary) to the left and
right of the current branch. Once the strided vectors using
the cyclic probability vector column distribution have been
computed, we conduct a gather operation to store the per-
thread columns contiguously in the vectors attached to the
branch data structure. This traverse and gather procedure is
outlined in Figure 8. The overhead of this full tree traversal
and the gather operation is negligible (less than 0.5% of overall
execution time) compared to the overall execution time as well
as the time required for initial model parameter optimization
in fine-grain mode. Once the probability vector pairs for all
branches have been stored, we can simply distribute work to
threads in a cyclic way, i.e., thread 0 will insert all QS into
branch 0, thread 1 will insert all QS into branch 1, etc.

An additional rationale for deploying a per-branch par-
allelization strategy is a planned distributed memory paral-
lelization of the evolutionary placement algorithm with MPI
(Message Passing Interface). If we parallelized by insertion
sequences we would need to hold all insertion branch vectors
in the memory of every process which might lead to memory
shortage on systems such as the IBM BlueGene/L or Blue-
Gene/P.

VII. EXPERIMENTAL SETUP & RESULTS

We used three real-world 16S rRNA datasets with 4,412 [3]
(HAND dataset), 16,307 [2] (GUT dataset), and 100,627

(unpublished) QS that are classified into a single-gene bacterial
reference tree with 4,874 species and a reference alignment
length of 1,287 base pairs. Those datasets represent typical
current use cases for our algorithm and the two smaller ones
are freely available for download together with the multi-
grain parallelization of the source-code at http://wwwkramer.
in.tum.de/exelixis/software.html. As test systems for assessing
scalability we used a 4-way quad-core AMD Barcelona system
with a total of 16 cores running at 2.2 GHz and 128 GB
of main memory, and a Sun x4600 8-way quad-core AMD
Shanghai system with a total of 32 cores running at 2.7 GHz
and 64 GB of main memory.

Computational experiments were conducted as follows: On
the AMD Barcelona system we executed one sequential run
and Parallel Fine-Grain (PFG) as well as Parallel Multi-Grain
(PMG) runs on 2, 4, 8, and 16 cores for the fast insertion
method. On the x4600 we executed the same runs, but up to
32 cores. We also executed two runs using the slow insertion
method with 16 threads for the PFG and PMG parallelization
on the 16-core system. The execution time for the slow method
using the PFG approach on the HAND dataset was 35 hours
compared to only 22 hours using the PMG implementation.
Thus, for the slower (and more accurate) insertion algorithm
on the HAND dataset we achieve a parallel efficiency im-
provement exceeding 35%. The execution times for the slow
method on the larger GUT dataset where 139 hours (PFG) and
76 hours (PMG) respectively, which corresponds to a parallel
run time improvement of 45%.

In Figure 9 we depict the speedups for the fast insertion
algorithm using the PFG and PMG parallelizations on the
Barcelona system for datasets HAND and GUT. Figure 9
shows that the PFG version scales reasonably well on the
16-core system and even achieves super-linear speedups due
to improved cache efficiency up to 8 threads. However, as
outlined in Sections III and VI the scalability of the fine-
grain approach is limited for single-gene alignments. The
impact of an increasing amount of synchronization events per
computation in the PFG parallelization is demonstrated by
the sub-linear speedups on 16 cores. The increase in parallel
efficiency of the PMG over the PFG approach on 16 cores for
the fast insertion method is slightly lower than for the slow
insertion method, but we still achieve a 25% improvement on
16 cores. This is because the contribution of the less scalable
fine-grain initial model optimization phase to overall execution
time is larger for the fast than for the slow insertion method.
Nonetheless, speedups are significantly super-linear up to 16
cores for the PMG version. The overall speedups are slightly
lower on the 32-core system (Figure 10), because of the less
scalable fine-grain initial model optimization phase; stand-
alone placement without model optimization scales linearly.
However, the increase in parallel efficiency of the PMG over
the PFG approach with 32 cores exceeds 50%.

Figures 9 and 10 show that the parallel efficiency of the evo-
lutionary placement algorithm is generally higher on the AMD
Barcelona system. The reason for this is that the improved
cache efficiency of the parallel algorithm has a larger impact

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Threads

linear speedup
GUT PMG

HAND PMG
GUT PFG

HAND PFG

Fig. 9. Speedups for overall execution times on a 16-core AMD Barcelona
system using the fast insertion algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
pe

ed
up

Threads

linear speedup
GUT PMG

HAND PMG
GUT PFG

HAND PFG

Fig. 10. Speedups for overall execution times on a 32-core x4600 system
using the fast insertion algorithm.

on the Barcelona cores that have 2MB L3 caches compared
to 6MB L3 caches on the Shanghai cores. In Figure 11 we
plot the speedup of the Shanghai over the Barcelona CPUs as
a function of the number of threads. When only one Shanghai
core is used, the program is almost twice as fast as on a
Barcelona core which can not be explained by the higher clock
rate and improved micro-architecture alone. The main cause is
the three times larger L3 cache size. If the number of threads is
increased and cache misses are thereby decreased, the speedup
converges to 1.23 which corresponds to the clock rate ratio
(2.7GHz/2.2GHz).

Finally, we also conducted experiments on a challenging
dataset with 100,627 QS to explore the limits of our approach
on the x4600 system. We obtained overall speedups of 14.5
and 27.3 for fast insertion runs with 16 and 32 cores respec-
tively. On 32 cores the overall runtime for the placement of
100,627 QS is less than 1.5 hours which makes our approach
a viable and more accurate alternative to BLAST and other
sequence comparison-based approaches that do not take into
account the evolutionary history of the sequences under study.

VIII. CONCLUSION & FUTURE WORK

We have introduced a new, accurate, algorithm for ML-
based evolutionary placement of short reads which is already
being used by several research groups (personal communi-

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Threads

overall speedup
insertion speedup

clock frequency ratio

Fig. 11. Speedup of the 32-core (Shanghai) over the 16-core (Barcelona)
architecture.

cation) for real-world studies of microbial communities. We
show that fine-grain parallelism does not scale well for the
analysis of real-world microbial datasets and propose a more
appropriate multi-grain parallelization approach. Our paral-
lelization yields super-linear speedups on multi-core systems
with small L3 caches and parallel run time improvements of
25% up to 50% compared to the fine-grain approach.

Current work covers the full integration of the multi-grain
parallelization with RAxML, i.e., the support of all data types
(morphological, DNA, secondary structure, protein data) and
models of rate heterogeneity. We also plan to devise an
MPI-based parallelization. Future work, will focus on using
multi-grain parallelism for an insertion algorithm that can
simultaneously place and align the QS.

ACKNOWLEDGMENT

We wish to thank R. Knight and M. Hamady for providing
test datasets, M. Stark and C.v. Mehring for productive dis-
cussions on algorithm design, and B. Moret for access to the
Barcelona system.

REFERENCES

[1] T. Wicker, E. Schlagenhauf, A. Graner, T. Close, B. Keller, and N. Stein,
“454 sequencing put to the test using the complex genome of barley,”
BMC genomics, vol. 7, no. 1, p. 275, 2006.

[2] P. Turnbaugh, M. Hamady, T. Yatsunenko, B. Cantarel, A. Duncan,
R. Ley, M. Sogin, W. Jones, B. Roe, J. Affourtit et al., “A core gut
microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp.
480–484, 2008.

[3] N. Fierer, M. Hamady, C. Lauber, and R. Knight, “The influence of sex,
handedness, and washing on the diversity of hand surface bacteria,”
Proc. Nat. Acad. Sci., vol. 105, no. 46, p. 17994, 2008.

[4] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs,” Nucleic acids research, vol. 25,
no. 17, p. 3389, 1997.

[5] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” J. Mol. Bwl, vol. 147, pp. 195–197, 1981.

[6] D. Faith, “Conservation evaluation and phylogenetic diversity.” Biolog-
ical Conservation, vol. 61, no. 1, pp. 1–10, 1992.

[7] L. Koski and G. Golding, “The closest BLAST hit is often not the
nearest neighbor,” J. Mol. Evol., vol. 52, no. 6, pp. 540–542, 2001.

[8] D. Zwickl and D. Hillis, “Increased taxon sampling greatly reduces
phylogenetic error,” Systematic Biology, vol. 51, no. 4, pp. 588–598,
2002.

[9] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, A. Buchner,
T. Lai, S. Steppi, G. Jobb, W. Forster et al., “ARB: a software
environment for sequence data.” Nucleic Acids Research, vol. 32, no. 4,
p. 1363, 2004.

[10] B. M. E. Moret, U. Roshan, and T. Warnow, “Sequence-length require-
ments for phylogenetic methods,” in WABI 2002, 2002, pp. 343–356.

[11] O. R. P. Bininda-Emonds, S. G. Brady, M. J. Sanderson, and J. Kim,
“Scaling of accuracy in extremely large phylogenetic trees.” in Pacific
Symposium on Biocomputing, 2000, pp. 547–558.

[12] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum
likelihood approach,” J. Mol. Evol., vol. 17, pp. 368–376, 1981.

[13] S. A. Berger and A. Stamatakis, “Evolutionary placement of short
sequence reads,” TU Munich, Tech. Rep., November 2009. [Online].
Available: http://arxiv.org/abs/0911.2852v1

[14] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phyloge-
netic analyses with thousands of taxa and mixed models,” Bioinformat-
ics, vol. 22, no. 21, pp. 2688–2690, 2006.

[15] A. Stamatakis and M. Ott, “Exploiting Fine-Grained Parallelism in the
Phylogenetic Likelihood Function with MPI, Pthreads, and OpenMP: A
Performance Study.” in PRIB, ser. Lecture Notes in Computer Science,
vol. 5265. Springer, 2008, pp. 424–435.

[16] ——, “Efficient computation of the phylogenetic likelihood function on
multi-gene alignments and multi-core architectures.” Phil. Trans. R. Soc.
series B, Biol. Sci., vol. 363, pp. 3977–3984, 2008.

[17] F. Blagojevic, D. Nikolopoulos, A. Stamatakis, and C. Antonopoulos,
“Dynamic Multigrain Parallelization on the Cell Broadband Engine,” in
Proc. of PPoPP 2007, San Jose, CA, March 2007.

[18] M. Ott, J. Zola, S. Aluru, and A. Stamatakis, “Large-scale Maximum
Likelihood-based Phylogenetic Analysis on the IBM BlueGene/L,” in
Proc. of IEEE/ACM Supercomputing Conference 2007 (SC2007), 2007.

[19] B. Minh, L. Vinh, H. Schmidt, and A. Haeseler, “Large maximum
likelihood trees,” in Proc. of the NIC Symposium 2006, 2006, pp. 357–
365.

[20] D. Zwickl, “Genetic Algorithm Approaches for the Phylogenetic Anal-
ysis of Large Biological Sequence Datasets under the Maximum Likeli-
hood Criterion,” Ph.D. dissertation, University of Texas at Austin, April
2006.

[21] B. Boussau and M. Gouy, “Efficient likelihood computations with
nonreversible models of evolution,” Systematic biology, vol. 55, no. 5,
pp. 756–768, 2006.

[22] N. Alachiotis, A. Stamatakis, E. Sotiriades, and A. Dollas, “An Archi-
tecture for the Phylogenetic Likelihood Function,” 2009, accepted for
publication.

[23] A. Stamatakis, M. Ott, and T. Ludwig, “RAxML-OMP: An Efficient
Program for Phylogenetic Inference on SMPs.” PaCT, pp. 288–302,
2005.

[24] R. Brent, Algorithms for Minimization without Derivatives. Prentice
Hall, 1973.

[25] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical
recipes in C,” The art of scientific computing (Cambridge: University
Press, vol. 3, no. 2, 1992.

[26] A. Stamatakis and M. Ott, “Load Balance in the Phylogenetic Likelihood
Kernel,” in Proceedings of ICPP 2009, 2009, accepted for publication.

[27] M. Ott, J. Zola, S. Aluru, A. Johnson, D. Janies, and A. Stamatakis,
“Large-scale Phylogenetic Analysis on Current HPC Architectures,”
Scientific Programming, vol. 16, no. 2-3, pp. 255–270, 2008.

[28] T. DeSantis Jr, P. Hugenholtz, K. Keller, E. Brodie, N. Larsen, Y. Piceno,
R. Phan, and G. Andersen, “NAST: a multiple sequence alignment server
for comparative analysis of 16S rRNA genes,” Nucleic Acids Research,
vol. 34, no. Web Server issue, p. W394, 2006.

[29] K. Katoh and H. Toh, “Recent developments in the MAFFT multiple
sequence alignment program,” Briefings in Bioinformatics, vol. 9, no. 4,
p. 286, 2008.

[30] R. Edgar, “MUSCLE: multiple sequence alignment with high accuracy
and high throughput,” Nucleic acids research, vol. 32, no. 5, p. 1792,
2004.

[31] J. Felsenstein, “Confidence Limits on Phylogenies: An Approach Using
the Bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.

[32] W. Fitch and E. Margoliash, “Construction of phylogenetic trees,”
Science, vol. 155, no. 3760, pp. 279–284, 1967.

