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Abstract

Verification in phylogenetics represents an extremely difficult subject. Phylogenetic analysis deals 

with the reconstruction of evolutionary histories of species, and as long as mankind is not able to 

travel  in  time,  it  will  not  be  possible  to  verify  deep  evolutionary  histories  reconstructed  with 

modern computational methods. Here,  we focus on two more tangible issues that  are related to 

verification in phylogenetics (i) the inference of support values on trees that provide some notion 

about the “correctness” of the tree within narrow limits and, more importantly, (ii) issues pertaining 

to  program  verification,  especially  with  respect  to  codes  that  rely  heavily  on  floating-point 

arithmetics.  Program verification  represents  a  largely  underestimated  problem in  computational 

science that can have fatal effects on scientific conclusions.

Keywords:  phylogenetics,  support  values,  program  verification,  maximum  likelihood, 
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Introduction

The goal of the discipline that emerged in the late 1960ies [1,2] and is now called phyloinformatics 

consists  of  reconstructing  phylogenetic  (evolutionary)  trees  from  morphological  or  molecular 

sequence data. The phylogenetic history of a set of n organisms (represented, for instance, by their 

DNA sequence data) is typically depicted as a fully bifurcating (strictly binary) tree topology.  A 

tree-like  model  of  evolution  may  be  an  over-simplification  of  the  evolutionary  processes,  in 

particular in the presence of lateral gene transfer [3, 4], but in contrast to networks, trees are more 

straight-forward  to  visualize,  understand,  interpret,  and  to  handle  in  a  mathematical  and 
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computational framework. The n extant (currently living) organisms of the input dataset (usually a 

multiple sequence alignment) are located at the leaves (tips) of such a tree, while the inner nodes 

represent  extinct  common  ancestors.  If  one  is  willing  to  accept  the  hypothesis  of  a  tree-like 

evolutionary process, two key questions arise: What is the order of magnitude for the number of 

potential tree topologies with n taxa, and based on which criteria should we chose the “best” among 

all potential tree topologies, that is, the tree that best fits our input data. In fact, the number of 

potential tree topologies increases super-exponentially with the number of organisms  n according 

to: ∏(2i-5) for i=3...n (this can be easily derived from the analogous formula for rooted binary trees 

proposed in [5]). As a consequence, for most common tree-scoring criteria such as parsimony [1,6] 

or likelihood [7], finding the best tree is a NP-hard optimization problem [8,9] because they require 

an exhaustive search of tree space. Thus, heuristics need to be deployed for finding the best-known 

parsimony or likelihood tree. At present, no mathematical tools are available to determine the score 

of  the  best  possible  tree  (given  a  dataset),  as  measured  by  parsimony  or  likelihood  criteria. 

Moreover, for trees inferred with heuristic search strategies under maximum likelihood, there does 

not exist a quality guarantee, for instance, that the score of the tree returned is at most 10% worse 

than the score of the best tree. As such one can only compare the relative performance of different 

search strategies  on real  biological  datasets.  By using benchmark datasets,  one can empirically 

observe that one search strategy yields better scores than another. 

Alternatively, one can assess the ability of the implementations of different models and heuristic 

tree reconstruction strategies such as parsimony [10], maximum likelihood [11-13], or Bayesian 

approaches [14,15] to recover the “true” tree on simulated datasets. This approach is best used to 

assess questions with respect to input dataset assembly and shape [16-22] (see [23] for a summary 

of accuracy assessment techniques in phylogenetics). For this type of verification,  one assumes a 

given true tree topology generated either with  real biological data or  by a computer program [24]). 

Then, a multiple sequence alignment is  generated via a Markov process by letting an ancestral 

sequence evolve along the branches of the tree according to some statistical model of sequence 



evolution [25-27]. This will  produce a multiple sequence alignment that can be used as input for 

phylogenetic  tree  reconstruction  methods.  The  topological  distances  (see  [28]  for  a  tool 

implementing most common tree distance metrics) between the trees that were reconstructed by the 

inference methods and the true tree that generated the data can then be deployed to assess the ability 

of  the  methods under  consideration  to  reconstruct  the  true  tree.  This  approach however  is  not 

without  caveats.  For  example,  there  is  no  guarantee  that  the  implementation  of  the  simulated 

alignment generation programs is correct (e.g.,  consider the well-documented bug history of the 

widely-used  simulated  data  generation  program  Seq-Gen  [25]  at 

http://tree.bio.ed.ac.uk/software/seqgen/).  Furthermore,  the  sequences  along  the  true  tree  are 

typically generated using one of the common models of statistical sequence evolution, such as, for 

instance,  the  widely  used  [29]  General  Time  Reversible  (GTR  [30])  model   of  nucleotide 

substitution with the Г model of rate heterogeneity [31]. In turn, the model that was used to generate 

the data will then also be used to reconstruct the tree. Thus, the true model of evolution is known a 

priori, and all the potentially simplistic assumptions, for instance, that the model is time-reversible 

and  that  sites  (alignment  columns)  evolve  independently,  are  already  incorporated  into  the 

simulated data. 

In other words, phylogenetic tree inference on simulated data (assuming a perfect model) tends to 

be easier than on real data.  For instance, the assessment of the original PHYML [20] code for 

likelihood-based  phylogenetic  inference  was  mainly  based  on  simulated  data,  and  showed that 

PHYML performed as well as other programs. An assessment using real data then revealed that 

other  heuristic search strategies that explore the tree search space more thoroughly returned trees 

with  significantly  better  (in  the  statistical  sense)  likelihood  scores  [32].  Thus,  because  real 

biological  data  is  less  perfect,  optimization  tends  to  be harder  on  real  biological  data  than  on 

simulated data that has been generated using a known model. Nonetheless, simulated data can be 

used to test the behavior of search algorithms and their ability to recover the “true” tree in a best 

case scenario, that is, when the model perfectly fits the data.

http://tree.bio.ed.ac.uk/software/seqgen/


Until  recently,  the  incorporation  of  insertion  and  deletion  events  into  simulated  alignments 

represented a problem. However, new tools such as DAWG [27] and Indelible [26] now provide for 

simulated  data  generation  under  a  more  realistic  insertion/deletion  model.  Another  potential 

problem that can occur on datasets with a relatively small number of alignment sites, is that the true 

tree is not necessarily the maximum likelihood tree [22].  This is a result of maximum likelihood 

being consistent  in the statistical sense, that is, the reconstructed tree converging to the true tree 

when the number of sites goes to infinity [33]. By using simulated data experiments (where model 

misspecification is not an issue) and RAxML for tree reconstruction, we show that, especially on 

short alignments, RAxML consistently finds trees that have a better log likelihood score than the 

true tree. This does not necessarily mean that the inferred ML estimates on the short alignments are 

incorrect or of bad quality with respect to their topological distance to the true tree. However, as 

shown in Figure 1, the difference between the log likelihood scores of the true tree and the inferred 

trees as well as the topological distances between the true tree and the estimated trees decrease with 

alignment length (alignment width). 

We generated simulated alignments using DAWG containing between 768 and 12,799 sites on a 

real biological tree with 1,908 organisms. We optimized ML model parameters (branch lengths, 

GTR, and Γ model parameters) using RAxML (-f e option) on the true tree and the inferred trees to 

compute  the  ratios  between  the  log  likelihood  scores.  RAxML was  also  used  to  compute  the 

symmetric topological difference (frequently also denoted as RF distance, albeit this terminology is 

not entirely correct; see [33]) between the inferred trees and the true tree.



Figure 1: Relative differences between the log likelihood scores under GTR+Γ of the inferred tree (using RAxML) and 

the true tree as a function of the number of simulated alignment sites (denoted as “Dataset width” on the x-axis) using 

DAWG for a tree with 1,908 organisms. We also plot the symmetric topological differences between the true tree and 

the inferred trees as a function of dataset (alignment) width.

Based on the prolegomena, it is generally impossible to verify tree reconstruction programs with 

respect to their ability to infer the true or a reasonably correct tree because for real biological data 

the  true  tree  and  evolutionary  model  (if  evolution  is  tree-like)  is  commonly  not  known  and 

computational  verification  experiments  based  on  simulated  data  may  represent  easy  tree 

reconstruction problems because the simulated data has been generated according to our simplistic 

models.  Also no guarantee exists that the implementation of simulated data generation  programs is 

correct. 

Finally, the method deployed for computing a multiple sequence alignment (MSA) can also have a 

significant  impact  on  the  tree  reconstruction  process  [34]  and  ideally  one  would  like  to 

simultaneously infer trees and MSAs [35-37] which represents a hard computational problem and 

also a difficult  modeling problem, because,  at present,  it  is not clear which criterion to use for 

assessing multiple alignment optimality. In phylogenomics, issues pertaining to a lack of a broadly 



accepted criterion for orthology assignment (see [38-40] for alternative approaches), gappy data 

[41] (sequence data for every organism and every gene under study is typically not available), and 

the  discordance  between  gene  trees  and  the  species  tree  [42,  43]  lead  to  the  introduction  of 

additional  errors  at  the  stages  of  input  data  assembly  and  alignment  as  well  as  the  actual 

phylogenetic inference step.

Thus, given all of the aforementioned problems, verifying phylogenetic inference approaches  is 

practically impossible.  However, phylogenetic inference methods may be verified empirically, that 

is, if they can be successfully deployed to improve our living conditions, by using phylogenetic 

information to develop new drugs [44] or to disentangle [45] and predict viral outbreaks. Therefore, 

in the following we will briefly address two more tangible verification problems: the inference of 

support values on trees and the verification of codes for phylogenetic inference.

Inference of Support Values

The inference of support values on unrooted binary tree topologies intends to solve the following 

problem: Given a tree with 5 organisms A, B, C, D, E as depicted in Figure 2 (one may assume that 

this is the best-known maximum likelihood tree), we want to determine a degree of confidence for 

the organisms being split into the subgroups that are induced by cutting the tree at an inner branch. 

In fact, we want to compute such a confidence value for every inner (internal) branch of the tree. 

Such splits of the taxon set into two disjoint taxon sets that are induced by inner branches of the tree 

are also termed non-trivial bipartitions. A trivial bipartition is a cut/split of the tree at a branch 

leading to a terminal organism, for instance, at the branch leading to organism A in Figure 2. Those 

bipartitions are called trivial because they do not provide any information about the tree topology, 

that  is,  the  bipartition  A|BCDE is  contained  in  all  possible  15  unrooted  tree  topologies  for  5 

organisms. Note that, the set of all n-3 non-trivial bipartitions of an unrooted binary tree (AB|CDE 

and ABC|DE in the example) with n taxa suffices to fully characterize the tree topology. In other 

words, the list of non-trivial bipartitions and the tree topology are equivalent representations of the 



same mathematical object. A common misconception among biologists is that support values are 

assigned to nodes of the tree, rather than to inner branches.

A list of non-trivial bipartitions as induced by a set of trees (e.g., a collection of plausible trees that 

have been sampled using Bayesian methods [14,15,46] or a collection of bootstrap replicate trees; 

see below) and their respective frequency of occurrence therein can then, for instance, be used to 

assign  confidence  values  to  the  inner  branches  of  a  best-known  ML tree  or  to  reconstruct  a 

consensus  tree.  It  is  important  to  be  aware  that,  given  all  of  the  aforementioned  limitations 

regarding verification in phylogenetics, those bipartition support values do not provide an indication 

of whether a true evolutionary split of the taxa has been recovered. Nonetheless, bipartition support 

values are commonly interpreted as a measure for the correctness of bipartitions.

To date, the most widely used techniques are: Bootstrapping [47], likelihood ratio-tests [13,48] (a 

modification of the standard likelihood ratio test [49]), and posterior probabilities as obtained by 

MCMC-based Bayesian methods [50] (see [51,52] for reviews on support values).

Figure 2: An unrooted tree of 5 organisms with two non-trivial bipartitions/splits AB|CDE and ABC|DE for which one 

can infer support values.

Bootstrapping

The general bootstrap procedure was introduced by Brad Efron in 1979 [53] as a means to infer the 



variability of an unknown distribution for an estimator T using computer-based methods. The 

phylogenetic bootstrap procedure (see Fig. 3) was proposed in 1985 by Joe Felsenstein [47].  The 

underlying idea of the phylogenetic bootstrap is to assemble a certain number r of so-called 

bootstrap replicate alignments by randomly drawing sites (with replacement) from the original 

multiple sequence alignment. So, each bootstrapped alignment will contain exactly the same 

number of sites as the original alignment, but exhibit a slightly different site composition. Then, a 

tree is reconstructed for each of the r replicates using the estimator T (the tree reconstruction 

algorithm of choice), such that one obtains a set of r (potentially) distinct tree topologies. Those 

trees, that can be represented as a list of bipartitions, can then be used to build a strict or majority 

rule consensus tree as originally proposed in [47]. From the r replicates, one builds a -in most cases 

multifurcating- tree containing all bipartitions that occur in all r (strict) or more than r/2 (majority 

rule) trees in the set of replicates (see Fig. 4 for an example).

Alternatively, one can draw bipartition support values on the best-known ML tree obtained from the 

original alignment. To do this, one counts how frequently a bipartition of the best-known ML tree 

occurs in the r bootstrap trees and assigns the frequency of occurrence to the bipartition. 

A persistent problem is that the tree inference problem on each bootstrap replicate is also NP-hard. 

Hence, unlike in general applications of the bootstrap, our estimator T (whose quality is unknown) 

is only an approximation of the exact estimator T' (an algorithm that finds the optimal ML tree). 



Figure 3: Outline of the phylogenetic bootstrap procedure.

Figure 4: Outline of strict, majority rule, and majority rule extended consensus trees for a collection of 5 input trees.

One major disadvantage of the bootstrap is that, it is computationally expensive. Instead of 

conducting a small number of tree inferences, we need to compute between 100 to 1,000 replicates. 

In fact, it is not clear how many bootstrap replicates r may be required to obtain reliable support 

values, albeit some theoretical [54] and practical [55] suggestions exist. The number of required 

replicates  appears to be closely related to the behavior of the estimator T on the specific dataset 

being analyzed [55]. If the phylogenetic signal in the data is strong, relatively few replicates (r = 



100) are required and the bootstrap procedure will return a large number of identical trees. If the 

signal is weak (pointing towards multiple local optima in the likelihood landscape), a large number 

of replicates (r=1000) is required [55] (each replicate returning a different tree) to obtain stable 

majority rule trees (i.e., consensus trees that do not change if more replicates are computed). At 

present this is only an empirical observation that should be further investigated.

Likelihood-Ratio Tests

Approximate likelihood ratio tests have been proposed [48] as a fast alternative to bootstrapping 

and implemented in programs such as PHYML v3.0 [13], FastTree v2.1 [56], and RAxML v7.2.8 

[11]. In principle they work as follows: Given a  maximum likelihood tree that is locally optimal 

with respect to the application of NNI (Nearest Neighbor Interchange) moves, the algorithm visits 

one inner branch at a time and computes three log likelihood values L_0, L_1, and L_2. L_0 is the 

log likelihood of the NNI-optimal tree, and L_1 and L_2 are the log likelihoods of the two 

alternative trees obtained by applying the two possible NNI interchanges to the branch under 

consideration (see Fig. 5). Then, L_0 and L_alt (the best of the two alternative values L_1 and L_2) 

are used to compute support statistics (see [48] for details). Instead of simply using  L_0 and L_alt 

as originally proposed in [48], current implementations [11,13,56] use a Shimodaira Hasegawa-like 

test [13,57], that essentially relies on random re-sampling of the per-site log likelihood scores by 

using between 100 to 1,000 samples. While this method is still very fast and seems to yield support 

values that are mostly in agreement with other bipartition support measures [13, 56],  the 

interpretation of bootstrap support values remains difficult (see  the introduction in [48] that entails 

additional references, [58,59] and pp 346-354 in [33]). Any comparison of aLRT versus bootstrap 

support values may be debatable, and there is one key issue that may require further investigation. 

The NNI move that is executed to obtain the three likelihood values L_0, L_1, and L_2 (or SH-like 

re-sampled values for that matter) is only a local move and does not guarantee  that the two best log 

likelihood scores used in the test for that  inner branch have been found. This is especially 

problematic for large trees with thousands of taxa. Thus, in comparison to the standard phylogenetic 



bootstrap or Bayesian posterior probabilities (see below), the immensely large tree space is explored 

to a significantly smaller degree for obtaining support values. This may potentially influence the 

quality of the support values obtained by these tests. It would therefore be desirable to assess the 

impact of more rigorous topological moves such as SPR (Subtree Pruning Re-Grafting) or TBR 

(Tree Bisection Reconnection) moves on approximate LRT support values. Therefore, it may be 

good practice to use at least one method (Posterior Probabilities or Bootstrapping) that deploys 

more rigorous topological sampling for obtaining support values in addition to approximate 

likelihood ratio tests. 

Figure 5: Outline of approximate likelihood ratio tests for obtaining bipartition support values using NNI moves on the 

best-known NNI-optimal maximum likelihood tree.

Posterior Probabilities

Posterior probabilities for  bipartitions are obtained from Bayesian analyses, assuming that the 

parameter space has been sampled to a sufficient degree. The Metropolis [60] or more commonly 

the Metropolis-Hastings [61] Markov Chain Monte Carlo (MCMC) algorithm must have run  long 

enough to converge, and  the chosen prior probabilities must be reasonable. Bipartition support 



values can then be obtained, for example, by building consensus trees from the posterior set of trees 

that have been sampled (using the bipartitions and posterior probabilities of the set of trees). The art 

of developing MCMC algorithms consists in designing proposal mechanisms that are able to 

efficiently (i.e., without spending many generations) escape local optima,  avoiding  early stopping 

of Bayesian analyses when chains reach apparent stationarity. While those problems can be 

alleviated by executing several chains, conducting multiple runs, or using convergence analysis 

tools [62], there is still no guarantee that the tree search space has been sampled to a sufficient 

degree. In the worst case scenario, the topology proposals for one or more chains will almost always 

get rejected such that the same tree topology is  sampled for slightly different model parameters 

(e.g., alpha shape parameter of the Gamma model of rate heterogeneity [31], GTR model 

parameters [30], branch lengths) that can then potentially lead to very high posterior probabilities 

for incorrect tree bipartitions (see also [63]). However, promising ideas to improve the proposal 

mechanism exist, such as the TBR-biased proposal in MrBayes 3.2, that allows the chain to more 

easily escape from situations of apparent stationarity (John Huelsenbeck, pers. comm. August 

2010). Clearly, Bayesian methods have advantages with respect to implementing more complex 

models such as mixture models [64,65] (but see [66]) or heterotachy [67] that are more straight-

forward to integrate into a Bayesian (using a Gibbs sampler [see review in [68]] or reversible jump 

MCMC algorithms [69]) than into a maximum likelihood framework. On the other hand, ML 

searches are more targeted in that they strive to find the absolute optimum in tree space and the 

search strategy may better fit the difficult NP-hard optimization problem. However, for ML there is 

also no guarantee that the search has recovered the global optimum. Finally, it has also been 

proposed to use bootstrapped posterior probabilities [70]; the authors also suggest that bootstrap 

proportions and plain posterior probabilities without bootstrapping should not be directly compared. 

See also [23,33,48,70,71, 72, 73] for discussions and further references on the interpretation and 

comparison of bootstrap and posterior probability values.



Program Verification

Program verification represents a largely underestimated problem in disciplines, such as 

phylogenomics, that increasingly rely on scientific computing. Assuming that our methods and 

models are correct, in most cases, there is no guarantee  that implementations  are correct. While we 

are not aware of any catastrophic bugs in likelihood-based phylogeny programs, we will outline 

some of the potential pitfalls.

While theoretical tools for program verification such as for instance the Hoare calculus (also called 

Hoare logic or Hoare Rules) and software tools for program verification (e.g.,[74,75]) exist, they 

are rarely used in practice for academic software development (most popular tools for phylogenetic 

inference are freely available academic software) because of lack of time. 

Likelihood-based programs face a substantial additional challenge, because they rely on floating 

point (also called machine numbers) arithmetics, whose correctness -if possible at all- is even more 

difficult to demonstrate [76], because simple mathematical rules for the real numbers such as (a + b) 

+ c = a + (b + c) do not hold for floating point arithmetics. 

In fact, the problem is so difficult, that it required, for instance, an entire PhD thesis [77] to 

demonstrate that an implementation of elementary functions such as the exponential function, called 

millions of times in any phylogenetic likelihood implementation, returns correctly rounded  results 

until the last bit under double-precision arithmetics. 

Moreover, it is not guaranteed that the same code, for instance RAxML [11], will return exactly the 

same numerical results, or even the same tree topology, if executed on different computer 

architectures, if executed sequentially or in parallel, or if compiled with different compilers. This 

behavior results from  compilers optimizing assembly code by assuming that the mathematical laws 

for real numbers  hold for machine numbers. Additionally,  many computer architectures allow for 

denormalized floating point values (i.e., floating point numbers that have more bits than the IEEE 

754 standard), mainly to prevent numerical underflow. 

The use of denormalized floating point numbers also has serious implications on the assessment of 



supercomputer systems using floating-point intensive benchmark codes [78] because execution 

times can heavily depend upon the input data. This has been observed for the phylogenetic 

likelihood function during the development of the short read phylogenetic placement algorithm in 

RAxML [79] where execution times for the likelihood function on data of the same size varied by 

50% depending on the input data.

It would be possible  to demonstrate the correctness of phylogenetic analysis programs that use 

parsimony or codes for reconstructing consensus trees because they operate on discrete entities, 

such as natural numbers, graphs, and trees. 

As a concrete example, for code verification related erroneous conclusions in phylogenetics, a paper 

was published and later withdrawn, that assessed (using simulated data) the extent to which 

bootstrap-based bipartition support values were correlated with recovering true bipartitions. The 

paper stated that there was no correlation. However, a careful reader detected an error which 

pointed to a bug in the scripts that were used to analyze the bootstrap replicates and compute 

correlations. After fixing the bug, the conclusions of the paper were inversed and a strong 

correlation between bootstrap support values for bipartitions and their occurrence in the true 

simulated tree was observed. Unfortunately, the revised paper was not published to document the 

degree to which computational science and the hypotheses that are based on computational analyses 

rely on the correctness of software. Another example  is, that the empirical base frequencies for C 

and G in the likelihood implementation of RAxML [11] were inversed until 2006, that is the 

frequency of C was used for G and vice versa. As a consequence, RAxML returned topologically 

distinct trees when the difference between the empirical base frequencies of C and G was large.

To this end, extreme caution should be exercised with increasingly complex analysis pipelines that 

rely on a plethora of programs:  sequence assembly, orthology assignment, multiple sequence 

alignment, tree building, post-analysis, biogeographical analyses, and  intermediate scripts to parse 

and adapt data formats. An  example of the impact of program errors on scientific results is the 

retraction of five papers (published -among other journals- in Science and PNAS) on protein 



crystallography because of a bug in a data analysis program [80].

Conclusions

We have discussed issues related to the generally impossible task of verifying models, algorithms, 

and software for phylogenetic inference and provided a brief overview over common techniques for 

obtaining support values on trees. There exist some promising empirical verification results using 

fast-evolving organisms [73,81], which indicate that our reconstruction methods may be reasonable 

and that support values may be used for assessing whether a true bipartition has been recovered. 

However, this still represents anecdotal evidence and does not allow for extrapolation to larger 

time-scales (deeper phylogenies) or different types of organisms. Consider, for instance, the on-

going debate about the “correct” phylogeny  of the metazoa [82,83,84,85,86]. As phylogenetics 

increasingly rely on computational methods, we believe that practitioners, should cease using 

Bioinformatics programs as black boxes and be aware of the important and potentially fatal effects 

software errors can have on the hypotheses they develop. While computational phylogenetics are 

coming off age, and widely used programs such as PhyloBayes, Beast, MrBayes, PHYML, 

RAxML, are becoming ever more complex from the software engineering point of view, more time 

should be dedicated to test and verify such codes (see also the discussion in [87] about the use of an 

incorrect hastings ratio in several Bayesian programs).

Key Points

We intend to emphasize the following points: 

Firstly, verification in phylogenetics is impossible, because the true evolutionary history of 

organisms is generally unknown. Secondly, given that the models are correct, there is no guarantee 

that the optimal tree, according to the model can be found, because most optimization problems 

associated with tree reconstruction are NP-hard. Thirdly, we review the most common techniques 

for inference of support values and provide extensive references to the respective literature and  on-

going debate about the interpretation of support values, while emphasizing that high support values 



do not induce that a true bipartition has been recovered. Finally, and most importantly, we address 

issues pertaining to code verification of scientific applications, especially with respect to floating-

point intensive applications, and provide examples for the fatal effects erroneous codes can have on 

modern science.
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