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ABSTRACT
Motivation: Likelihood-based methods for placing short read
sequences from metagenomic samples into reference phylogenies
have been recently introduced. At present, it is unclear how to align
those reads with respect to the reference alignment that was deployed
to infer the reference phylogeny. Moreover, the adaptability of such
alignment methods with respect to the underlying reference alignment
strategies/philosophies has not been explored. It has also not been
assessed if the reference phylogeny can be deployed in conjunction
with the reference alignment to improve alignment accuracy in this
context.
Results: We assess different strategies for short read alignment
and propose a novel phylogeny-aware alignment procedure. Our
alignment method can improve the accuracy of subsequent
phylogenetic placement of the reads into a reference phylogeny
by up to 5.8 times compared to phylogeny-agnostic methods. It
can be deployed to align reads to alignments generated by using
fundamentally different alignment strategies (e.g., PRANK+F versus
MUSCLE).
Availability: http://www.exelixis-lab.org/software.html
Contact: Simon.Berger@h-its.org, Alexandros.Stamatakis@h-its.org

1 INTRODUCTION
Currently, bioinformatics is facing two challenges: themany-
core revolutionand thebiological data avalanchethat is driven
by novel wet-lab sequencing techniques. In a single run, these
new sequencing techniques can generate between hundreds of
thousands up to several millions of short DNA reads with a
length ranging between 30 to 450 nucleotides (Karow, 2010).
One important application of next-generation sequencing methods
is in-vivo sampling of microbial communities (e.g., in the
human gut (Turnbaughet al., 2008) or on human hands (Fierer
et al., 2008)). For phylogenetic analysis of such meta-genomic
environmental samples, new likelihood-based methods suchas the
Evolutionary Placement Algorithm (EPA) (Bergeret al., 2011; Stark
et al., 2010) and pplacer (Matsenet al., 2010) have recently become
available. These new placement algorithms help to establish the
provenance of the anonymous and diverse environmental sample of
short reads by means of assigning the reads to a given —fixed—
reference phylogeny. The reference phylogeny is a fully resolved
(strictly bifurcating)unrooted phylogenetic reference tree(RT) that
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Fig. 1. (A) General scheme of the QS alignment procedure. (B) Matching a
QS against an ancestral state vector.

is based on a fixedmultiple reference alignment(RA) of the full
length sequences in the RT (Fig. 1).

Phylogenetic placement algorithms like the EPA or pplacer work
by inserting and removing again one short read at a time into
different edges (branches) of the RT. Thereby, they strive to
find the optimal score of the extended (by one taxon) trees in
order to individually determine the best insertion edge foreach
short read. The likelihood-based scoring of alternative short read
insertion positions in EPA and pplacer is conducted under standard
models of nucleotide substitution (e.g., generalized timereversible
model using theΓ model of rate heterogeneity (GTR+Γ; Yang,
1994)). The accuracy of such a likelihood-based placement of
reads depend upon the multiple sequence alignment, that entails
the RA and the short sequence reads (henceforth denoted as
query sequences (QS)). Therefore, a prerequisite for phylogenetic
placement algorithms is, that the QS need to be aligned to the
RA (Fig. 1A), before conducting a placement run. We investigate
the problem of aligning short reads to a given reference alignment
and compare alignment quality of HMMALIGN (Eddy, 1998) to
a new phylogeny-aware short read alignment method by means of
likelihood-based phylogenetic QS placement accuracy.

The most straight-forward approach to align QS with the RA
(containing full length reference sequences) is to simply compute
a new multiple sequence alignment (MSA) from scratch comprising
the sequences in the RTand the QS (e.g., using MUSCLE (Edgar,
2004), MAFFT (Katohet al., 2005), or PRANK+F (Loytynoja and
Goldman, 2008)). Because of the extremely large and continuously
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growing number of QS, this de-novo alignment approach can be
computationally prohibitive.

Alternatively, one can keep the existing (potentially manually
curated) RA fixed, and only align the QS with respect to this
RA, using dedicated QS alignment methods. One such method
for aligning QS with respect to a RA is implemented in the
HMMER (Eddy, 1998) tool-suite. HMMER initially builds a profile
Hidden Markov Model (HMM) from the RA. Thereafter, the QS are
aligned against the profile-HMM that represents the RA. HMMER
implements a dedicated method, HMMALIGN that allows for
aligning multiple QS (one at a time) against thefixed profile-
HMM of the RA. HMMALIGN will then output an alignment
that contains the RA and the QS that have been aligned with
respect to the profile-HMM of the RA. Note that, HMMALIGN
frequently also modifies the RA by inserting gaps, if needed.When
using a profile-HMM, the entire RA is represented by a monolithic
—flat— probabilistic profile that does not use the phylogenetic
information of the RT. MUSCLE and MAFFT offer similar options
to align sequences (in our case QS) against a monolithic profile
that is derived from an existing RA. It has already been shownthat
QS alignment using HMMALIGN performs reasonably well with
respect to phylogenetic placement accuracy (Bergeret al., 2011;
Matsenet al., 2010). However, depending on the specific alignment
strategy/philosophy deployed to generate the RA, better alignment
quality (as quantified by QS placement accuracy), can be achieved
by incorporating the phylogenetic signal of the RT into the QS
alignment process. Hence, we mainly focus on adaptability of QS
alignment methods to the underlying, implicit RA structure.

We present PaPaRa (PArsimony-based Phylogeny-Aware short
Read Alignment), a novel, phylogeny-aware method for QS
alignment. To assess PaPaRa performance, we systematically
evaluate phylogenetic QS placement accuracy of the EPA for
different QS alignment methods. As baseline for comparisons, we
present corresponding results for EPA-based placement accuracy
based on QS alignments using HMMALIGN. While MUSCLE
and MAFFT also offer modes for sequence-profile alignment
(that can be deployed for QS alignment), we exclusively focus
on HMMALIGN as a representative of monolithic profile-based
approaches for the following reasons: MUSCLE offers an option
to conduct profile-profile alignments which corresponds to aligning
two MSAs. Thus, either all QS need to be represented by a single
profile (i.e., they have to be ’pre-aligned’ with respect to each
other) or MUSCLE needs to be invoked separately for each QS
and the individual results will have to be combined thereafter.
Representing all QS by a single profile does not represent a good
option, since it may be impossible to align the QS to each other if
the short fragments do not exhibit sufficient overlap. For the second
MUSCLE alternative, it is unclear, how the resulting individual per
QS MSAs —possibly containing gaps in the RA as well— can be
synthesized/merged into a single, comprehensive MSA. In contrast
to MUSCLE, MAFFT offers an analogous option for QS alignment
as considered here. However, in preliminary tests MAFFT returned
considerably worse QS alignments than HMMALIGN, with respect
to our evaluation criteria (placement accuracy; see below). For
the above reasons, we focus on comparing phylogeny-agnostic
HMMALIGN performance against phylogeny-aware performance
of the PaPaRa method described in the following Section.

PaPaRa is available as open source code athttp://www.
exelixis-lab.org/software.html

2 ALGORITHM
PaPaRa is a novel method for short read alignment against a fixed
reference MSA (RA) and the corresponding phylogenetic reference
tree (RT). The underlying idea of PaPaRa is to align the QS against
the ancestral state vector of each edge in the RT. These ancestral
state sequences are conceptually similar to the profiles used in
HMMER. However, we do not use a probabilistic model because of
prohibitive run times (see below). A key difference to HMMALIGN
is that, in our approach we derive one profile per edge (branch) in the
RT, as opposed to the single, monolithic profile that represents the
whole RA in HMMALIGN. Thus, given an RT withr taxa,m sites,
andq QS, we need to executeO(rq) alignment steps orO(rqm2)
operations. Note that,q is typically significantly larger thanr.
Because of this high time complexity, we also introduce a proof-
of-concept parallelization. The ancestral state vectors,as used here,
provide two different types of information: the ancestral sequence
profile and a tree-derived gap signal (see following paragraphs).

Ancestral Sequence ProfileAfter reading the input data, our
algorithm visits the2r−3 edges of the RT by means of a depth-first
tree traversal, starting at an arbitrary terminal edge leading to a tip.
At each edge, we compute the parsimony state-vectors (Fitchand
Margoliash, 1967; Sankoff, 1975) of the RT at each end of the edge.
The signal from those two state-vectors is then combined using
parsimony, to obtain the ancestral parsimony state for an imaginary
root-node located on the current insertion edge (Fig. 2). For DNA
data, every edgeb in the RT will thus be represented by a parsimony
state vectorAb = A1

b , ..., A
n
b , where the individualAi

b are the
parsimony states for each alignment sitei of the RA. Each entryAi

b

is a bit-vector; each bit corresponds to a character in the sequence
alphabet (see Fig. 1B). For DNA data, a bit vector at a sitei can
have the following state set:Ai

b = ai
b(A), ai

b(C), ai
b(G), ai

b(T ) ∈
{0, 1}4, where theai

b are the bits which correspond to the four DNA
characters. For practical reasons, theAi

b are implemented using one
32-bit integer per site (e.g.,Si

b = ai
b(A) + 2ai

b(C) + 4ai
b(G) +

8ai
b(T ) for DNA data). This approach is not limited to DNA data; it

can be extended to alphabet sizes with up to 32 states in the current
implementation.

1 0 1

0 1 0

1 1 0

0 1 0

Insertion Edges

ancestral state

vector

Fig. 2. Unrooted reference tree (RT) and possible query sequence (QS)
insertion positions. The QS are aligned against the ancestral state vectors
at the candidate insertion positions.

Gap SignalIn addition to the parsimony states, we also use
phylogenetic information on the gap structure as induced bythe
tree for our alignment process. This gap information is calculated
in conjunction with the parsimony state vectors when the RT is
traversed. For each alignment site we recursively compute two
flags. One flag (denoted as ’consistent gap’; CGAP) is used for
indicating that for a specific site in the RA, there consistently
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appears a gap. The second flag (denoted as ’potential gap’; OPEN)
is used to indicate if the gap status of a sitei is inconsistent. This
type of a tree-derived gap signal is based on similar ideas asused
in PRANK+F (Loytynoja and Goldman, 2008), which has been
designed for de-novo MSA. The two ’gap flags’ are deployed in
an analogous way as ’compulsory gaps’ (CGAP) and ’potentialfree
gaps’ (OPEN) in PRANK+F . Because the signal is calculated from
the tips toward the current insertion edge (Fig. 3), we need to
consider three cases for combining gap signals during a post-order
tree traversal: TIP/TIP, TIP/INNER, and INNER/INNER. Thus, we
need to devise rules for recursively combining the gap signals from
the child nodes. In the TIP/TIP case (the children to the leftand
right of the node at which we intend to compute the ’ancestral’
gap signal are tips) the gap signal coming from the two tips can
either be gap or non-gap. If both tips have a gap, the result isCGAP,
which indicates that in the subtree defined by the current ancestral
node the two tips have a gap signal at sitei. If only one tip has
a gap, the outcome is OPEN, indicating a ’potential gap’. Forthe
TIP/INNER case the flags are computed as follows: If either both
child nodes have a gap or the tip has a gap and the ancestral child
node has a potential gap (indicated by OPEN), the result is a CGAP.
In this case, the ’potential’ gap signal coming from the INNER side
is upgraded (promoted) to a consistent gap. If only one childnode
signals a consistent or potential gap, the result is OPEN. Finally,
for the INNER/INNER case (i.e., two ancestral child nodes),only
two consistent CGAP signals will result in a CGAP at the ancestral
node. If only one child node has a CGAP, the result at the ancestral
node is OPEN. This rule set for combining and propagating thegap
signal through the tree has been derived empirically. Whilethe rule
set can evidently be further re-fined, it already yields promising
results on real biological data sets. Note that, we align theQS
to ancestral states derived from the edges of the RT. Thus, for
each edge, we combine the gap signals of the two adjacent nodes.
This combination of gap signals is accomplished by using thesame
rules (TIP/INNER and INNER/INNER cases) as described above.
Essentially, this corresponds to placing a temporary root in the
middle of the insertion edge.

taxon taxon 

sub-tree

taxon 

TIP/TIP 

TIP/INNER 

INNER/INNER 

Fig. 3. Gap signal ’flow’ from the tips towards the QS insertion position.

Dynamic Programming AlignmentOnce the gap signal and the
ancestral parsimony state at the candidate insertion edge have been
computed, they are deployed to calibrate the alignment scoring
scheme for the QS at this edge by modifying the match/mismatch
and gap open/extend penalties. Only the CGAP flag andnot the

OPEN flag influences the scoring scheme of the alignment algorithm
(see below). In general, the CGAP flag will calibrate the scoring
scheme such that, aligning QS characters against sites witha CGAP
flag is strongly penalized. Opening and extending gaps at these
CGAP positions will be preferred. Thereby, if we try to aligna QS
against the ancestral state of a tree region, where gaps are common
for certain alignment sites, it is very likely that the QS alignment
will also contain gaps at these sites.

The actual alignment of the QS against each ancestral state
vector is carried out by a standard dynamic programming algorithm
for pair-wise alignment using affine gap penalties (Gotoh, 1982).
Pairwise alignment is conducted with two modifications. Firstly,
we deploy a ’free shift’ or overlapping alignment strategy (Huang,
1992), that is, gaps inserted at the beginning and/or end of the QS
are not penalized. Secondly, the affine gap model is only usedfor
inserting gaps into the QS (i.e., deletions in the QS). For inserting
gaps in the RA (i.e., insertions in the QS), we deploy a flat gap
penalty. In practice, instead of inserting gaps in the RA, weinstead
simply delete these insertion characters in the QS. The rationale
for this is that, introducing gaps in the RA does not provide any
additional information for QS placement using the EPA. In other
words, ’empty’ RA columns that entirely contain gaps (modeled
as undetermined characters in standard ML implementations) will
not affect the EPA placements, since we align only one QS at a
time. While inserting gaps in the RA may be useful for aligning
the QS with respect to each other, our focus here is on evolutionary
placement of the QS relative to the RA.

The alignment scoring function is provided in equation 1. The
equation recursively defines the score of the dynamic-programming
matrix cellDi,j in column i and rowj for aligning siteAi of the
ancestral state vector against siteBj in the QS.

CG
i =

(

10 if CGAP is set for sitei

0 otherwise

(GP
i
OE, GP

i
E) =

(

(2, 1) if CGi = 0

(0, 0) otherwise

S
i,j =

(

0 if AiandBjmatch

3 otherwise

I
i,j = D

i,j−1 + 3

D
i,j
E = min

(

Di−1,j + GP i
OE

D
i−1,j

E + GP i
E

D
i,j = min

8

>

<

>

:

Di−1,j−1 + Si,j + CGi

D
i,j
E

Ii,j

(1)

The termCGi is used to adapt the scoring scheme for sites where
the ’constant gap’ (CGAP) flag is set. Thereby, we substantially
penalize matching a QS site against such sites in the RT/RA
and allow for free gap insertion in the QS at such positions.
The remaining definitions correspond to a standard dynamic-
programming implementation of the Gotoh (1982) algorithm for
sequence alignment with affine gap penalties. As described above,
every stateAi is a bit-vector with one bit per alphabet character.
Thus, one may think of the ancestral parsimony state vector as
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a simple profile, where the bits determine which character ofthe
QS can be aligned for ’free’ against an ancestral state character
(Fig. 1B). If, for exampleAi = 1, 1, 0, 0, this means that, As
and Cs in the QS can be matched against alignment sitei for
this ancestral state vector without incurring a mismatch penalty.
Thus, the scoreSi,j is 0 (i.e., no penalty is induced), if the bit
corresponding to characterj of the QS is set inAi. Otherwise,
the scoring schemeSi,j will return the default mismatch penalty
of 3. Note that, the numerical values given in equation 1 represent
the default parameters (used in all our experiments), whichhave
been derived empirically. PaPaRa can also deploy user-defined
parameters. While there exist more elaborate probabilistic methods
(e.g., TKF92; Thorneet al., 1992), ’ad-hoc’ scoring schemes (e.g.,
BLAST or Smith-Waterman) are still widely used for bioinformatics
analyses. Moreover, because of the high computational complexity
of our approach (O(rqm2)), it is currently not computationally
feasible to explore more elaborate scoring schemes. In other words,
there is a clear trade-off between model accuracy and execution
times.

2.1 Implementation
PaPaRa is implemented in C/C++ as experimental extension of
RAxML (Stamatakis, 2006). It uses the existing routines for
parsing alignment files and trees, as well as the existing parsimony
implementation. Initially, the algorithm reads and parsesthe RT,
RA, and, the QS. The taxon names in the RT (Newick format)
and the RA (relaxed PHYLIP format, see RAxML v7.0.4 Manual)
need to be consistent: all taxa in the RT must have a corresponding
sequence in the RA. The QS that shall be assigned to the RT can
be read from a separate FASTA file or be included in the RA (for
details see PaPaRa README).

The aligner uses a custom-built sequential dynamic-programming
implementation (i.e., the core alignment algorithm is single-
threaded and not vectorized). However, as Farrar (2007)
demonstrated for the smith-waterman algorithm (Smith and
Waterman, 1981), dynamic programming algorithms can be
significantly accelerated by means of vectorization. Therefore,
we plan to also develop a vectorized version of PaPaRa.
Further technical implementation details (e.g., cache utilization,
parallelization) are described in the supplementary material.

We also implemented and tested a one-sided version of the
alignment method, where gaps are only inserted in the QS and not
the RA. The respective, simplified dynamic-programming algorithm
exhibits fewer dependencies between matrix cell computations. This
property can be exploited for further performance improvements.
This comes at the cost of alignment quality if insertions (with
respect to the sequences in the RA) are common in the QS. For
further details please refer to the supplementary material.

As already mentioned, PaPaRa relies on a free-shift alignment
strategy. Therefore, after the dynamic-programming matrix has
been filled, we search for the optimal alignment score (minimum)
in the last row of the dynamic-programming matrix. This allows for
insertion of free gaps at the end of the QS. In standard free-shift
alignment procedures, one has the search for the minimum score in
the last rowand the last column of the matrix, because it allows for
free gaps at either end of both sequences. It is possible to deploy a
local alignment scheme or the standard free shift alignmentmethod
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Fig. 4. (A) Distance measures: Node distance (ND) and edge distance(ED).
(B) The maximum placement error for two exemplary referenceinsertion
position.

in PaPaRa to handle cases where the procedure presented hereis not
applicable (e.g., QS not fully contained in the RA).

3 EXPERIMENTAL SETUP
The main application scenario for PaPaRa is for metagenomic
analyses using phylogenetic placement methods such as the
Evolutionary Placement Algorithm (EPA) (Bergeret al., 2011) or
pplacer (Matsenet al., 2010). As mentioned in section 1, for
these algorithms the QS need to be in alignment with the RA. To
this end, our performance evaluation is specifically designed to
assess the accuracy of alignment methods (PaPaRa, HMMALIGN)
with respect to analyzing (identifying) short reads by means
of phylogenetic placement algorithms. In other words, we do
not directly evaluate alignment quality. Instead, we analyze the
impact of the QS alignment method on the phylogenetic placement
quality/accuracy using the EPA. Therefore, we assess alignment
quality by means of the calculated/inferred evolutionary position of
the QS. In (Bergeret al., 2011) we devise measures and methods
for assessing the placement accuracy of short reads using the EPA.
We also carried out a basic assessment of QS placement accuracy
when QS are re-aligned with HMMALIGN (v3.0), albeit in a
different experimental setup and context. Here, we use the same
distance/accuracy measures (Fig. 4A). The node distance (ND),
which is defined as the number of nodes along the path between the
’true’ placement position and the inferred placement position (see
below) represents an absolute accuracy measure. The normalized
edge distance (EDN%), is a relative measure between ’true’ and
inferred placement positions that is based on the actual edge-lengths
in the RT. The EDN% reflects the relative evolutionary distance
between the two positions. In contrast to Bergeret al. (2011), we
use a revised scheme for normalizing the edge distance: Rather than
normalizing it by the tree-diameter (longest path in the tree), we now
deploy a position-specific maximum possible placement error (Fig.
4B). This position-specific placement-error corresponds to the QS-
specific worst-case scenario, that is, we normalize by the longest
path from the ’true’ insertion position to a terminal edge.
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3.1 Realignment of simulated QS
The main part of our performance evaluation compares the
placement accuracy of EPA-computed QS placement with respect
to the placement position of the optimally aligned QS (’true’
placement). The EPA placements obtained without QS alignment
are regarded as the optimal (’true’) reference placements,against
which the phylogenetic placementsafter QS re-alignment with
PaPaRa/HMMALIGN are compared. For such an evaluation, we
require QS that are already in alignment with the RA in order
to compute an optimal reference placement with the EPA that
represents the ’true’ placement. The QS, which are assumed to be
correctly aligned in the reference QS alignment, are initially dis-
aligned (we simply remove all gaps), and passed to the two QS
alignment procedures (PaPaRa and HMMALIGN) for re-alignment.
The thereby re-aligned QS are then used as input for the EPA.

The correctly aligned QS were extracted from 7 real-world full-
length biological MSAs (termed original MSAs). The taxon set of
each reference MSA is randomly split into two sub-alignments of
equal size (each containing 50% of taxa from the original MSA).
One half of the original MSA is then used as RA, on which
we compute the best-known maximum likelihood (ML) tree with
RAxML. This tree is then used as RT for the RA. The other half
of the original RA MSA is used to generate a QS set. Because
both sub-alignments originally formed part of the same MSA,all
sequences in the QS set (and all sub-sequences of these sequences)
are in alignment with the RA. The sequences in the QS set that are
derived from a MSA of full length sequences are then reduced in
length (see below for details) to emulate QS that resemble short
sequence reads.

For each data set, we carried out our performance analysis
using three common MSA methods to generate three original MSA
versions respectively. We computed de-novo MSAs using MUSCLE
(v3.70), MAFFT (v6.626), and PRANK+F . We selected these
three programs, because they are widely used state-of-the-art codes
for MSA and because they are based on fundamentally different
alignment philosophies. Since we adopt an agnostic view on what
the best MSA strategy may be, we thereby intend to assess the
flexibility and adaptability of PaPaRa to diverse MSA philosophies
that are implicitly encoded in the underlying RAs. Finally,we
also used the partially manually curated MSAs as provided bythe
authors of our test data sets. While manual curation is debatable, in
particular in the light of reproducibility of results, we nonetheless
used the given MSAs because hand-curation is still common
practice and may encode empirical biological knowledge about the
underlying data. We also conducted an experiment using simulated
sequence data. On the simulated alignment, the performanceof
PaPaRaand HMMALIGN is considerably better than on the
corresponding real-world alignment and tree (see supplementary
material for details). Thus, the QS alignment problem is harder for
real data than for simulated data. Therefore, we use real sequence
data for our performance assessment. For each of the 7 data sets, we
thus have 4 original MSA versions: manually curated (calledORIG
throughout the paper), MUSCLE, MAFFT and PRANK+F . Table 1
contains information about the length (number of RA columns) in
the data sets as well as the number of taxa contained in the RAsand
the respective number of QS.

In our experiments, we assume that the full length QS (and the
derived short QS) obtained from the 4 MSA versions for each data

Data # sites # sites # sites # sites # taxa # QS
MSA ORIG MUSCLE MAFFT PRANK
D150 1269 1272 1336 1939 75 1500
D218 2101 2044 1993 6425 109 2180
D500 1398 1402 1402 1479 250 5000
D628 1199 1761 1348 2437 314 6280
D714 1241 1341 1273 2205 357 7140
D855 1436 1469 1443 2208 427 8560
D1604 1271 1325 1278 2475 802 16040

Table 1. Data sets used for evaluation of the QS alignment algorithms. The
the values in columns 2–5 correspond to the four RA per data set, which
have been generated with the different MSA approaches (ORIG, MUSCLE,
MAFFT and PRANK+F .

set, represent ideally aligned QS, with respect to the corresponding
RA. To the best of our knowledge HMMALIGN and PaPaRa
currently represent the most suitable methods for aligningshort-
reads to a RA. Therefore, we specifically did not use real short read
data, for which the correct alignment to the RA is not known. Our
experiments are designed to systematically test the impactof QS
alignment quality on the evolutionary placement process using the
EPA. Thus, we did not consider alignment quality criteria, other
than the relative QS placement error with respect to the reference
QS placement obtained from the original MSA.

From every full-length QS in the QS set, we randomly sub-
sampled 20 contiguous QS with uniformly distributed position
and normally distributed lengths (mean length:100 ± 10 bp and
200 ± 60 bp). We have already used this method for QS generation
in (Bergeret al., 2011) to create simulated short read sequences that
emulate reads obtained from a high throughput sequencer. For each
of the 20 sub-sampled QS, we computed an individual reference
placement, because the EPA placement of the sub-sampled QS
can differ from the placement of the full-length QS. Thereby, we
can more accurately assess the QS alignment impact on placement
accuracy, without the potential bias that is induced by QS length
variation (see Bergeret al. (2011)). To yield the evaluation more
realistic, we then also modified the subsampled QS by introducing
typical next-generation sequencer errors. Based on the methods
implemented in Grinder (Anglyet al., 2009) and the empirical
data by Balzeret al. (2010), we re-implemented an appropriate
model for simulating representative 454 homopolymer sequencing
errors. Each homopolymer (this also includes single characters)
that is detected in the raw QS is randomly shortened or elongated,
according to empirical probabilities provided by Balzeret al.
(2010).

Because we derive the new RA by splitting the original MSA into
two parts (i.e., the RA and the QS set), it is likely that the RAwill
contain sites that entirely consist of gaps. This is especially true for
MSAs generated with PRANK+F , that frequently comprise sites
with only one or two non-gap characters. Since entirely ’empty’
columns that only contain gaps are not present in real MSAs,
such columns are completely removed from the RAprior to QS
alignment (using HMMALIGN and PaPaRa) and placement in our
experiments.
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4 RESULTS & DISCUSSION
For each of the 7 data sets, we determined PaPaRa- and
HMMALIGN-based QS placement accuracy for all 4 original MSA
versions. Tables containing the results for all data sets are provided
in the supplementary material. The values in the Tables indicate
RT-based average ND and EDN% distances between the ’true’
reference EPA placements, based on the QS alignment extracted
from the original MSA and the respective EPA placements with
QS re-alignment. Values for the two QS re-alignment methods
(PaPaRa, HMMALIGN) are provided separately. Preliminary tests
using MAFFT for QS alignment, generated placements that were at
least 2 times further away from their reference position than those
obtained with HMMALIGN (data not show). We therefore only
report results for HMMALIGN and PaPaRa.

In Table 2 we provide results for the largest data set (D1604)in
terms of number of taxa using QS with a mean length of100 ± 10
bp. When HMMALIGN is used for re-alignment on the manually
curated MSA on this data set, EPA placements are on average
1.35 nodes (column HMM, row ORIG) away from the reference
placement position. For PaPaRa the corresponding node distance
(ND) is 0.28 (column PA, row ORIG). When the relative distance
(EDN%) is used, the corresponding values are 1.35 (HMMALIGN)
and 0.71 (PaPaRa). Therefore, PaPaRa reduces the error in QSnode
placement distance by a factor of 4.87 (factor 1.90 for the relative
distance) compared to HMMALIGN. For the automated MSA
methods (MUSCLE, MAFFT, PRANK+F ), HMMALIGN and
PaPaRa yield analogous accuracy differences. The EPA placements
of re-aligned QS are on average 3.11–5.88 times closer (1.7–2.52
times for the EDN% distance) to the reference placements in terms
of node distance (ND) for PaPaRa than for HMMALIGN. On some
of the smaller data sets (D150, D218 and D714) the PaPaRa-aligned
QS can produce worse placements than the HMMALIGN-aligned
QS (see supplementary material). However, in most cases, PaPaRa
only produces worse results with respect to the EDN% measure.

ND EDN %
D MA PaPaRa HMM PaPaRa HMM

1
0
0
±

1
0 ORIG 0.28 1.35 (4.87) 0.71 1.35 (1.90)

MUSCLE 0.43 1.35 (3.11) 0.87 1.48 (1.70)
MAFFT 0.29 1.21 (4.12) 0.72 1.29 (1.80)

PRANK+F 0.41 2.43 (5.88) 0.95 2.41 (2.52)

2
0
0
±

6
0 ORIG 0.25 0.90 (3.53) 0.63 0.80 (1.28)

MUSCLE 0.40 1.03 (2.61) 0.76 0.92 (1.21)
MAFFT 0.26 0.82 (3.18) 0.65 0.79 (1.21)

PRANK+F 0.34 1.65 (4.80) 0.84 1.39 (1.64)
Table 2. Placement accuracy for the two QS alignment methods on the
largest data set (D1604). The relative accuracy of HMMALIGNcompared
to PaPaRa is given in parentheses.

For the longer QS of mean length 200, in most cases, placement
accuracy increases for both alignment methods. The improvements
are more pronounced for HMMALIGN, where the ND is improved
by up to a factor of 2. Generally, accuracy differences between
PaPaRa and HMMALIGN decrease. For 5 out of the 7 data
sets PaPaRa produces worse results than HMMALIGN at least
for some of the tests (i.e., for certain RA and distance measure
combinations, see supplementary material). As with the shorter QS,

this is especially pronounced on the smaller data sets with less taxa.
Thus, apparently, the advantage of using a phylogeny-awareQS
alignment strategy on data sets with few taxa is smaller. In contrast
to PaPaRa, on small data sets HMMALIGN can take advantage of
its more powerful probabilistic RA model and the stronger signal
contained in the 200 bp long QS. However, the typical RT will be
considerably larger than the smallest data sets in this study, because
of the very dense taxon sampling of the 16S rRNA. Thus, while
the accuracy improvement induced by PaPaRa is minor on small
data sets, it substantially improves placement quality on the larger
reference data sets in our experiments.

The rather pronounced difference between the two distance
measures (i.e., when the ND is considered, the advantage of PaPaRa
over HMMALIGN is larger than for the EDN%), can be attributed
to the RT shape of this data set (D1604): Visual inspection revealed
that, it contains a large number of closely related taxa which gives
rise to a large number of relatively short edges (branches) near the
tips of the tree. Thus, if a QS is misplaced within such a region of
the tree, this can result in a relatively large ND (because there is a
large number of nodes in the region), but a small EDN% since edges
between the nodes are short. The HMMALIGN re-aligned QS tend
to be misplaced in such ’dense’ areas of the tree, which results in a
relatively large average ND compared to PaPaRa re-aligned QS. To
this end, by using a phylogeny-aware approach, PaPaRa can better
use such densely sampled areas in the RT, while such a fine-grained
resolution can not be achieved by using a ’flat’ probabilistic profile
(e.g., HMMALIGN). On smaller data sets the differences between
the two distance measures are less pronounced (see supplementary
material).

In most cases, the largest difference in placement accuracy
between PaPaRa and HMMALIGN is observed for PRANK+F -
based MSAs. Because of the specific MSA approach in PRANK+F ,
a strong and consistent gap signal is embedded into the original
MSA. In contrast to HMMALIGN, PaPaRa is able to use this
embedded gap-signal in combination with the respective RT.In
Figure 5 we provide histograms of the average ND distribution
for QS (with mean length 100bp) over all data sets and for all
reference MSAs. PaPaRa-based QS alignments generate placements
that are, on average, closer to the ’true’ reference position. The
histograms also show that for PRANK+F -generated MSAs, the
placement accuracy decrease induced by using HMMALIGN is
more pronounced compared to other MSA methods. In general,
PaPaRa is thus more robust with respect to different MSA
philosophies and hence more adaptable.

For the above experiments, we knew a priori, that the QS had
sufficiently closely related sequences in the RA. If this is not given
(e.g., if reads from a distant clade not contained in the RT are
sampled), according to some preliminary experiments, neither the
QS alignment method nor the EPA can be expected to produce
resonable results. This observation also holds when the QS stem
from a different (e.g., non-orthologous) genomic region than the
sequences in the RA. Therefore, we suggest that the QS shouldbe
checked beforehand, for example by doing a quick BLAST search
against the sequences in the RA to reject completely unrelated
sequences.
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Fig. 5. Histograms showing the distribution of the placement error(ND) for
PaPaRa and HMMALIGN aligned QS, over all data sets.

4.1 Execution times
We also carried out a runtime assessment of HMMALIGN and
PaPaRa. A serial execution of PaPaRa requires 385s – 44,270s
on the smallest (D150) and largest (D1604) data set respectively
(using the ORIG MSA and QS of lengths200 ± 60 bp on an 3.2
GHz Intel Core i5; compiled withgcc 4.5.1 for Linux). The
corresponding HMMALIGN times range between 61s and 1031s.
Thus, HMMALIGN is 6.3 – 43 times faster than PaPaRa. This
performance difference is not surprising, because PaPaRa runtimes
depend on the number of QSand the number of taxa in the RT.
In other words, PaPaRa exhibits a significantly higher theoretical
runtime complexity than HMMALIGN. Therefore, performance
optimization of the core alignment procedure is essential for overall
PaPaRa performance. The inherent —significantly higher— time
complexity of PaPaRa is also one main reason for aligning against
ancestral parsimony state vectors (i.e., bit-vectors), instead of using
a probabilistic approach that would require costly floatingpoint
arithmetics.

Currently, PaPaRa creates the QS alignments in two phases:
Initially, all QS are aligned, and thereby scored, against all ancestral
state vectors (insertion positions/edges of the RT). For performance
reasons the actual alignments (i.e., the dynamic programming
traceback) are not generated in this phase. After the best scoring
insertion position has been determined for each QS, the actual
alignments are then generated by aligning them again to the best
positions in a second step. The initial step normally accounts for
more than 99% of overall runtime. As already mentioned, the core
alignment procedure could be further optimized by deploying 128-
bit wide SSE or even 256-bit wide AVX vector instructions. One
could also think of a more compact bit-level representationof the
input data to reduce memory requirements and cache misses. Our
current dynamic programming implementation can perform about
120 MCUPS (million cell updates/s) on the Intel Core i5. For
comparison, Farrar (2007) reports more than 3000 MCUPS for his
SSE optimized smith-waterman implementation on an older 2.0
GHz Intel Xeon Core 2 Duo processor. Note that HMMALIGN,
as used here, already includes SSE vectorization in the alignment
algorithm. We are therefore confident that, the run-time gapbetween

HMMALIGN and PaPaRa can be significantly reduced in future
versions of the code.

5 CONCLUSION & FUTURE WORK
We have conducted an experimental evaluation of methods for
aligning short QS against a fixed RT and RA in the context of
likelihood-based evolutionary QS placement methods. We also
introduced PaPaRa, a novel phylogeny-aware method for this
purpose. On short QS and large RAs, PaPaRa performs better than
the currently best phylogeny-agnostic method (HMMALIGN).For
longer QS and small RAs the performance of the current PaPaRa
implementation is relatively poor. Apparently, the more powerful
probabilistic model in HMMALIGN, is beneficial, if the RA is
small enough to be represented by a single flat profile. For larger
RAs, PaPaRa has the advantage of sampling different signalsfrom
different parts of the associated RT and performs well, despite using
a simple model for ancestral states and an ’ad-hoc’ scoring scheme.
We intend to introduce additional heuristics for reducing the total
number of ancestral state vectors against which individualQS need
to be aligned. We also plan to exploit data-parallelism in the core
alignment algorithm by using SSE and AVX vector instructions.
PaPaRa can also be used to generate multiple ’candidate’ alignments
for each QS (it is likely that the current method generates multiple
alignments with equal scores per QS because of the discrete scoring
scheme). Those different per-QS alignment candidates could then
be scored by their placement scores under ML to select the ’best
candidate’.

As a more fundamental improvement, we will explore methods
to refine the gap propagation in the tree based on a binary
likelihood model. A further option, worth exploring, wouldbe to
use a probabilistic alignment approach, where the ancestral states
resemble the probability vectors as used in likelihood-based tree
inference. In the long term we will work on integrating the EPA with
PaPaRa. One possible application would be dynamic alignment/tree
extension by full length sequences as they appear in GenBank.
This would represent a step towards simultaneous/integrated tree-
building and alignment.
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