
FPGA Acceleration of the Phylogenetic Parsimony Kernel?

Nikolaos Alachiotis, Alexandros Stamatakis

The Exelixis Lab, Scientific Computing Group

Heidelberg Institute for Theoretical Studies

Heidelberg, Germany

Emails: {Nikolaos.Alachiotis,Alexandros.Stamatakis}@h-its.org

Abstract—The phylogenetic parsimony function is a pop-
ular, discrete criterion for reconstructing evolutionary trees
based on molecular sequence data. Parsimony strives to find
the phylogenetic tree that explains the evolutionary history
of organisms by the least number of mutations. Because par-
simony is a discrete function, it should fit well to FPGAs. We
present a versatile FPGA implementation of the parsimony
function and compare its performance to a highly optimized
SSE3- and AVX-vectorized software implementation. We find
that, because of a particular constellation in our lab, the
speedups that can be achieved by using an FPGA, are
substantially less impressive, than usually reported in papers
on FPGA acceleration of bioinformatics kernels. We conclude
that, a competitive spirit between SW and HW application
developers can contribute toward obtaining more objective

performance comparisons.

Keywords-FPGA; SIMD; parsimony; performance analysis

I. INTRODUCTION

The inference of evolutionary (phylogenetic) trees from

molecular sequence data has many important applications

in biological and medical research (e.g., [1]).

Input: The input for a phylogenetic analysis is a list

of organism names and their associated DNA sequence

data. Since DNA sequences for distinct organisms typi-

cally have different lengths, a so-called multiple sequence

alignment (MSA) of the DNA sequences is computed prior

to conducting a phylogenetic analysis using character-

based methods (Maximum Parsimony [2] or Maximum

Likelihood [3]). The goal of MSA is to determine which

nucleotides of the organisms share a common evolutionary

history. Because nucleotide insertions or deletions may

have occured during the evolutionary history of the or-

ganisms, deletion events are denoted by inserting the gap

symbol - into the sequences during the MSA process.

After the MSA step, all n sequences have the same length

m, that is, the MSA has m alignment columns (also called:

characters, sites, positions).

Output: The output of a phylogenetic analysis is an

unrooted binary tree topology. The present-day organisms

under study (for which DNA data can be sequenced) are

assigned to the leaves (tips) of such a tree, whereas the

inner nodes represent extinct common ancestors.

Combinatorial Optimization: To reconstruct a phy-

logenetic tree from a MSA, criteria are required to as-

sess how well a specific tree topology explains (fits) the

underlying molecular sequence data. One may think of

this as an abstract function f() that scores alternative tree

topologies for a given MSA. The goal of phylogenetic

algorithms is to find the tree topology with the best

score according to f(), that is, phylogenetic inference

is a combinatorial optimization problem. The algorithmic

problem in phylogenetics is characterized by the number

of possible distinct unrooted binary tree topologies for n

organisms which is given by:
∏

n

i=3
(2i − 5). Finding the

best tree for MSA-based criteria f() such as Maximum

Likelihood [4] or Maximum Parsimony [5] is NP-hard.

Apart from developing efficient heuristic search strategies,

the optimization of the scoring function f(), that is in-

voked millions of times during a heuristic tree search, and

hence dominates execution times, represents an important

research objective in phylogenetics.

Likelihood and parsimony are currently among the most

popular methods for phylogenetic inference. Compared to

the likelihood criterion, parsimony requires significantly

less memory and computations to calculate f() on a

given tree topology which is important for analyzing very

large datasets [1]. Here, we focus on the acceleration

of the parsimony kernel via a pipelined reconfigurable

architecture and by deploying 256-bit wide AVX vector

instructions on a general purpose CPU. The constellation

at our lab is rather atypical, since NA is a computer

engineer and AS has a parallel computing background

and 10 years of experience in developing and tuning

phylogeny programs (e.g., the widely-used RAxML code;

the three main papers have accumulated ≈ 2000 citations

on Google Scholar; March 24, 2011). Hence, there is a

permanent, vivid discussion whether FPGAs are suitable

for accelerating phylogenetic kernels or not.

Thus, we compare our HW design with a highly opti-

mized (at the bit level) open-source SW implementation

that deploys 128-bit SSE3 vector instructions and the

relatively recent 256-bit AVX vector instructions to accel-

erate the parsimony kernel. We find that, given a realistic

parsimony kernel usage model, there is no significant

difference in execution speeds between a high-end FPGA

and an Intel i7 processor with AVX support. However,

there are substantial differences in engineering effort: The

design, implementation, and verification of the hardware

architecture required almost a month, while porting the

already existing SSE3 vectorization to AVX required only

half a day. To allow for reproduction of all results in

this paper the hardware description of the architecture

is available as open-source code at: http://wwwkramer.in.

tum.de/exelixis/FPGA MaxPars.tar.bz2.

The remainder of this paper is organized as follows: in

Section II we address related work and in Section III we

describe how to compute the parsimony score on a tree. In

Section IV we outline the architecture and in Section V we

present performance results. We conclude in Section VI.

II. RELATED WORK

Few phylogenetic kernels have been mapped to hard-

ware. Mak and Lam [6], [7], Alachiotis et al. [8], [9], [10],

and Zierke and Bakos [11] map the floating point intensive

likelihood function to FPGAs. Davis et al. [12] presented

an implementation of the UPGMA method (Unweighted

Pair Group Method with Arithmetic Mean) which is a

simple tree reconstruction algorithm that is practically not

used for phylogenetic analyses any more. In [13], Bakos

et al. focused on tree reconstruction using gene order

data, that is, the arrangement of corresponding genes in

the genomes of different organisms is used to reconstruct

trees.

Kasap and Benkrid [14], [15] recently presented, the—

to the best of our knowledge—first reconfigurable archi-

tecture for the parsimony kernel and assessed performance

on a FPGA supercomputer by exploiting fine-grain and

coarse-grain parallelism. The implementation is limited

to trees with a maximum of 12 organisms, which are

very small by todays standards; the largest published

parsimony-based tree has 73,060 taxa [1]. The authors

use an exhaustive search algorithm to evaluate all pos-

sible trees with 12 organisms in parallel for finding the

tree with the best parsimony score. An evaluation of all

possible trees, even in parallel, is evidently not possible

for parsimony-based analyses of larger trees because of

the super-exponential increase in the possible number

of trees. Parsimony-based programs for large datasets

deploy heuristic search strategies (e.g., Subtree Pruning

and ReGrafting (SPR) or Tree Bisection and Reconnec-

tion (TBR)). These search strategies (as implemented for

instance, in TNT, parsimonator (our code), or PAUP∗)

do not require a de-novo computation of the parsimony

score, based on a full post-order tree traversal as imple-

mented in [14], [15]. Instead, they only require the update

of a comparatively small fraction of ancestral parsimony

vectors. Hence, a fundamentally different approach to

implementing the parsimony function on a reconfigurable

architecture for such commonly used heuristic search

strategies is required.

Kasap and Benkrid report speedups between a factor of

5 and up to a factor of 32,414 for utilizing 1, 2, 4, and 8

nodes (each node is equipped with a Xilinx Virtex4 FX100

FPGA) on the Maxwell system compared to a 2.2GHz

Intel Centrino Duo processor. However, the speedups re-

ported are only relative speedups with respect to the parsi-

mony implementation in PAUP∗ [16] and not with respect

to the fastest-known implementation of parsimony in the

TNT program package used in [1]. Unfortunately, neither

PAUP, nor TNT are open-source and therefore do not allow

for an accurate performance analysis and comparison of

the parsimony kernel. Therefore, we use our in-house code

parsimonator (available at: http://wwwkramer.in.tum.

AG

place virtual root

into arbitrary branch AT

AC AC

Ancestral Vector

Ancestral Vector

1.

2.

AC

AC
AG

AT

Sequence Data
post−order traversal

virtual root 3. Compute overall score

by summing over

per−site scores

Figure 1. Virtual rooting and post-order traversal of a phylogenetic tree.

de/exelixis/software.html), which implements a represen-

tative, yet simple, search strategy based on SPR moves.

The parsimony kernel in parsimonator is highly opti-

mized and the program can compute parsimony trees on

DNA datasets with up to 116,408 organisms and ten genes.

III. THE PARSIMONY KERNEL

The parsimony kernel operates directly on the MSA

and the tree. The sequences in the MSA are assigned to

the leaves of the tree and an overall score for the tree is

computed via a post-order tree traversal with respect to

a virtual root. An important property of the parsimony

function is that parsimony scores are invariant to the

placement of such a virtual root. Parsimony is charac-

terized by two additional properties: (i) it assumes that

MSA columns have evolved independently, that is, given

a fixed tree topology, one can simultaneously compute the

parsimony score for each MSA column in parallel. To

obtain the overall score of the tree, the sum over all m per-

column parsimony scores at the virtual root is computed.

(ii) parsimony scores are computed via a post-order tree

traversal that proceeds from the tips towards the virtual

root and computes ancestral parsimony vectors of length

m at each inner node that is visited (see Figure 1).

The parsimony criterion intends to minimize the number

of nucleotide changes on a tree. Hence, for a given,

fixed, tree topology we need to compute the smallest

number of changes (mutations) required to generate the

tree. This minimum number can be computed via a post-

order traversal of the tree under consideration. Given an

arbitrarily rooted tree, one can proceed bottom up from the

tips toward the virtual root to compute ancestral parsimony

vectors and count mutations, based on the two (previously

computed; post-order traversal!) child vectors. To store tip

vectors (containing the actual DNA data) and ancestral

parsimony vectors (containing the ancestral sequences),

we need to allocate 4 bits per alignment site m at each

node of the tree. Hence, the total memory required to store

the parsimony vectors is m · 4 · (2n − 2) bits, where m

is the number of sites and 2n − 2 the total number of

inner and outer nodes in an unrooted binary tree (n is the

number of tips). In the following we will only describe the

computational steps required to compute the parsimony

score on a tree (please refer to [17] for a justification and

further details).

The parsimony vectors (bit vectors) at the tips are

initialized as follows: for a nucleotide A at a position i,

where i = 0...m − 1 we assign A:=1000 (respectively

C:=0100, G:=0010, T:= 0001). When the tip vectors

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������ qv = 1100

Q R

P

qs = 5

qv = 1100

Q R

P

qs = 3

ancestral parsimony vector update with a mutation ancestral parsimony vector update without a mutation

ps = 3 + 2 = 5

pv = 1100 & 1000 = 1000

rs = 2

rv = 1000

to virtual root

rs = 4

rv = 0010

ps = 4 + 5 + 1 = 10

pv = 1100 | 0010 = 1110

to virtual root

Figure 2. Parsimony vector and score updates with and without
mutation.

have been initialized, one can start computing the parsi-

mony score of the tree. We will focus on computing the

parsimony score psi (minimum number of mutations) for

a single site i, since the overall score is simply the sum

over all per-site scores at the virtual root:
∑m−1

i=0
psi.

Given two already computed child vectors q and r,

we compute the parent vector p at site i as follows (see

Figure 2). The parsimony score is initially set to the sum of

the parsimony scores of two child vectors psi := qsi+rsi,

that is, we take into account how many mutations were

required to explain the two subtrees rooted at q and r for

site i. Then, we compare the 4-bit vectors of q and r with

a bit-wise and operation.

If this bit-wise and yields 0, this means, for instance,

that site i in subtree q may only contain As (qvi = 1000)

and r may only contain Cs (rvi = 0100) at site i.

Hence, we need to add a mutation and increment the

parsimony score by one psi := psi + 1. The parsimony

vector at position i of p is then calculated as: pvi := qvi
ORbit−wise rvi, that is, we conduct a bit-wise or on qvi
and rvi to obtain a new state that now comprises A or

C. Thus, pvi := 1100, which means that the ancestral

state can be A or C because we have already counted

the required mutation. If the initial bit-wise and on qvi
and rvi does not yield zero, we do not need to count

a mutation, and simply set pvi := qvi ANDbit−wise rvi,

thereby essentially saving the shared state between qvi and

rvi in pvi. When the virtual root is reached, we conduct

exactly the same computations on child vectors q and r

for updating the parsimony score at the root p, but we do

not require to store the ancestral state pv, since we are

only interested in the score (mutation count) at p.

There exist only few open-source implementations of

the parsimony kernel. The PHYLIP package [18] con-

tains a proof-of-concept parsimony implementation that

is not optimized at the bit-level. As already mentioned,

we have recently released an optimized code called

parsimonator. The parsimonator manual also in-

cludes a performance comparison of the non-vectorized,

SSE3- and AVX-vectorized versions. We believe that this

is currently the fastest open-source parsimony implemen-

tation with respect to the parsimony kernel implementa-

tion, albeit the search algorithm it uses is rather naı̈ve

because it is designed to generate starting trees for maxi-

mum likelihood analyses. The fastest available parsimony

program is TNT [19]. PAUP∗ [16] is also a popular pro-

gram for parsimony analysis, but significantly slower than

TNT and parsimonator. Since we focus on designing

in A out

outBin

in

in

out

outB

A

ancestral state count mutation

TIP
INNER

MEM
2048x8

MEM
2048x8

tip

for initialization

sequences

Figure 3. Architecture of the basic parsimony processing unit.

an architecture for the parsimony kernel implementation,

irrespective of the actual search algorithm, we use our in-

house code to accurately measure and compare execution

times.

IV. RECONFIGURABLE ARCHITECTURE

In the following we describe the reconfigurable par-

simony architecture. We denote ancestral vector compu-

tations as NV operations and score computations at the

virtual root by EV.

A. Processing Unit (PRU) Architecture

Figure 3 illustrates the basic processing unit (PRU) of

the reconfigurable parsimony kernel. Each PRU operates

on two child vector entries (two sites). The PRU archi-

tecture deploys a pair of dual-port memories, that is, one

memory instance is used for storing tip vectors and one

for storing inner vectors. Each memory instance can store

a maximum of 2048 addressable bytes. The rationale for

selecting this specific memory size is that, thereby we

occupy a single 18Kb block RAM slice per PRU memory

instance. If each PRU only requires a limited amount

of memory blocks, the overall reconfigurable parsimony

system can be extended by additional PRUs in a seamless

way (see Subsection IV-B).

To initiate a parsimony analysis, only the TIP MEM-

ORY has to be initialized with the bit-encoded DNA

sequences in the MSA. Every tip and inner vector is

assigned a static address space in the respective memory

prior to executing any operation. During a post-order tree

traversal, the following three memory access situations can

occur regarding the input child vectors at nodes q and r:

(i) q and r are both tips, (ii) either q is a tip or r is a

tip, (ii) q and r are inner nodes. For the TIP-TIP and TIP-

INNER cases, the input vectors are retrieved and read from

the corresponding TIP and INNER memories, respectively.

The result vector at node p (when it needs to be stored

for a NV operation), is stored in the INNER memory.

In analogy, a NV operation for the INNER-INNER case

would require an INNER memory with three memory

ports: two ports for reading the q and r vectors and a

third port for writing the p vector. To efficiently implement

the INNER-INNER case for NV (p, q, r are inner nodes)

using present FPGA technology that only provides two

ports per memory block, the p vector is temporarily stored

in a special memory. We denote this special memory,

which forms part of the TIP MEMORY, as EXTRA

space. At each clock cycle, two 4to1 multiplexers (see

Figure 3) are used to select the correct memory buses

B

A

node
inner

tip

4−tip group

C

virtual
root

Level 2

Level 1

Figure 4. Worst-case tree topology in terms of EXTRA space require-
ments.

with valid vector input data. The multiplexer selection

bits signal the corresponding TIP-TIP, TIP-INNER, and

INNER-INNER cases. The group of logic gates in the

center of Figure 3 implements the bit-wise operations

to compute the parsimony kernel (see Section III). An

additional 2to1 multiplexer is used to distinguish between

the two data buses that provide input to the second TIP

MEMORY port. One bus provides the DNA sequences of

the MSA during the memory initialization process while

the second bus provides ancestral states during NV and

EV operations if the EXTRA space of the TIP MEMORY

is used.

The size of the EXTRA space depends on the dimension

of the input dataset, that is, the number n of taxa in the

MSA and the number m of nucleotides per DNA sequence.

It also depends on the tree shape. Figure 4 illustrates the

worst-case tree in terms of EXTRA space requirements.

Fully balanced trees require maximum EXTRA space,

which amounts 50% of the memory required to store the

input tip sequences in TIP MEMORY. In a fully balanced

tree, for every group of 4 tips, one inner node needs to

be stored in EXTRA space. In Figure 4, the highlighted

group of 4 tips at Level 1 (tip level) has two parent

nodes/vectors at Level 2 (one level closer to the virtual

root). Vectors A and B (the direct ancestors of the tips),

can be stored in INNER MEMORY. Since both, A and

B, are inner vectors (stored in INNER MEMORY), their

common ancestor C must be stored in EXTRA space to

avoid a memory port conflict. In this worst case scenario,

every inner vector in the highlighted grey area of Figure 4

must be stored in EXTRA space. Decisions for writing

inner vectors to EXTRA space are orchestrated by an

appropriately adapted parsimonator version. Thus, a

dedicated, reconfigurable EXTRA space control unit is

not necessary. For a fully balanced tree with n tips, the

maximum number of inner nodes IN EX that need to

be stored in EXTRA space during a phylogenetic analysis

is given by the following equation:

IN EX =

{

n/2− 2 if n mod 4 = 0

(n+ 4− n mod 4)/2 − 2 if n mod 4 6= 0

B. Pipelined Datapath

The generic input command that must be issued to the

pipeline during a clock cycle to initiate parsimony com-

PA PB PC PD WRP SCORE

MEM

PRU PRU

REG

POPULATION COUNTER

.

. . . PRU ARRAY

ADDR GEN ADDR GEN ADDR GEN

STAGE
PRU

PORT
SEL

STAGE

STAGE
GEN

ADDR

STAGE

POP

SCORE ACCUMULATOR
STAGE

ACCUM
SCR

CNT
CNTRL

FSM

Q VEC ADDR R VEC ADDR P VEC ADDR SEL BITS Q/R SCR ADDR CMD

Figure 5. Top-level design of the pipelined architecture.

putations is highlighted at the bottom of Figure 5. Both

operations (NV and EV) require a set of four (two-byte

long) read addresses; they contain the start addresses of the

parsimony child vectors (Q VEC ADDR, R VEC ADDR)

and corresponding parsimony scores (Q SCR ADDR, R

SCR ADDR) of child nodes q and r. A NV operation

also requires two additional write addresses for storing

the parent vector p and the respective score at p.

The top-level design of the pipelined datapath has five

stages (see Figure 5). Read/write memory addresses are

initially generated by using 11-bit counters during the ad-

dress generation stage (ADDR GEN). In the next pipeline

stage (PORT SEL), the PA, PB, PC, and PD components

implement multiplexers and logic that decides to which

three (out of four) PRU memory ports the read/write

addresses will be sent. The WRP component generates

the write enable signal for the selected write port.

The PRU array comprises several parallel and com-

pletely independent PRUs. The number of PRUs deter-

mines the array size. All PRUs in the array receive

the same read/write addresses, write enable signal, and

selection bits to perform the same operation on differ-

ent parsimony vector entries (sites of the MSA). Each

PRU contains two memory components and logic. Since

the PRU array is a vector-like component (each PRU

operates independently), using only two 18Kb block

ram slices allows for tailoring the array size to the

available FPGA according to the number of unoccupied

memory blocks on the device. Therefore, we imple-

mented a program called FPGA MaxPars Gen (included

in FPGA MaxPars.tar.bz2) for generating VHDL wrapper

files. Thereby, one can instantiate PRU arrays with user-

defined length.

The POP CNT pipeline stage contains a population

counter (to count the number of bits set to 1) for the

computation of partial parsimony scores across alignment

sites (PRUs). If one regards the tip and inner memory

instances of the PRU array as two larger memory compo-

nents, each with depth of 2048 and an array-size dependent

memory line length, a partial score refers to the total

number of mutations across sites that can be stored in

a PRU array memory line (see Section IV-C for details on

the population counter).

Finally, in the SCR ACCUM stage, the parsimony score

is computed with three 32-bit adders. The SCORE MEM

memory is used to store intermediate scores (parsimony

scores for each inner node that defines a subtree). One

adder is used to calculate the sum of the input child node

scores at q and r. The scores for q and r are retrieved

from the SCORE MEM, based on the input SCR ADDR

addresses. The second adder/accumulator sums up the

partial scores that are produced by the population counter.

The last adder computes the final score by adding the

output of the accumulator to the sum of the scores at q

and r. For NV operations, the parsimony score is written

to SCORE MEM.

The size of SCORE MEM (2048 integers) is the upper

limit for the number n of organisms (DNA sequences)

our architecture can accommodate. Accordingly, this max-

imum number of 2048 organisms decreases proportionally

with the number of PRU array memory lines required by

each sequence. This number of PRU array memory lines

increases with the number m of MSA sites/columns.

C. Population Counter

The population counter is implemented as a tree of

adders with increasing width, that is, at each level of

the adder-tree the adders are one bit wider than the

previous level. The input bit-vector size for the first

level depends on the PRU array size. The stand-alone

FPGA MaxPars Gen software can be used to generate

a population counter with a user-defined size and la-

tency. Pipeline registers are optionally inserted as needed

between adder levels in the tree to alleviate the neg-

ative impact of a very large (deep) population counter

component on the overall operating clock frequency. To

the best of our knowledge, FPGA MaxPars Gen is the

only open-source population counter generator for FPGAs.

Because the latency of the population counter influences

the total latency of the parsimony architecture pipeline,

FPGA MaxPars Gen instantiates a shift register (in the

VHDL wrapper file) to synchronize the population count

computations with the rest of the system.

V. IMPLEMENTATION, VERIFICATION, AND RESULTS

We describe the verification of the reconfigurable ar-

chitecture in Section V-A. Then, we present a PC-FPGA

prototype system (Section V-B) and a performance evalu-

ation for a larger reconfigurable system (Section V-C).

A. Verification of the Parsimony Architecture

Initially, we modeled our architecture (including the

address assignment to EXTRA space) in parsimonator

using C. We replaced the standard NV and EV functions

(accounting for 99% of total execution time) by imple-

mentations that reflected our reconfigurable architecture

to assess and confirm the correctness of our approach.

Thereafter, the reconfigurable architecture was imple-

mented in VHDL and mapped on a Virtex 5 SX95T-

1 FPGA. We verified the correctness of the hardware

system by extensive post place and route simulations using

Table I
RESOURCES/PERFORMANCE OF VIRTEX 5 AND VIRTEX 6 SYSTEMS.

64-PRU System 512-PRU System

Device Virtex 5 SX95T Virtex 6 SX475T

Slice Registers 5,568(9%) 41,091(6%)

Slice LUTs 4,133(7%) 22,520(7%)

Occupied Slices 1,933(13%) 9,608(12%)

Block Rams (18Kb) 132(27%) 1,028(48%)

Frequency (MHz) 192.374 188.456

Modelsim 6.3f by Mentor Graphics and tests on an actual

chip using a HTG-V5-PCIE development board with a

Virtex 5 SX95T FPGA. Chipscope Pro Analyzer was used

to monitor the input and output ports of the design.

B. PC-FPGA Prototype System

After successful verification, a fully operational PC-

FPGA prototype system was designed to test this im-

plementation of parsimonator using actual biological

datasets on an actual board. We used the C interface of our

open-source PC ↔ FPGA communication platform [20]

available at http://opencores.org/project,pc fpga com to

transfer bit-encoded DNA sequences and issue 13-byte

long NV/EV commands to the board. On the FPGA side,

the DNA sequences were used to initialize the TIP MEM-

ORY, and the NV/EV commands to trigger computations.

The receiving background reader mechanism provided by

this platform was used to receive parsimony scores on

the PC side after an EV command had been issued to

the board. The FPGA MaxPars Gen program was used

to generate a PRU-array of size/width 64 as well as a

correctly sized population counter for the prototype sys-

tem, that is, 64 PRUs were placed in parallel allowing 128

alignment sites to be processed simultaneously (remember

that each PRU can compute the parsimony score for two

sites; see Section IV-A).

C. Results

To present a fair performance assessment for our accel-

erator architecture we created a high performance instance

of our architecture (using FPGA MaxPars Gen) with an

array of 512 PRUs and mapped it on a Virtex 6 SX475T-

2 FPGA. Furthermore, we vectorized parsimonator

with 256-bit wide AVX SIMD instructions. An evaluation

of the prototype and high performance systems regarding

resources and clock frequencies is provided in Table I.

Note that, the currently largest available FPGA with

respect to available block RAM slices (Virtex 7 VX865T)

can accommodate an array of 1800 PRUs and thus allows

for computing 3600 sites in parallel.

Table II shows execution times (in seconds) for real-

world biological datasets using the SSE3 and AVX ver-

sions of parsimonator (using one core of an Intel i7-

2600 CPU at 3.40GHz) and the reconfigurable architecture

with 512 PRUs (mapped on the Virtex 6 device). The

FPGA accelerator is up to 9.65 times faster than the

optimized software.

Table II
EXECUTION TIMES (IN SECONDS) FOR NV/EV INVOCATIONS.

Dataset Execution Times Speedup FPGA vs
#taxa-#sites SSE3 AVX FPGA SSE3 AVX

100-48965 1.48 0.91 0.15 10.12 6.22

125-16503 1.59 0.92 0.16 9.69 5.6

150-871 0.13 0.10 0.01 12.55 9.65

218-1318 0.40 0.26 0.04 9.08 5.9

354-224 0.24 0.21 0.04 6.41 5.61

500-759 0.74 0.52 0.06 11.56 8.12

VI. CONCLUSION

We have presented a reconfigurable architecture for

computing the parsimony function on evolutionary trees of

realistic size. The architecture is adapted to the computa-

tional requirements of modern parsimony search strategies

and has been demonstrated to work in a full PC-FPGA

setup, where the PC steers the computations on the board

by using a PC ↔ FPGA communication library. We

also demonstrate how, sometimes overarching expectations

with respect to speedups by FPGA-accelerated discrete

functions, can be alleviated by a close collaboration and

competition between SW and HW engineers and applica-

tion domain specialists. Using one of the fastest currently

available CPUs with 256-bit AVX instructions, we show

that, if the reference SW is properly optimized and the

capabilities of modern CPUs are rigorously exploited,

FPGAs are slower than expected or hoped for.

ACKNOWLEDGEMENTS

This paper is dedicated to the memory of Walter

M. Fitch. He was one of the pioneers of computational

phylogenetics and parsimony methods.

This work was partially funded under the auspices

of the Emmy-Noether program of the German Science

Foundation.

REFERENCES

[1] P. A. Goloboff, S. A. Catalano, J. M. Mirande, C. A. Szu-
mik, J. S. Arias, M. Källersjö, and J. S. Farris, “Phyloge-
netic analysis of 73060 taxa corroborates major eukaryotic
groups,” Cladistics, vol. 25, pp. 1–20, 2009.

[2] W. Fitch and E. Margoliash, “Construction of phylogenetic
trees,” Science, vol. 155, no. 3760, pp. 279–284, 1967.

[3] J. Felsenstein, “Evolutionary trees from DNA sequences: a
maximum likelihood approach,” J. Mol. Evol., vol. 17, pp.
368–376, 1981.

[4] S. Roch, “A Short Proof that Phylogenetic Tree Reconstruc-
tion by Maximum Likelihood Is Hard,” IEEE/ACM Trans.
on Comp. Biology and Bioinformatics, pp. 92–94, 2006.

[5] W. Day, D. Johnson, and D. Sankoff, “The computational
complexity of inferring rooted phylogenies by parsimony,”
Mathematical biosciences, vol. 81, no. 33-42, p. 299, 1986.

[6] T. Mak and K. Lam, “Embedded computation of maximum-
likelihood phylogeny inference using platform FPGA,” in
Proc. of IEEE CSB 2004, 2004, pp. 512–514.

[7] ——, “FPGA-Based Computation for Maximum Likeli-
hood Phylogenetic Tree Evaluation,” Lecture Notes in Com-
puter Science, pp. 1076–1079, 2004.

[8] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis,
“Exploring FPGAs for accelerating the phylogenetic likeli-
hood function,” in Proceedings of IPDPS 2009 (HICOMB),
Rome, Italy, 2009, pp. 1–8.

[9] N. Alachiotis, A. Stamatakis, E. Sotiriades, and A. Dollas,
“A reconfigurable architecture for the phylogenetic likeli-
hood function,” in FPL 2009. IEEE, 2009, pp. 674–678.

[10] N. Alachiotis and A. Stamatakis, “A generic and versatile
architecture for inference of evolutionary trees under maxi-
mum likelihood,” in Proc. Conf Signals, Systems and Com-
puters (ASILOMAR) Record of the Forty Fourth Asilomar
Conf, 2010, pp. 829–835.

[11] S. Zierke and J. Bakos, “FPGA acceleration of the phylo-
genetic likelihood function for Bayesian MCMC inference
methods,” BMC Bioinformatics, vol. 11, no. 1, p. 184, 2010.

[12] J. Davis, S. Akella, and P. Waddell, “Accelerating phy-
logenetics computing on the desktop: experiments with
executing UPGMA in programmable logic,” in Proceed-
ings of 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, vol. 2, 2004.

[13] J. Bakos, P. Elenis, and J. Tang, “FPGA Acceleration of
Phylogeny Reconstruction for Whole Genome Data,” in
Proceedings of the 7th IEEE International Conference on
Bioinformatics and Bioengineering, 2007, 2007, pp. 888–
895.

[14] S. Kasap and K. Benkrid, “A high performance FPGA-
based core for phylogenetic analysis with Maximum Parsi-
mony method,” in Field-Programmable Technology, 2009.
FPT 2009. International Conference on. IEEE, 2009, pp.
271–277.

[15] ——, “High Performance Phylogenetic Analysis With
Maximum Parsimony on Reconfigurable Hardware,” VLSI
Systems, IEEE Trans. on, no. 99, pp. 1–13, 2010.

[16] D. L. Swofford, PAUP∗: Phylogenetic analysis using par-
simony (∗ and other methods), version 4.0b10. Sinauer
Associates, 2002.

[17] D. Sankoff, “Minimal mutation trees of sequences,” SIAM.
J. Appl. Math., vol. 28, pp. 35–42, 1975.

[18] J. Felsenstein, “Phylip (phylogeny inference package) ver-
sion 3.6,” 2004, distributed by the author. Department of
Genome Sciences, University of Washington, Seattle.

[19] P. Goloboff, “Analyzing large data sets in reasonable times:
solution for composite optima,” Cladistics, vol. 15, pp.
415–428, 1999.

[20] N. Alachiotis, S. A. Berger, and A. Stamatakis, “Efficient
PC-FPGA Communication over Gigabit Ethernet,” in CIT,
2010, pp. 1727–1734.

