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Abstract. We address the problem of clustering large graph databases
according to scaffolds (i.e., large structural overlaps) that are shared
between cluster members. In previous work, an online algorithm was
proposed for this task that produces overlapping (non-disjoint) and non-
exhaustive clusterings. In this paper, we parallelize this algorithm to
take advantage of high-performance parallel hardware and further im-
prove the algorithm in three ways: a refined cluster membership test
based on a set abstraction of graphs, sorting graphs according to size,
to avoid cluster membership tests in the first place, and the definition
of a cluster representative once the cluster scaffold is unique, to avoid
cluster comparisons with all cluster members. In experiments on a large
database of chemical structures, we show that running times can be re-
duced by a large factor for one parameter setting used in previous work.
For harder parameter settings, it was possible to obtain results within
reasonable time for 300,000 structures, compared to 10,000 structures in
previous work. This shows that structural, scaffold-based clustering of
smaller libraries for virtual screening is already feasible.

1 Introduction

Structured databases in various application areas, such as chemistry, provide a
rich source of data that, in many cases, contain groups of structurally similar and
dissimilar objects. To detect such groups in databases of graphs, graph clustering
methods have been extensively investigated over the past few years. Basically,
there exist two complementary approaches to graph clustering [7]. The simpler
and more established one is to calculate a vectorial representation of the graphs
and use standard similarity or distance measures in combination with standard
clustering algorithms. The feature vector can be composed of properties of the
graph and / or of subgraph occurrences [5, 12]. Methods from this category have
been found to be highly efficient, but imply a loss of information with respect to
the graph topology. Moreover, a problem with vectorial graph representations
is that it is unclear what a good or even optimal vectorial representation is.
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The second approach to graph clustering is to use the structure of the graphs
directly [1, 6, 8–10], e.g., by computing the maximum common subgraph (MCS)
between a set of graphs. These techniques have the desirable property that the
calculated similarity measure is intuitive and can be visualized easily. However,
the efficiency and scalability of these methods is still an open problem.

In this paper, we address the problem of clustering large graph databases
according to scaffolds, i.e., large structural overlaps that are shared among all
cluster members. More precisely, we require the cluster members to share at least
one common subgraph that covers a specific fraction of the graphs in the cluster.
An important challenge in this endeavor is the scalability to large graph data
sets (of the order of 105 to 106 graphs). Graph databases such as the ones rep-
resenting chemical compounds routinely encompass several hundred thousand
graphs; thus, clustering methods that are able to explore and structure the vast
graph space are highly desirable. Clustering large databases has emerged as a
challenging research area with a large variety of applications, such as in the field
of virtual screening, where the task is to analyze large databases of chemical
compounds to identify possible drug candidates. By applying clustering tech-
niques it is, for example, possible to prestructure the chemical space, e.g., for
local modeling to capture the multi-mechanistic nature of many endpoints, the
rediscovery of analog series or visualization. The majority of structural (i.e.,
scaffold-based) graph-based clustering algorithms, involving e.g., the computa-
tion of the MCS, is hardly suitable for such data sets. Graph data sets covered in
related papers typically contain only several hundred graphs [1, 4, 6], and hardly
any effort has been spent on characterizing the performance of the clustering
algorithms. Only recently, a scaffold-based structural graph clustering algorithm
[8] has been shown to handle graph data sets of at least 10,000 graphs. As this
algorithm is still limited in performance, we present a parallel, scalable version
of this algorithm in this paper. The algorithm, called PSCG (parallel structural
clustering of graphs) in the following, is based on the idea of task partitioning
in conjunction with refined cluster membership tests. More precisely, we used
a set abstraction of graphs and a size-based clustering criterion to reduce the
number of expensive subgraph search computations, which are not affordable
exhaustively on large databases. Moreover, to avoid cluster comparisons with all
cluster members, which grow computationally more expensive with increasing
cluster size, we define a cluster representative for each cluster once a unique
cluster scaffold is found.

The remainder of the paper is organized as follows: In Section 2, we present
a few basic concepts and the sequential algorithm on which PSCG is based. In
Section 3, we describe PSCG in detail. Section 4 presents a description of the
data sets and experiments as well as an interpretation of the results. In Section
5, we give a conclusion.
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2 Background

2.1 Notation and Definitions

In the following, all graphs are assumed to be labeled, undirected graphs. To be
more precise, a graph and its subgraphs are defined as follows: A labeled graph
is represented as a 4-tuple g = (V,E, α, β), where V is a set of vertices and
E ⊆ V × V is a set of edges representing connections between all or some of the
vertices in V . α : V → L is a mapping that assigns labels to the vertices, and
β : V × V → L is a mapping that assigns labels to the edges. Given two labeled
graphs g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), g′ is a subgraph of g, (g′ ⊆ g) if:

– V ′ ⊆ V
– E′ ⊆ E
– ∀x ∈ V ′ : α′(x) = α(x)
– ∀(x, y) ∈ V ′ × V ′ : β′((x, y)) = β((x, y))

Given two arbitrary labeled graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2),
a common subgraph of g1 and g2, cs(g1, g2), is a graph g = (V,E, α, β) such that
there exists a subgraph isomorphism from g to g1 and from g to g2. This can be
generalized to sets of graphs. The set of common subgraphs of a set of graphs
{g1, ..., gn} is then denoted by cs({g1, ..., gn}). Moreover, given two graphs g1
and g2, a graph g is called a maximum common subgraph of g1 and g2 if g is a
common subgraph of g1 and g2 and there exists no other common subgraph of
g1 and g2 that has more vertices than g. Finally, we define the size of a graph
as the number of its vertices, i.e., |V |.

2.2 Problem Definition

Structural clustering is the problem of finding groups of graphs sharing some
structural similarity. Instances with similar graph structures are expected to be
in the same cluster provided that the common subgraphs match to a satisfac-
tory extent. Only connected subgraphs are considered as common subgraphs.
The similarity between graphs is defined with respect to some user-defined size
threshold. The threshold is set such that the common subgraphs shared among
a query graph and all cluster instances make up at least a certain proportion
of the size of each graph. A graph is assigned to a cluster provided that there
exists at least one such common subgraph whose size is equal or bigger than
the threshold. In this way, an object can simultaneously belong to multiple clus-
ters (overlapping clustering) if the size of at least one common subgraph with
these clusters is equal or bigger than the threshold. If an object does not share a
common subgraph with any cluster that meets the threshold, this object is not
included in any cluster (non-exhaustive clustering). Figure 1 provides a sample
clustering output for a data set of molecular graphs. The figure illustrates the
overlapping and non-exhaustive character of the structural clustering algorithm.

Formally, we frame the problem of structural clustering as follows. Given a set
of graph objectsX = {x1, ..., xn}, we need to assign them into clusters which may
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Fig. 1. Example output of PSCG on a subset of the RepDose database (http://www.
fraunhofer-repdose.de) for θ = 0.7.

overlap with each other. In clustering these objects, one objective is considered:
to maximize the average number of objects contained in a cluster, such that
at any time for each cluster C there exists at least one common subgraph that
makes up a specific proportion, θ, of the size of each cluster member. Considering
the state of a cluster C = {x1, ..., xm}3 at any point in time, the criterion can
formally be defined as:

∃ s ∈ cs({x1, ..., xm})∀xi ∈ C : |s| ≥ θ|xi| (1)

where s is a subgraph and θ ∈ [0, 1] is a user-defined similarity coefficient. Ac-
cording to this goal, a minimum threshold for the size of the common subgraphs
shared by the query graph xm+1 and the graphs in cluster C can be defined as

minSize = θ max(|xmax|, |xm+1|), (2)

where θ ∈ [0, 1] and xmax is the largest graph instance in the cluster. To obtain
meaningful and interpretable results, the minimum size of a graph considered for
cluster membership is further constrained by a minGraphSize threshold. Only
graphs whose size is greater than minGraphSize are considered for clustering.
Thus, the identification of the general cluster scaffold will not be impeded by
the presence of a few graph structures whose scaffold is much smaller than the
one the majority of the cluster members share. This will be especially useful in
real-world applications that often contain small fragments.

2.3 Sequential Structural Clustering

The proposed parallel clustering approach PSCG extends and improves a struc-
tural graph clustering approach proposed recently [8]. In short, the algorithm
works as follows. LetminGraphSize be the minimum threshold for the graph size
and minSize be the minimum threshold for the size of the common subgraphs
3 In slight abuse of notation, we use the same indices as above.
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specified by the user and defined in Equation 2. In the first step, an initial cluster
is created containing the first graph object that is larger than minGraphSize.
In the following steps, each instance is compared against all existing clusters.
In case the query instance meets the minGraphSize threshold and shares at
least one common subgraph with one or more clusters that meets the cluster
criterion in Equation 2, the instance is added to the respective cluster. Unlike
many traditional clustering algorithms, a graph object is allowed to belong to
no cluster, since it is possible that an object is not similar to any cluster. In this
case, a new singleton cluster is created containing the query graph instance.

For computing common subgraphs, a modified version of the graph mining
algorithm gSpan [11] that mines frequent subgraphs in a database of graphs sat-
isfying a given minimum frequency constraint is used. The structural clustering
approach requires a minimum support threshold of minSup = 100% in a set of
graphs, i.e., all common subgraphs have to be embedded in all cluster members.
For experiments with molecular graph data, gSpan′, an optimization of gSpan for
mining molecular databases (http://wwwkramer.in.tum.de/projects/gSpan.
tgz) is used. As the only interest lies in the determination of at least one com-
mon subgraph that meets the minimum size threshold defined in Equation 2, the
graph mining algorithm gSpan [11] was modified, to mine frequent subgraphs
with a maximum size of minSize. More specifically, once the size of the current
subgraph reaches minSize, it will not be grown any more and search terminates.
In this way, the computation of all frequent common subgraphs can be avoided,
thus achieving a substantial performance improvement.

3 Parallel Structural Graph Clustering

In this section, we present enhancements and optimizations of the structural
clustering algorithm proposed by Seeland et al. [8] that enable PSCG to handle
large data sets. The main idea of PSCG is to partition the clustering task into
independent tasks which are distributed among a set of processes, i.e., each
process is responsible for one cluster. The motivation behind partitioning the
set of clusters instead of the graph data set is that each process can compare
all relevant graph objects, i.e., all graph objects with an index greater than the
index of the graph that initiated the singleton cluster, against the assigned cluster
without the need to wait for the intermediate results of the other processes. To
achieve this, we need a master process which is responsible for managing the
cluster results of all processes.

We adopt the master-worker paradigm to implement PSCG. The master-
worker programming model consists of two kinds of entities: a single master and
multiple workers. The master is responsible for decomposing a clustering problem
into a subset of clustering tasks and distributing these tasks among a farm of
workers (by putting the tasks in a shared queue), as well as for gathering the
partial results in order to produce the final computation result. A queue, shared
between the master and the workers, is used to represent the shared space where
the pending clusters reside. Each worker is responsible for only one cluster at any
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Algorithm 1 Master

1: stable sort(graph[]) //see Section 3.2
2: for (i← 0, num procs− 1) do
3: w ← new Worker()
4: w.start()
5: end for
6: first = 0
7: while |graph[first]| < minGraphSize do
8: first+ +;
9: end while

10: c← new Cluster(graph[first])
11: queue.add(c)
12: for (i← first+ 1, |graph[]| − 1) do
13: graph[i].nrClusterComparisons+ +
14: end for
15: while (true) do
16: if (!workers.active && queue.isEmpty) then
17: for (i← 0, num procs− 1) do
18: w.terminate()
19: end for
20: break
21: end if
22: end while

point in time, independently computing one iteration: It pulls a clustering task
(input) from the queue, processes the task by comparing all relevant graphs in
the graph database against the cluster, and sends the result, i.e., the processed
cluster, back to the master (output).

One of the advantages of using this pattern is that the algorithm is based on
a dynamic load balancing of the cluster queue, i.e., the algorithm automatically
balances the load. This is possible due to the adoption of a receiver-initiated
dynamic load balancing approach based on polling: the work set is shared, and
the workers continue to pull work from the set until there is no more work to
be done. A static load balancing policy is not adequate for our algorithm as the
work load is not known in advance and cannot be estimated easily.

In the following sections, we describe the parallel structural clustering algo-
rithm PSCG in more detail.

3.1 Cluster Comparisons

Let minGraphSize be the minimum threshold for the graph size and minSize
be the minimum threshold for the size of the common subgraphs specified by
the user and defined in Equation 2. At the beginning of algorithmic execution,
we start with an empty set of clusters. In the first step, the master initiates the
computation by creating an initial cluster containing the first graph object that
is larger than minGraphSize (Algorithm 1, line 6-10). The master process is re-
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Algorithm 2 Worker

1: while (!terminationSignal) do
2: c← queue.getCluster()
3: if (c != null) then
4: PSCG(c, graphStartIdx, θ,minGraphSize)
5: end if
6: end while
7: w.terminate()

Algorithm 3 Structural Clustering
1: procedure PSCG(c,graphStartIdx,θ, minGraphSize)
2: graphEndIdx← idx(graph : |graph| ≤ θ · c.min)] //see Section 3.2
3: for (j ← graphStartIdx, graphEndIdx) do
4: if (graph[j] ≥ minGraphSize) then
5: hasCluster ← false
6: if (s(fffgraph[j], fffc) < θmax(|graph[j]|, |c.min|)) then //see Section 3.3
7: MISMATCH(c.id, j, j + 1)
8: continue
9: else

10: minSize← θ ·max(|graph[j]|, |c.max|)
11: if (!UniqueScaffold) then //see Section 3.4
12: minSup← |c|+ 1
13: ret← gSpan′′′(graph[j] ∪ c.graphs,minSup,minSize)
14: else
15: minSup← 2
16: ret← gSpan′′(graph[j] ∪ c.scaffold,minSup,minSize)
17: end if
18: if (ret = 1) then
19: c[last+ 1]← graph[j]
20: hasCluster ← true
21: end if
22: end if
23: if (hasCluster = false) then
24: MISMATCH(c.id, j, j + 1)
25: end if
26: end if
27: end for
28: if (graphEndIdx+ 1 < |graph[]|)) then
29: MISMATCH(c.id, graphEndIdx+ 1, |graph[]|)
30: end if
31: results.add(c)
32: end procedure

sponsible for putting the initial cluster in the cluster queue (line 11) which stores
cluster objects that are exchanged with the workers. Subsequently, the master
increases the number of necessary cluster comparisons for all subsequent graphs
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Algorithm 4 Maintainance of Cluster Membership Information

1: procedure mismatch(cId,startId,endId)
2: for (graphId← startId, endId− 1) do
3: graph[graphId].nrMismatches+ +
4: if (graph[graphId].nrCluComp = graph[graphId].nrMism) then
5: c← new Cluster(graph[graphId])
6: queue.add(c)
7: for (i← graphId+ 1, |graph[]| − 1) do
8: graph[i].nrClusterComparisons+ +
9: end for

10: end if
11: end for
12: end procedure

(explained in more detail later in this section) (line 12-13). In the following steps,
idle workers continue to pull one cluster at a time from the queue (Algorithm 2,
line 2) and perform clustering (line 4) by comparing all graph instances in the
graph database that lie within a specified index range (which will be explained
in more detail in Section 3.2) against the assigned cluster (Algorithm 3, line
3). In case a query instance meets the minGraphSize threshold and shares at
least one common subgraph with the cluster that meets the cluster criterion in
Equation 2 (line 18), the instance is added to the respective cluster (line 19).
In case a graph object does not belong to any cluster, a new cluster is created.
In contrast to the sequential clustering setting, however, in the parallel setting
the information whether a graph belongs to a cluster is distributed over the set
of workers. Since a new cluster can only be created if it is not assigned to any
existing cluster, the master needs to maintain the cluster membership informa-
tion for all graph instances. In particular, for each graph we need to maintain
two cluster membership parameters: the number of necessary cluster compar-
isons as well as the numbers of clusters the graph does not fit into (denoted as
the number of cluster mismatches). If a graph does not belong to a cluster the
worker forwards the non-membership information to the master (Algorithm 3,

Fig. 2. Graphical illustration of PSCG on a sample data set (θ = 0.8).
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Fig. 3. Flow charts of the parallel structural clustering algorithm PSCG.

line 24). Note, that due to the overlapping nature of the clustering algorithm, a
graph can be directly assigned to a cluster in case it meets the cluster criterion
without informing the master. Each time a worker reports a cluster mismatch
for a graph, the master first increases the mismatch parameter for the graph
(Algorithm 4, line 2-3) and then checks the two cluster membership parameters.
If the number of necessary cluster comparisons is equal to the number of cluster
mismatches (line 4), suggesting that the corresponding graph does not belong
to any cluster, a new cluster is created (line 5). The master puts the cluster
in the task queue (line 6) and increases the cluster comparison parameter for
all subsequent graphs in the graph data set (line 7-8). A graphical illustration
of the clustering process on a sample data set of molecular graphs is shown in
Figure 2, where large circles represent clusters and the single structures outside
denote singleton clusters. The table contains the cluster membership parameters
maintained by the master. Once a worker is done with an iteration, the resulting
cluster is added to the result queue managed by the master (Algorithm 3, line
31). Figure 3 illustrates the master-worker paradigm of PSCG in a flow chart.

As in the sequential clustering algorithm, we use gSpan′′ for computing com-
mon subgraphs. Given that pairwise subgraph similarity computation is very
expensive, it would be highly desirable to reduce the number of subgraph com-
putations. Therefore, we introduced the following cluster exclusion criteria to
avoid unnecessary calls to the gSpan′′ algorithm in the first place: a refined clus-
ter membership test based on node feature vectors of graphs, and a clustering
exclusion criterion based on the size of graph objects which requires the graph
data set to be sorted according to size. These criteria are used to perform a search
space pruning on the actual clustering. The aim of search space pruning is to
reduce the number of graph candidates in the database that need to undergo an
expensive, full fledged graph matching process. Further, to reduce gSpan running
times for larger clusters, we define a cluster representative for each cluster com-
posed of the common cluster scaffold once this scaffold is unique and thus also
minimal. In the following three subsections, we describe the employed cluster
exclusion criteria and the intuition behind the definition of the cluster repre-
sentative in more detail. The impact of these algorithmic improvements will be
investigated in Section 4.
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3.2 Size based Exclusion Criterion

The cluster criterion defined in Equation 2 constrains the set of graphs being
considered for clustering. More precisely, only graphs in a certain size range are
considered for comparison with a specific cluster, i.e., graphs whose sizes lie in
the range [dθxmaxe, b 1θxminc], where xmin is the smallest and xmax is the largest
graph instance in the cluster. The lower bound of the size range ensures that only
graph instances that are equal to or larger than the minimum required size for
at least one common subgraph, minSize, are considered for cluster membership.
This is necessary since at any point in time at least one common subgraph should
make up a proportion θ of the size of each cluster member. The upper bound
excludes query instances that are larger than minSize and thus would break up
an existing cluster. Incorporating this information in the clustering process would
give us the possibility to avoid comparing a cluster to the complete database.

To effectively employ the size based criterion, we sort the data set in increas-
ing order of graph size. Thus, we do not need to compare the subsequent graphs
against a cluster, once a query graph exceeds the upper bound of the size range
(see Figure 3(b)). To preserve the incremental character (i.e., each graph in the
graph database is only processed once by comparing it against all existing clus-
ters) of the structural clustering algorithm [8], we need to make sure that the
graph index corresponding to the lower bound is greater than the index following
the index of the graph instance that initiated the assigned singleton cluster. How-
ever, due to the ordering of the data set by size, the graph index corresponding to
the lower bound is always equal to or smaller than the index of the graph that ini-
tiated the singleton cluster. Thus, the graph indices that are considered for com-
parison against a cluster lie in the range [idx(xmin) + 1, idx(x : |x| ≤ b 1θxminc)],
where xmin is the smallest graph in the cluster. Due to the ordering of the data
set, this graph corresponds to the graph that initiated the clustering. Figure
4 illustrates the use of the size based exlusion criterion during the clustering
process on a data set of eight molecular graphs.

Fig. 4. Example use of the size based cluster exclusion criterion on a data set of
chemical compounds containing eight graphs (θ = 0.5).
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3.3 Exclusion Criterion based on Node Feature Vectors

The second clustering exclusion criterion is based on a set abstraction of graphs,
i.e., a numerical feature vector representing the number of node types in a graph.
The underlying idea is that for two graphs the overlapping node set represents an
upper bound for the size of the maximum common subgraph. Thus, given a query
instance, we can skip the common subgraph computation with a cluster if the size
of the overlapping node set of the query graph and the cluster representantive
is smaller than minSize.

Formally, during the preprocessing phase of structural clustering, we repre-
sent each graph gi by a numerical feature vector fffgi = (f1

gi
, .., fngi

) corresponding
to a set of vertex types l1, ..., ln. Each entry in the feature vector records the
number of a specific vertex type occuring in the respective graph. Let fkgi

denote
the numerical feature associated with the vertex type vk. Each cluster Cj is rep-
resented by a vector fffCj = (f1

Cj
, ..., fnCj

) defined in terms of the overlap of the
feature vectors of the instances in that cluster, i.e., the common vertex type set
shared by all cluster instances. The similarity s between fffgi

and fffCj
is computed

by summing up the minimum of each pair of feature vector components

s(fffgi
, fffCj

) =
∑
k

(min({fffkgi
∈ fffgi

} ∪ {fffkCj
∈ fffCj

})) (3)

representing an upper bound on the size of the maximum common subgraph
(Algorithm 3, line 6). If the similarity s(fffgi

, fffCj
) is lower than the minimum

threshold for the size of the common subgraphs, minSize (Equation 2), i.e.,
s(fffgi , fffCj ) < minSize, we omit the computation of the common subgraphs,
report the cluster mismatch to the master (line 7) and continue with the next
cluster comparison (line 8). In this way, we eliminate graphs with a limited
degree of resemblance to the target cluster, and increase the overall speed of the
algorithm. Figure 5 shows a sample application of the feature vector criterion.
In this example, the query graph xm+1 is compared against a cluster containing
two graphs. As the similarity between the node feature vector of the query graph
and the cluster is lower than minSize, the query graph is not considered for the
cluster membership test, i.e., the computation of the common subgraphs can be
omitted.

Fig. 5. Example use of the feature vector based cluster exclusion criterion (θ = 0.6).
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3.4 Definition of a Cluster Representative

As mentioned in Section 2.3, the structural clustering algorithm limits subgraph
mining to the search of one common subgraph that satisfies the minimum size
threshold, minSize to avoid the computation of all frequent common subgraphs.
This limitation forces us to compare each query graph against all cluster mem-
bers which may have a remarkable impact on the runtime of gSpan, in particular
for larger clusters. To reduce running times, we define a cluster representative for
each cluster once all cluster members share a unique cluster scaffold, i.e., the min-
imum required common subgraph is the only common subgraph all cluster mem-
bers have in common. Since in the structural clustering algorithm [8] subgraph
mining is terminated once a common subgraph is found that satisfies minSize,
the existence of further common subgraphs is unknown. Therfore, we need to go
one level deeper in the subgraph mining process and check if there exists at least
another common subgraph with size equal to or greater than minSize. In the
pseudocode, this modification of gSpan is called gSpan′′′ (Algorithm 3, line 13).
As soon as all graphs in a cluster share no more than one common subgraph,
this unique subgraph is used as the cluster representative. In the following, all
subsequent query graphs are compared against the cluster representative instead
of comparing it against all graphs in the cluster (line 15-16). Further, subgraph
mining is terminated as soon as a common subgraph of size minSize is found
that is covered by the query graph and the cluster representative, i.e., gSpan′′ is
used. Note, that the reason for not defining a cluster representative before the
existence of a unique cluster scaffold is due to the following two reasons. First,
there may exist at least another common subgraph of size minSize. By using
the first common subgraph found as cluster representative, it may be the case
that the query graph and the cluster representative share a common subgraph
of size minSize that is not the first common subgraph. In this case, by mistake
the query graph would not be assigned to the cluster. Second, there may exist
larger subgraphs. By ignoring the existence of these subgraphs and using the
first common subgraph found as cluster representative, it may be the case that
the minSize threshold is smaller than the size of the common subgraph shared
by the query graph and the cluster representative. Thus, the query graph would
not be assigned to the cluster even if there exist larger common subgraphs that
fulfill the size threshold.

4 Experimental Results

To evaluate the efficiency of our parallel structural clustering algorithm PSCG,
introduced in Section 3, we conducted several experiments on several publicly
available data sets of molecular graphs. In this section, we describe the data sets,
the experimental set-up and the results.

4.1 Test Environment and Data Sets

The clusterings on the data sets containing up to 200,000 graphs were carried
out on a SUN x4600 system with 32 AMD Opteron CPU cores (8 CPU sock-
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ets with 4 cpu cores) using the multi-threaded version of the algorithm. The
processor in each node runs at 2.5 GHz with 2 GB of main memory. The clus-
terings on the data set containing 300,000 structures were carried out using
the MPI parallelized version of the algorithm. Here, the compute cluster con-
sists of 2016 AMD Opteron (Magny-Cours) CPU cores (42 Dell R815 nodes
with 48 cpu cores and 128-256 GB main memory) and Qlogic infiniband in-
terconnects. The algorithm was implemented in C++ using the boost libraries
(www.boost.org) for multi-threading support. For the experiments, we employed
the chemical domain as our application area by using real data sets of molecular
graphs. The first data set contains the first 10,000 structures of the NCI anti-
HIV database (http://dtp.nci.nih.gov/docs/aids/aids_data.html) which
contains 36,255 compounds. The second data set, ChemDB, contains nearly 5 M
commercially available small molecules [2, 3]. We created data sets sized from
100,000 to 300,000 graphs from this data set using random sampling.

4.2 Performance Evaluation

We investigated the runtime performance of PSCG for different numbers of pro-
cessors (1, 2, 4, 8, 16 and 32) and different values of θ using the first 10,000
graph structures from the NCI anti-HIV database. The runtime performance of
PSCG was evaluated according to the speedup factor. Speedup (S) is defined as
a ratio of the time taken in running the sequential algorithm (Ts) to the time
taken in running the parallel algorithm (Tp) with P processors, i.e., S = Ts

Tp
.

Figure 6 shows the execution time and the speedup for different values of
θ. The results indicate that our algorithm scales well with the number of pro-
cessors and has a good speedup which is close to linear for certain parameter
settings, i.e., for smaller values of θ. For larger similarity coefficients, there is
a higher number of computationally more demanding cluster comparisons, es-
pecially at the end of the clustering when the graphs become larger and the
runtime degenerates.
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Fig. 6. (a) Execution time and (b) speedup of PSCG on the first 10,000 graphs of the
NCI anti-HIV data set.
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4.3 Effects of Algorithm Improvements

We investigated the impact of the algorithm improvements presented in Section
3.2, 3.3 and 3.4 on the performance of PSCG. For this, we ran the algorithm
on the NCI anti-HIV data set with 32 processors using (i) no optimizations,
(ii) only the size based exclusion criterion, (iii) only the feature vector based
exclusion criterion, (iv) both the size and feature vector based criteria and (v)
all optimizations including the definition of a cluster scaffold once it is unique.
Figure 7 shows the runtime reduction and an overview of the relative frequency
of both exclusion criteria as well as the frequency of gSpan calls. The results in-
dicate that significant performance improvements, especially for θ ≤ 0.5, can be
achieved with the application of the cluster exclusion criteria and the definition
of a cluster scaffold.
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Fig. 7. a) Runtime reduction due to algorithm improvements and b) relative frequency
of size-based and feature vector based exclusion criterion and number of gSpan calls.

4.4 Comparison to Sequential Structural Clustering

We compared the runtime performance of the sequential structural clustering
algorithm [8] with PSCG on the first 10,000 structures of the NCI anti-HIV
data set. For accurate comparison, we used the same experimental setup. We
only show the experimental results for θ ∈ [0.2, 0.5], since for θ ≥ 0.5, the se-
quential algorithm did not terminate within a certain timeout period. Table 1
shows the runtime performance of both clustering versions. The runtime advan-
tage of PSCG over the sequential clustering version is clear, showing improved
computation efficiency by factors of 300 fold to 1900 fold for PSCG. The rea-
sons for this can be explained by the following improvements in PSCG. First,
the clustering task is partitioned into independent tasks which are distributed
among a set of workers. Each worker compares the graph structures in the data
set against the assigned cluster without the need to wait for the intermediate
results of the other processes. Second, we introduced two clustering exclusion
criteria which reduce the number of cluster membership tests. Third, we defined
a cluster representative once the scaffold of a cluster is unique, to avoid cluster
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comparisons with all cluster members. Fourth, we reduced the invocation over-
head of the individual gSpan runs. This optimization is especially efficient for
gSpan runs with low overall runtimes.

Table 1. Runtime (in sec) of the sequential clustering version vs. PSCG on the first
10,000 graphs of the NCI anti-HIV data set for different values of θ.

θ 0.2 0.3 0.4 0.5

tseq 747,000 1,068,420 1,434,780 2,087,280
tpar 396 1,244 3,394 6,235

4.5 Experiments on Large Graph Data Sets

We tested PSCG on three data sets sampled from the ChemDB data set contain-
ing 100,000, 200,000 and 300,000 graphs respectively. For the experiments, we
used 32 CPUs for the data sets with 100,000 and 200,000 graphs. For the data
set containing 300,000 graphs we used 96 CPUs for θ = 0.4. For θ = 0.6, we used
96 (48) CPUs to cluster the first (second) half of the data set. The rationale for
the change in the CPU number is that the parallel efficiency of the algorithm can
change over the runtime of the algorithm (i.e., towards the end a large number of
workers may be idle constantly). The MPI version contains a checkpoint/restart
facility which allowed us to adjust the number of used CPU cores to account for
this by manually balancing the workload on the cluster. Tables 2 and 3 show the
runtime performance as well as the number of created clusters on the sampled
data sets for θ = 0.4 and θ = 0.6 using all three previously described algorithmic
improvements.

Table 2. Runtime (in sec) for the sam-
pled data sets.

|D| θ = 0.4 θ = 0.6

100,000 31,103 • 67,563 •
200,000 122,204 • 349,568 •
300,000 610,577 ◦ 1,163,761 ?

Table 3. Number of clusters for the sam-
pled data sets.

|D| θ = 0.4 θ = 0.6

100,000 4,112 16,295
200,000 6,096 25,685
300,000 9,811 38,775

•: 32 processors ◦: 96 processors ?: first half: 96 processors, second half: 48 processors

5 Conclusion

In this paper, we presented PSCG, a parallel and improved version of a recently
proposed structural graph clustering algorithm [8]. PSCG uses a task partition-
ing approach and makes use of two clustering exclusion criteria to reduce cluster
membership tests. Further, to reduce gSpan running times for larger clusters, we
define a cluster representative for each cluster composed of the common cluster
scaffold once this scaffold is unique. To study the effectiveness of our proposed al-
gorithm for clustering large data sets, we conducted extensive experiments. The
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experimental results suggest that the algorithm scales well with the increasing
size of the data and, for certain parameter settings, speeds up nearly linearly
with the increasing number of processors. For real world data sets, this algorithm
is able to handle a much greater number of graph objects compared to previ-
ously proposed structure-based clustering algorithms. Given these performance
improvements, our algorithm should already be applicable to the large structure
databases from virtual screening.
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