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Abstract: The revolution in wet-lab sequencing techniques that has given rise to a plethora of whole-genome or whole-
transcriptome sequencing projects, often targeting 50 up to 1000 species, poses new challenges for efficiently
computing the phylogenetic likelihood function both for phylogenetic inference and statistical post-analysis
purposes. The phylogenetic likelihood function as deployed in maximum likelihood and Bayesian inference
programs consumes the vast majority of computational resources, that is, memory and CPU time. Here, we
introduce and implement a novel, general, and versatile concept to trade memory consumption for additional
computations in the likelihood function which exhibits a surprisingly small impact on overall execution times.
When trading 50% of the required RAM for additional computations, the average execution time increase
because of additional computations amounts to only 15%. We demonstrate that, for a phylogeny withn
species onlylog(n)+ 2 memory space is required for computing the likelihood. This is a promising result
given the exponential growth of molecular datasets.

1 Introduction

The rapid accumulation of molecular sequence data
that is driven by novel wet-lab techniques poses new
challenges regarding the design of programs for phy-
logenetic inference that rely on computing the Phylo-
genetic Likelihood Function (PLF) for phylogenetic
inference or statistical post-analysis. For instance, we
are currently involved in two large-scale sequencing
efforts aimed at obtaining, whole genome data for
approximately 150 species and whole transcriptome
data for approximately 1000 species1.

In all popular Maximum Likelihood (ML) and
Bayesian phylogenetic inference programs, the PLF
dominates both, the overall execution timeas well
as the memory requirements by typically 85% -
95% (Stamatakis and Ott, 2008).

Based on our interactions with the RAxML user
community, we find that, memory shortages are in-
creasingly becoming a problem and representthe
main limiting factor for large-scale phylogenetic anal-
yses, especially at the Genome level. At the same
time, the amount of available genomic data is growing

1Because of non-disclosure agreements we can not pro-
vide further details about these projects at present.

at a faster pace than RAM (Random Access Mem-
ory) sizes and RAM access speeds. For instance, to
compute the likelihood on a simulated DNA align-
ment with 1,481 species and 20,000,000 sites (cor-
responding roughly to the 20,000 genes in the hu-
man genome) on a single tree topology under a simple
statistical model of nucleotide substitution within 48
hours, 1TB of memory and a total of 672 cores are
required.

We have already assessed some potential solutions
to this problem in previous work:

1. Single Precision: Deploying single precision
arithmetics that can reduce memory requirements
by 50% but can potentially induce numerical in-
stability, especially on datasets with more than
1000 taxa (Berger and Stamatakis, 2010).

2. Gappy Alignments: Novel algorithmic solutions
which rely on dataset-specific properties, that is,
their efficiency/applicability depends on the spe-
cific properties of the Multiple Sequence Align-
ment (MSA) that is used as input (Stamatakis and
Alachiotis, 2010). In particular, these algorithmic
approaches do not work on multi-gene datasets
that do not contain enough missing data on a per-
gene basis, that is, when gene sequences for a



certain number of taxa under study are not avail-
able. In other words, these approaches are not ap-
plicable to emerging, dense whole-genome MSAs
without missing data.

3. Out-Of-Core: We recently introduced a gen-
erally applicable method for saving memory,
that does not rely on MSA-specific characteris-
tics. We evaluated an out-of-core (frequently
also called external memory algorithm) approach
that reduces RAM requirements by moving data
back and forth between the RAM and the
disk (Izquierdo-Carrasco and Stamatakis, 2011).
However, the increase of at least one order of
magnitude in overall execution times because of
slow read/write operations to/from disk does not
yield this approach practical, even when a high
performance parallel file system is used.

Here, we introduce a novel and significantly more
efficient method that is based on trading computations
(running time) for memory. The method is completely
independent from the MSA structure and is therefore
particularly useful for reducing RAM requirements
of “dense” whole-genome alignments. Moreover, it
can be combined with thesingle precisionandgappy
alignment memory saving approaches (see above) to
yield even further savings. When reducing the amount
of available RAM to 50% of the total RAM required
for computing the likelihood on a tree for a given
MSA, we obtain a respective slowdown (because of
additional (re-)computations) of only 15%. This rep-
resents a relatively small run-time increase that most
end-users will not even notice. On the other hand,
users will notice when their analyses crash because
they have run out of RAM or the OS (operating sys-
tem) starts paging.

The remainder of this paper is organized as fol-
lows: We briefly review related work in Section 2.
In Section 3 we describe the underlying idea for
the memory saving approach, demonstrate that only
log(n) + 2 vectors are required, and introduce two
vector replacement strategies. In Section 4 we de-
scribe the experimental setup and provide correspond-
ing results. We conclude and discuss directions of fu-
ture work in Section 5.

2 Related Work

One common approach for reducing memory require-
ments are out-of-core algorithms. These are specif-
ically designed to minimize the I/O overhead via
explicit, application-specific, data placement control
and movement. Out-of-core algorithms mostly aim at

optimizing data movement between disk and RAM.
A comprehensive review of work on out-of-core al-
gorithms can be found in (Vitter, 2008). In phylo-
genetics, out-of-core algorithms have been applied to
Neighbor-Joining (Wheeler, 2009; Martin Simonsen
and Pedersen, ). Moreover, we recently introduced
a generic out-of-core implementation for PLF com-
putations (Izquierdo-Carrasco and Stamatakis, 2011).
As already mentioned, the performance of our out-
of-core implementation was rather disappointing and
is therefore not applicable to likelihood-based infer-
ence on dense whole-genome alignments. Nonethe-
less, our approach was significantly more efficient
than the paging strategy of the OS.

The term time-memory trade-off engineering
refers to situations/approaches where memory re-
quirements/utilization is reduced at the cost of ad-
ditional (re-)computations, that is, at the expense of
increased run time. This trade-off engineering ap-
proach has been applied in diverse fields such as lan-
guage recognition (Dri and Galil, 1984), cryptogra-
phy (Barkan et al., 2006), and packet scheduling (Xu
and Lipton, 2005).

We are not aware of any applications of or exper-
iments with time-memory trade-off engineering ap-
proaches in the field of computational phylogenetics.

3 Recomputation of Ancestral
Probability Vectors

3.1 PLF Memory Requirements

A detailed discussion on PLF Memory requirements
is provided in (Izquierdo-Carrasco and Stamatakis,
2011). We include a part of this discussion, that is
also relevant for the work presented here. The PLF
is defined on unrooted binary trees. Then extant
species/organisms of the MSA under study are lo-
cated at the tips of the tree, whereas then− 2 in-
ner nodes represent extinct common ancestors. The
molecular sequence data in the MSA that has a length
of ssites (alignment columns) is located at the tips of
the tree. The memory requirements for storing those
n tip vectors of lengths is not problematic, because
one 32-bit integer is sufficient to store, for instance, 8
nucleotides when ambiguous DNA character encod-
ing (requiring 4 bits to store one nucleotide) is used.
Hence, for the aforementioned large dataset (1,481
species, 20,000,000 sites) only 13GB are required to
store the actual sequence data compared to 1 TB for
storing ancestral probability vectors.

Hence, the memory requirements of the PLF are



dominated by the space for storing the ancestral prob-
ability vectors that are located at the ancestral (inner)
nodes of the tree. Depending on the PLF implemen-
tation, at least one such vector (a total ofn−2) will
need to be stored per ancestral node. For each align-
ment sitei, i = 1...s, an ancestral probability vector
needs to hold the data for the probability of observing
anA, C, G or T. Thus, under double precision arith-
metics and for DNA data a total of(n−2)·8·4·sbytes
is required for the most simple statistical model of nu-
cleotide substitution. When the less simplistic, stan-
dardΓ model of rate heterogeneity (Yang, 1994) with
4 discrete rates is deployed, this number increases by
a factor of four ((n−2) · 8 · 16· s), since we need to
store 16 probabilities for each alignment sitei. Fur-
thermore, if protein data is used (that has 20 instead of
4 states) in conjunction with theΓ model of rate het-
erogeneity, the memory requirements for storing an-
cestral probability vectors increase to(n−2) ·8·80·s
bytes.

To obtain the likelihood of a given, fixed tree, the
PLF performs a post-order tree traversal that starts at
a virtual root. Such a virtual root can be placed ar-
bitrarily into any branch of the unrooted tree without
changing the overall likelihood of the tree. By means
of the post-order tree traversal, the ancestral probabil-
ity vectors are computed bottom-up from the leaves
toward the virtual root.

For a more detailed description of PLF computa-
tions and efficient PLF implementations please refer
to (Stamatakis, 2011). For understanding the memory
access pattern during the post-order traversal, let us
consider equation (Felsenstein, 1981) of the Felsen-
stein pruning algorithm.

This equation computes the ancestral probability

vector entry~L(p)
A for observing the nucleotideA at site

i of a parent nodep, with two child nodesl andr given
the respective branch lengthsbl and br , the corre-
sponding transition probability matricesP(bl ), P(br),
and the probability vectors of the children~L(l),~L(r):

~L(p)
A (i) =

(

T

∑
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In order to computeL(p)
A (i), we do not necessarily

need to immediately have available in memory vec-

torsL(l)
S (i) andL(r)

S (i), since they can be obtained by a
recursive descent (a post-order subtree traversal) into
the subtrees rooted atl andr using the above equation.
In other words, if we do not have enough memory
available, we can recursively re-compute the values
of L(l) andL(r). Note that, the recursion terminates
when we reach the tips (leaves) of the tree and that

memory requirements for storing tip vectors are neg-
ligible compared to ancestral vectors (see above).

If not all ancestral probability vectors fit in RAM,
the required vectors for the operation at hand can still
be obtained by conducting some additional compu-
tations for obtaining them by applying equation 1.

We observe that, when bothL(l)
S (i) andL(r)

S (i) have

been used (consumed) for calculatingL(p)
A (i), the two

child vectors are not required any more. That is, those
two vectors can be omitted/dropped from RAM or be
overwritten in RAM to save space. Therefore, the
likelihood of a tree can be computed without storing
all n−2 ancestral vectors. Instead, a smaller amount
of space for only storingx < (n− 2) vectors can be
used. Thosex vectors can then dynamically be as-
signed to a subset (varying over time) of then− 2
inner nodes. This gives rise to the following question:
Given a MSA withn taxa, what is the minimum num-
ber of inner vectorsxmin that must reside in memory
to be able to compute the likelihood on any unrooted
binary tree topology withn taxa?

Due to the post-order traversal of the binary tree
topology, some ancestral vectors need to be stored
as intermediate results. Consider an ancestral node
p that has two subtrees rooted at child nodesl andr
with identical subtree depth. When the computations
on the first subtree for obtainingL(l) have been com-
pleted, this vector needs to be kept in memory until
the ancestral probability vectorL(r) has been calcu-
lated to be able to computeL(p).

1

2
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5

6 7

virtual root

Figure 1: A balanced subtree, where the vector of inner
node 1 is oriented in the direction of the virtual root. In
order to compute the likelihood of vector 1, the bold vec-
tors must be held in memory. The transparent vectors may
reside in memory but are not required to.

In the following section 3.2, we demonstrate that



the minimum number of ancestral vectorsxmin(n) that
must reside in RAM to be able to compute the likeli-
hood of a tree withn taxa islog2(n)+2. For obtain-
ing this lower memory bound, we consider the worst
case tree shape, that is, a perfectly balanced unrooted
binary tree with the virtual root placed into the inner-
most branch.

Figure 1, where we first descended into the left
subtree, depicts this worst case scenario forn = 4.
The probability vectors will be written in the follow-
ing order: 3, 4, 2, 6, 7, 5, 1. Figure 1 shows
the number of vectors required in memory (log2(4)+
2= 4) at the point of time where vector 5 needs to be
computed. At any other point of time during the post-
order traversal, holding 3 vectors in RAM is sufficient
to successfully proceed with the computations.

3.2 Minimum Memory Requirements

The underlying idea of our approach is to reduce the
total number of ancestral probability vectors residing
in RAM at any given point of time. LetPLF be the
likelihood function (see Equation 1), which —for the
sake of simplifying our notation— can be computed
at a tip (essentially at zero computational cost) or an
inner node given the ancestral probability vectors of
its two child nodes. The PLF always returns an an-
cestral probability vector as result.

As a pre-processing step, we compute the num-
ber of descendants (size of the respective subtree) for
each inner node. This can be implemented via a sin-
gle post-order tree traversal. The memory required
for storing the number of descendants as integers at
each node is negligible compared to required proba-
bility vector space. Given this information, the binary
tree data structure can be re-ordered such that, for ev-
ery nodep, the left child nodel contains the larger
number of descendants and the right child noder con-
tains the smaller number of descendants. We can now
compute the PLF of the tree by invoking the follow-
ing recursive proceduref at the virtual rootp of the
tree:

proc f(p) ≡

if isALeaf(p) then return(PLF(p)) fi;
vl := f(p.l); Step 1
vr := f(p.r); Step 2
return(PLF(vl ,vr)) Step 3

.

During this computation, the maximum number of
probability vectorsxmin(n) that need to reside in mem-
ory for any tree withn leaves is log2(n)+2. This up-
per bound is required if and only if the binary tree is
balanced.

Proof: We demonstrate the above theorem by re-
cursion. xmin(1) = 1, since for a tree with a sin-
gle node, only the sequence data (a single proba-
bility vector) need to be stored. Now assume that
xmin(n−1) = log2(n−1)+2 and consider a tree with
n leaves. We execute all steps off (p), wherep is
the root, and keep track of the number of probability
vectors that are stored simultaneously in RAM:

• Step 1: Computing f (p.l) requires storing at
most xmin(n− 1) probability vectors simultane-
ously which is strictly less than log2(n)+2. Once
f (p.l) has been computed only the result vector is
stored (i.e., only one single probability vector).

• Step 2: Because the subtree size of the right de-
scendant of the rootp.r must be≤ n/2, this com-
putation needs to simultaneously store at most
log2(n/2) + 2 = log2(n) + 1 probability vectors.
Here, we need to add the number of probability
vectors that required to be maintained in RAM af-
ter completion ofStep 1. Thus, overall,Step 2
needs to simultaneously hold at most log2(n)+2
probability vectors in RAM. Once the results of
f (p.l) and f (p.r) have been computed we are left
with two probability vectorsvl ,vr that need to re-
side in memory.

• Step 3:This step requires 3 probability vectors to
be stored at the same time, namely,vl , vr , and the
vector to store the result ofPLF(vl ,vr). Note that,
to obtain the overall likelihood of the tree (a single
numerical value), we need to apply a functiong()
to the single result vector returned byf (), that is,
g( f (p)). Functiong() simply uses the data in the
result vector to calculate the likelihood score over
all root vector entries.

Hence the peak in memory usage is reached dur-
ing Step 2and its upper bound is log2(n)+2. More-
over, this upper bound is reached if and only if the
number of descendants in the respective left and right
subtrees is identical for all nodes, that is, for a bal-
anced tree.

3.3 Basic Implementation

While holdinglog2(n)+2 vectors in RAM provides
sufficient space for computing the PLF, this will in-
duce a significant run-time increase (due to recom-
putations) compared to holdingn vectors in memory.
In practice, we need to analyze and determine a rea-
sonable run-time versus RAM trade-off as well as an
appropriate vector replacement/overwriting strategy.
For instance, in the RAxML or MrBayes PLF im-
plementations, some ancestral vectors (depending on
their location in the tree) can be recomputed faster



than others. In particular, cases where the left and/or
right child vectors are tip sequences can be handled
more efficiently. For instance, an observed nucleotide
A at a tip sequence corresponds to a simple probability
vector of the form[P(A) := 1.0,P(C) := 0.0,P(G) :=
0.0,P(T) := 0.0]. This property of tip vectors can be
used for saving computations in equation 1.

Also, typical topological search operators for find-
ing/constructing a tree topology with an improved
likelihood score such as SPR (Subtree Pruning and
Re-grafting), NNI (Nearest Neighbor Interchange) or
TBR (Tree Bisection and Reconnection) only apply
local changes to the tree topology. In other words,
the majority of the ancestral probability vectors is not
affected by the topological change and does there-
fore not need to be recomputed/updated with respect
to the locally altered tree topology via a full post-
order tree traversal. Therefore, if all ancestral vec-
tors reside in RAM, only a very small part of the
tree needs to be (re-)traversed after a SPR move, for
instance. All standard ML-based programs such as
GARLI (Zwickl, 2006), PHYML 3.0 (Guindon et al.,
2010), and RAxML (Stamatakis, 2006) deploy search
strategies that typically require updating only a small
fraction of probability vectors in the vicinity of the
topological change.

Therefore, devising an appropriate strategy (see
Section 3.4) for deciding which vectors shall remain
in RAM and which can be discarded (because they
can be recomputed at a lower computational cost)
can have a substantial impact on the induced run
time overhead when holding, for instance,x := n/2
vectors in RAM. In the following, we will outline
how to compute the PLF and conduct SPR-based tree
searches withx< n vectors in RAM.

Let n be the number of species,n−2 the number
of ancestral probability vectors, andx the number of
available slots in memory, wherelog2(n)+ 2 ≤ x <
n (i.e., n− x vectors are not stored, but recomputed
on demand). Letw be the number of bytes required
for storing an ancestral probability vector (all vectors
have the same size). Our implementation will only
allocatexẇ bytes, rather thannẇ. We henceforth use
the termslot to denote a RAM segment ofw bytes that
can hold an ancestral probability vector.

We define the following C data structure (details
omitted) to keep track of the vector-to-slot mapping
of all ancestral vectors and for implementing replace-
ment strategies:

typedef struct
{
int numVectors;
size_t width;
double **tmpvectors;
int *iVector;

int *iNode;
int *unpinnable;
boolean allSlotsBusy;
unpin_strategy strategy;

}recompVectors;

The arraytmpvectors is a list of pointers to
a set of slots (i.e., starting addresses of allocated
RAM memory) of sizenumVectors (x) and width
numVector (w). The arrayiVector has lengthx and
is indexed by the slot id. Each entry holds the node
id of the ancestral vector that is currently stored in the
indexed slot. If the slot is free, the value is set to a
dedicatedSLOT_UNUSED code. The arrayiNode has
lengthn−2 and is indexed using the unique node ids
of all ancestral vectors in the tree. When the corre-
sponding vector resides in RAM, its array entry holds
the corresponding slot id. If the vector does not re-
side in RAM the array entry is set to the special code
NODE_UNPINNED. Henceforth, we denote the avail-
ability/unavailability of an ancestral vector in RAM
aspinned/unpinned The arrayunpinnable tracks
which slots are available for unpinning, that is, which
slots that currently hold an ancestral vector can be
overwritten, if required.

The set of ancestral vectors that are stored in the
memory slots changes dynamically during the com-
putation of the PLF (i.e., during full tree traversals
and tree searches). The pattern of dynamic change in
the slot vector also depends on the selected recom-
putation/replacement strategy. For each PLF invoca-
tion, be it for evaluating a SPR move or completely
re-traversing the tree, the above data structure is up-
dated accordingly to ensure consistency.

Whenever we need to compute a local tree traver-
sal (following the application of an SPR move) to
compute the likelihood of the altered tree topology,
we initially just compute the traversal order which is
part of the standard RAxML implementation. The
traversal order is essentially a list that stores in which
order ancestral probability vectors need to be com-
puted. In other words, the traversal descriptor de-
scribes the partial or full post-order tree traversal re-
quired to correctly compute the likelihood of a tree.
For usingx < n vectors, we introduce a so-called
traversal order check, which extends the traversal
steps (the traversal list) that assume that alln vec-
tors reside in RAM. By this traversal order extension,
we guarantee that all missing vectors (not residing in
RAM) will be recomputed as needed. The effect of
reducing the number of vectors residing in RAM is
that, traversal lists become longer, that is, more nodes
are visited and thereby run time increases. When the
traversal is initiated, all vectors in the traversal list
that already reside in RAM (they are pinned to a slot)
are protected (marked asunpinnable) such that, they



will not be overwritten by intermediate vectors of the
recomputation steps.

If an ancestral vector slot needs to be writ-
ten/stored by the traversal, there are three cases:

1. The vector resides in a slot (already in memory).
We can just read and/or write to this slot.

2. The vector is not pinned, but there exists a free
slot, which is then pinned to this vector.

3. The vector is not pinned and there is no free slot
available. A residing vector must be replaced and
the corresponding slot needs to be pinned to the
required vector.

Since the traversal only visits each vector at most
once, the corresponding children of this vector can be
unpinned once it has been written to memory. Instead
of unpinning them directly, they are merely marked
for unpinning. The real overwrite only takes place
if the slot is selected by the replacement strategy for
storing another vector. Otherwise, the slot will store
the values of the current vector for as long as possible
for potential future re-use.

3.4 Replacement Strategies

In analogy to the replacement strategies discussed in
the out-of-core implementation (Izquierdo-Carrasco
and Stamatakis, 2011), there are numerous ap-
proaches for deciding which memory slot should be
overwritten by a new ancestral vector that does cur-
rently not reside in RAM. We implement and analyze
the following two replacement strategies.

Random A random slot not flagged as pinned is se-
lected. The random strategy is a naı̈ve approach
with minimal overhead and is used as baseline for
performance comparisons.

MRC Minimum Recomputation Cost. The slot with
minimum subtree size (see below) and not flagged
as pinned is selected.

The MRC strategy entails a slight overhead for
keeping track of which vectors will be most expensive
to recompute and should therefore be kept in RAM for
as long as possible. Consider an unrooted binary tree
T with n tips. Each inner nodei in an unrooted binary
tree withn taxa can be regarded as a trifurcation that
defines three subtreesTi,a, Ti,b, andTi,c correspond-
ing to the three outgoing branchesa,b, andc. Thus,
sts(Ti,a) + sts(Ti,b) + sts(Ti,c) = n holds for any in-
ner nodei in an unrooted binary tree withn taxa/tips.
When conducting likelihood computations, the tree is
always rooted by a virtual root. Hence, if the virtual
root is located in the direction of branchc the rele-
vant subtree size with respect to recomputation cost

at inner nodei is sts(T rooted
i ) := sts(Ti,a)+ sts(Ti,b).

We use this rooted subtree sizests(T rooted
i ) to deter-

mine the recomputation cost for each ancestral vector
i given a virtual rooting of the tree. In particular, the
casests(T rooted

i ) = 2 (both children are tips) is par-
ticularly cheap to recompute, since tip vectors always
reside in RAMand recomputing ancestral vectori is
cheap (see above). In a perfectly balanced tree with
the root placed in the innermost branch, half of the
inner vectors have subtree sizests(T rooted

i ) = 2.
As already mentioned, during a partial or full tree

traversal for computing the likelihood, all inner nodes
(vectors) involved are oriented in a given direction to-
ward the virtual root. Evidently, the subtree sizes will
change when the topology is altered and will need to
be updated accordingly.

In order to account for this, we keep an array
of subtree lengths, that is, for each inner node we
store a subtree length values. Whenever the topology
changes, a local traversal descriptor is created. This
local traversal descriptor starts at the new virtual root
and recursively includes the inner nodes whose orien-
tation has changed after the given topology change.
Since this exactly corresponds to the set of nodes
whose subtree length values must be updated, the sub-
tree length array can be updated via the same recur-
sive descent.

3.5 Implementation Details

In the following we discuss some important details of
the recomputation process.

Largest subtree first The standard implementation
of the PLF, where all ancestral vectors are available
in memory, computes the PLF by conducting a post-
order traversal from an arbitrary rooting of the tree.
Thus, an ancestral probability vector can be computed
once the respective left and right child vectors have
been computed. In the standard RAxML implemen-
tation, the traversal always recursively descends into
the left subtree first. The (arbitrary) choice whether
to descend into the left or right subtree first, does not
affect performance (nor the results) when all ancestral
vectors reside in RAM.

However, when not all vectors reside in RAM, the
choice whether to descend into the left or right subtree
first doesmatter. This is particularly important if we
use the minimum settingx := log2(n)+2, since other-
wise we may encounter situations where not enough
slots are available (see Section 3.2).

Suppose that, as in the standard implementation,
we always descend into the left subtree first. In the
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Figure 2: An unbalanced subtree, where the vector of inner
node 1 is oriented in the direction of the virtual root. Bold
rectangles represent vectors that must be held in memory if
we first descend into the left subtree and node 4 is being
written.

example shown in Figure 2, the left subtree is signif-
icantly smaller than the right subtree. We would first
descend into the left subtree, which consists of a sin-
gle inner node. The child ancestral vector correspond-
ing to node 2 must be pinned to its slot. Thereafter,
we descend into the right subtree writing and pinning
nodes 3, 4, 5 (always assuming that we descend into
the left —smaller— subtree ofeachnode first). While
we keep descending into the right subtree, the ances-
tral vector corresponding to node 2 remains pinned,
because it represents an intermediate result.

In contrast, if we initially descend into the right
subtree (which is always larger in the example), there
is no need to store intermediate results of the left sub-
tree (node 2). Also, nodes 4and 5 can be imme-
diately unpinned as soon as their parent nodes have
been computed. Thus, by inverting the descent order
such as to always descend into the larger subtree first
(as required by our proof), we minimize the amount
of time for which intermediate vectors must remain
pinned. Note that, when two subtrees have the same
size, it does not matter into which subtree we descend
first.

If we descend into the smaller subtrees first, there
will be more vectors that need to remain pinned for
a longer time. This would also reduce the effective

size of the set of inexpensive-to-recompute vectors
that shall preferentially be overwritten, because more
vectors that are cheap to recompute need to remain
pinned since they are holding intermediate results.
In this scenario more expensive-to-recompute vectors
will need to be overwritten in memory and dropped
from RAM.

Determining the appropriate descent order (largest
subtree first) is trivial and induces a low compu-
tational overhead. When the traversal list is com-
puted, we simply need to compare the subtree sizes
of child nodes and make sure to always descend into
the largest subtree first.

Priority List For this additional optimization, we
exploit a property of the SPR move technique. When
a candidate subtree is pruned (removed from the cur-
rently best tree), it will be re-inserted into several
branches of the tree from which it was removed to
evaluate the likelihood of different placements of the
candidate subtree within this tree. In the course of
those insertions, the subtree itself will not be changed
and only the ancestral vector at the root of the subtree
will need to be accessed for computations. Hence, we
maintain a dedicated list of pruned candidate subtree
nodes (a unpinning priority list) that can be preferen-
tially unpinned. Because of the design of lazy SPR
moves in RAxML (similar SPR flavors are used in
GARLI and PHYML) those nodes (corresponding to
ancestral vectors) will not be accessed while the can-
didate subtree is inserted into different branches of the
tree. Once this priority list is exhausted, the standard
MRC recomputation strategy is applied.

Full Traversals Full post-order traversals of the
tree are required during certain phases of typical phy-
logenetic inference programs, for instance when op-
timizing global maximum likelihood model param-
eters (e.g., theα shape parameter of theΓ distribu-
tion or the rates in a GTR matrix) on the entire tree.
Full tree traversals are also important for the post-
analysis of fixed tree topologies, for instance, to es-
timate species divergence times. Full tree traversals
represent a particular case because every inner vector
of the tree needs to be visited and computed. Hence,
the number of vectors that need to be computed under
our memory reduction approach is exactly identical to
the number of vectors that need to be computed under
the standard implementation. Thus, there is no need
for additional computations while a large amount of
memory can be saved. While full tree traversals do
not dominate run times in standard tree search algo-
rithms, they can dominate execution times in down-
stream analysis tools.



4 Experimental Setup and Results

We have implemented the techniques described in
Section 3 in RAxML-Light v1.0.4. RAxML-Light
is a strapped-down dedicated version of RAxML in-
tended for large-scale phylogenetic inferences on su-
percomputers. It implements a light-weight software-
based checkpointing mechanism and offers fine-
grained PThreads and MPI parallelizations of the
PLF. It has been used to compute a tree on a
dense simulated MSA with 1481 taxa and 20,000,000
sites that required 1TB of RAM and ran in paral-
lel with MPI on 672 cores. While not yet pub-
lished, RAxML-Light is available as open-source
code at www.exelixis-lab.org/software.html
and athttps://github.com/stamatak. The source
code of the memory saving technique presented here
is available for download atwww.exelixis-lab.
org/software/spare.zip and is currently being
integrated into the RAxML-Light development ver-
sion (development snapshots available athttps://
github.com/fizquierdo/vectorRecomp).

4.1 Evaluation of recomputation
strategies

The recomputation algorithm yieldsexactlythe same
log likelihood scores for the PLF as the standard algo-
rithm. Thus, for validating the correctness of our im-
plementation, it is sufficient to verify that the result-
ing trees and log likelihood scores of a ML tree search
with the standard and recomputation implementations
are identical. The increase of total run time depends
on the numberx of inner vectors that are held in
memoryandon the chosen unpinning strategy (MRC
versus RANDOM). We used indelible (Fletcher and
Yang, 2009) to generate simulated MSAs of 1500,
3000, and 5000 species. All experiments described in
this section were conducted for these three datasets.
We only show representative results for one dataset
(1500 taxa, 575 base pairs).

The results for the other two simulated datasets
(3000 taxa with 774 base pairs and 5000 taxa
with 1074 base pairs), as well as for a biological
dataset with 500 taxa, are analogous and can be
found in the supplementary on-line material atwww.
exelixis-lab.org/publications.html.

We chose to use simulated datasets to assess per-
formance for convenience. Detailed information on
indelible parameters used for dataset generation are
included in the supplementary on-line material. For
our purely computational work it does not matter
whether simulated or real data is used.

Initially, we ran the Parsimonator program (avail-
able atwww.exelixis-lab.org/software.html to
generate 10 distinct randomized stepwise addition or-
der parsimony starting trees for each MSA. For each
starting tree, we then executed a standard ML tree
search with RAxML-Light 1.0.4 (sequential version
with SSE3 intrinsics) and ML tree searches with the
recomputation version for the two replacement strate-
gies (MRC and RANDOM) and five different RAM
reduction factors (-x and-r options respectively). All
experiments were executed on a 48-core AMD system
with 256GB RAM. For all runs, RAM memory usage
was measured every 600 seconds withtop.

Figure 4 shows the corresponding decrease in
RAM usage. Values in Figure 4 correspond to maxi-
mum observed RAM usage values.

Figure 3 depicts the run time increase as a func-
tion of available space for storing ancestral proba-
bility vectors. Clearly, the MRC strategy outper-
forms the RANDOM strategy and the induced run-
time overhead, even for a reduction of available RAM
space to only 10% is surprisingly small (approxi-
mately 40%). This slowdown is acceptable, consid-
ering that instead of analyzing a large dataset on a
machine with 256GB, a significantly smaller and less
expensive system with, for instance, 32GB RAM will
be sufficient. Given the checkpointing capabilities of
RAxML-Light, the increase in run times does not rep-
resent a problem.
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Figure 3: Different replacement strategies. The dataset was
run with RAM allocations of 10%, 25%, 50% , 75%, and
90%, of the total required memory for storing all probability
vectors. Run times are averaged across 10 searches with
distinct starting trees.

4.2 Evaluation of traversal overhead

In order to evaluate the overhead of the extended
(larger) tree traversals due to the required additional
ancestral probability vector computations, we modi-
fied the source code to count the number of ancestral
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Figure 4: Overall RAM usage when allocating only 10%,
25%, 50% , 75%, and 90%, of the required ancestral proba-
bility vectors.

vector computations. We distinguish between three
cases with different recomputation costs (see Sec-
tion 3). For each case, there exists a dedicated PLF
implementation in RAxML.

Tip/Tip Both child nodes are tips.

Tip/Vector One child node is a tip, and the other is
an ancestral vector (subtree).

Vector/Vector Both child nodes are ancestral vec-
tors.

Table 1 shows a dramatic, yet desired increase,
in the number of Tip/Tip vector computations for the
MRC strategy. However, the amount of the slowest
type of ancestral node computations [Vector/Vector]
is only increased by 0.16% compared to the standard
implementation.

4.3 Evaluation of full tree traversals

We created a simple test case that parses an input tree
and conducts 20 full tree traversals on the given tree.
This dedicated test code is also available athttps:
//github.com/fizquierdo/vectorRecomp/. We
used the aforementioned starting trees and the 500,
1500, and 5000 taxon datasets. Each run was repeated
5 times and we averaged running times. All runs re-
turned exactly the same likelihood scores.

Table 2 indicates that, even for very small R val-
ues (fraction of inner vectors allocated in memory)
the run time overhead is negligible in compared to the
standard implementation.

5 Conclusions and Future Work

We have presented a generic strategy for the exact
computation of log likelihood scores and ML tree

searches with significantly reduced memory require-
ments. The additional computational cost incurred
by the larger number of required ancestral vector re-
computations is comparatively low when an appro-
priate vector replacement strategy is deployed. This
will allow for computing the PLF on larger datasets
then ever before, especially when the limiting factor is
available RAM. In fact, the memory versus additional
computations trade-off can be adapted by the users via
a command line switch to fit their computational re-
sources. We also show that, the minimum number of
ancestral probability vectors for computing the PLF
that need to be kept in memory for a tree withn taxa
is log2(n)+2. This result may be particularly inter-
esting for designing equally fast, but highly memory-
efficient phylogenetic post-analysis tools that rely on
full tree traversals.

Furthermore, the concepts presented here can be
applied to all PLF-based programs such as GARLI,
PHYML, MrBayes, etc. On the software engineering
side, the implementation of the recomputation strat-
egy in RAxML is encapsulated in such a way, that
it can be combined with any other memory saving
techniques such as out-of-core computations, Subtree
Equality Vectors, or the use of lossless compression
algorithms for ancestral probability vectors.

We plan to further refine/tune the MRC strategy
and fully integrate it into the up-to-date release of
RAxML-Light v1.0.5 and the already existing mem-
ory saving techniques. This will allow to infer trees
and compute likelihood scores on huge datasets, that
would previously have required a supercomputer, on
a single multi-core system.
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Table 1: Frequency of ancestral vector cases for the standard implementation and the recomputation strategies (50% of
ancestral vectors allocated)

Strategy Tip/Tip Tip/Vector Vector/Vector Total Runtime (s)
Standard 11,443,484 57,884,490 76,325,233 145,653,207 5678

MRC (0.5) 20,368,957 61,224,562 76,444,874 158,038,393 6453
Random (0.5) 37,778,575 85,303,730 104,398,910 227,481,215 7999

Table 2: Average run times in seconds for 20 full traversals averaged across 5 runs

Dataset Standard R:=0.1 R:=0.9
500 0.122 0.121 0.130
1500 0.430 0.430 0.434
5000 2.402 2.412 2.438
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