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Abstract—The summary of a phylogenetic analysis (typically
a consensus tree) can be substantially biased by so-called
rogue taxa (or briefly: rogues). Rogue taxa assume varying
phylogenetic positions in the tree collection that is used to
build the consensus tree and thereby decrease the resolution
of the consensus.

We present an accurate and straight-forward algorithm for
identifying rogues that assesses the effect on the consensus tree
support values by removing one taxon at a time. Our approach
improves the resolution of the consensus tree and, at the same
time, increases the support values of existing relationships.
We compare our algorithm to three competing methods (leaf
stability index, taxonomic instability index, and Pattengale’s
algorithm) on a large number of real biological data sets. We
show that it outperforms stability-based methods since rogue
taxa are not necessarily the most unstable taxa with respect
to stability measures. Our algorithm is substantially more
memory-efficient than Pattengale’s approach while instances,
where Pattengale’s algorithm outperforms our approach, ap-
pear to be rare on real data. Finally, we find that, it is advisable
to conduct a de novo bootstrap analysis after rogues have been
removed from the sequence alignment.
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analysis; taxonomic instability index; leaf stability index;

I. INTRODUCTION

The central goal in phylogenetics is to disentangle the
evolutionary history of species (also referred to as taxa)
given genetic information (typically provided as multiple
sequence alignment (MSA)). Phylogenies are represented
as unrooted binary trees. The leaves (degree-1-nodes) rep-
resent the taxa under study, while inner nodes represent
hypothetical common ancestors. Two common criteria for
inferring phylogenies are maximum likelihood (ML) or
maximum parsimony (MP) (reviewed in [1]). Tree searches
for the optimal tree on the original MSA under ML and
MP are usually supplemented by a non-parametric bootstrap
analysis [2] to obtain support values for specific evolution-
ary relationships. The bootstrap procedure randomly draws
columns/sites with replacement from the original MSA until
a MSA replicate with the same number of sites (but a
different site composition) as the original MSA has been
assembled. Several MSA bootstrap replicates are generated
and a tree is inferred on each replicate. The information
contained in such a set of bootstrap trees can then be drawn

onto the best-known (ML and MP are NP-hard [3], [4])
tree as branch support values. Alternatively, the bootstrap
tree set can be summarized by a consensus tree.

To compute a consensus tree, the set of bootstrap trees is
initially transformed into a corresponding bipartition list. A
bipartition is obtained by removing an edge that connects
two inner nodes from a tree. This yields two disjoint parti-
tions A and A, that is, a bipartition of the entire taxon set.
There exist several methods (reviewed in [5]) for building
consensus trees from a bipartition list. Here, we focus on
the widely-used majority-rule consensus (MRC) and strict
consensus (SC) methods. MRC builds a consensus tree from
those bipartitions that occur in at least half of the trees
under consideration, while a strict consensus (SC) tree only
contains those bipartitions that occur in all trees. In Fig. 1
we provide a simple example of MRC and SC consensus
trees for a tree set of size two. Because the two trees in
the tree set do not share a bipartition, SC and MRC yield a
completely unresolved star tree (see Fig. 1(c)).

The lack of resolution in the consensi is caused by the two
rogue taxa R and Q that assume different positions in the
input tree set. Wilkinson first examined such wandering taxa
and coined the term rogue taxon [6]–[8]. The presence of
just a small number of rogue taxa (also denoted as rogues)
in the tree set (typically bootstrap replicate trees) can either
yield a completely unresolved star tree (see Fig. 1(c)) or
substantially decrease the accumulated bipartition support in
the consensus. If we are able to identify and prune (remove)
the two rogue taxa R and Q from the input trees in our
example, we can recover shared bipartitions in the input trees
and thereby obtain a more informative consensus tree for the
remaining taxa (see Fig. 1(d)).

Rogue taxa may occur for various reasons: (i) general
lack of phylogenetic signal (e.g., because of an excessive
proportion gaps in the alignment, or either too high or too
low mutation rates [9]); (ii) ambiguous phylogenetic signal
because of mislabeled or erroneous sequences (specifically
chimeric sequences) or horizontal gene transfer. Rogues can
also occur in super-matrices (when genes that only entail
a subset of taxa are concatenated) [10]. Rogue taxa also
seem to be problematic when super-tree approaches [11]
are deployed (an alternative approach to super-matrices for
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Figure 1: a) and b) two bootstrap trees with 6 taxa. c) the strict
and majority-rule consensus tree of the two bootstrap trees. d) both
consensus trees contain a bipartition after rogue taxa R and Q have
been pruned.

harnessing huge amounts of data).
While, biologists may be able to identify rogue taxa by

visual inspection in small data sets, the general trend for
larger phylogenies to proportionally contain more rogues
(see Section IV-A) underlines the need for automated rogue
taxon identification. Currently, only a few phylogenetic
studies include a systematic rogue taxon analysis [10], [12]–
[14]. Typically, the topological stability for each taxon is
computed and the most unstable taxa are pruned from the
bootstrap trees. Per-taxon topological stability is quantified
by the leaf stability index [15] or the taxonomic instability
value as implemented in Mesquite [16].

Here we introduce and make available a new, simple,
yet accurate method for rogue taxon identification. We
also conduct an extensive comparison of our rogue taxon
identification method with competing approaches on a large
and diverse collection of real biological data sets. We also
address the question, if pruning identified rogues from an
existing set of bootstrap replicate trees is sufficient for ob-
taining an accurate consensus tree, or whether it is necessary
to re-run the bootstrap analysis from scratch on the pruned
MSA.

Note that, the methods we analyze here, remove identified
rogues from bootstrap tree replicates with the aim to improve
support values in consensus trees. This does not reflect the
way biologists would ideally like to handle rogues, since
they are interested in the phylogenetic relationships among
all taxa in the initial MSA. Nonetheless, this represents a
first step toward adressing the problem.

The remainder of this paper is organized as follows.
Initially, we discuss related approaches for rogue taxon
identification in Section II. In Section III, we introduce
our rogue taxon identification algorithm. In Section IV we
compare the performance of our algorithm to alternative
rogue identification methods and assess if re-running the
bootstrap analysis after rogue identification and removal is
required. We conclude and discuss directions of future work
in Section V.

II. RELATED WORK

We briefly cover two related approaches for rogue iden-
tification that rely on the idea that rogues are the most

topologically unstable taxa in a set of bootstrap trees.

A. Node Stability Measures
The taxonomic instability index (TII) [16] captures taxon

stability by means of the variation of pair-wise dis-
tances between taxon pairs across all bootstrap trees. The
taxonomic instability index of a taxon i is defined as∑

(x,y)
|dijx−dijy|
(dijx+dijy)z

, where dijx is the unweighted patristic
distance between two non-identical taxa i and j (i.e., the
number of nodes on the path between i and j in bootstrap
tree x). The z parameter is used to specify whether evolu-
tionary distant (in case of large values of z) or evolutionary
close relationships (small values of z) have a higher impact
on the TII. The default value in the Mesquite implementation
is z := 2. This represents a natural choice for rogue
identification, since we expect rogues to assume varying
positions that are nonetheless located close to each other. A
taxon is interpreted as stable (i.e., non-rogue) with respect
to the TII, when the unweighted patristic distance to other
taxa remains relatively constant over all bootstrap trees.

The leaf stability index (LSI) [15] uses taxon triplets.
In a rooted binary tree, there exist three different possi-
bilities for the relationship of three taxa: a, b, c. The three
possible triplets (relationships) are ((a, b), c), ((a, c), b) and
((b, c), a). The triplet stability of a taxon triplet a, b, c is
defined as the difference of the relative frequency of the
most prevalent triplet and the second most prevalent triplet
in the bootstrap trees. The LSI for a taxon a is defined as
the average triplet stability over all triplets that contain a.

The LSI is normalized to [0.0...1.0]. In contrast to the TII,
this allows to use absolute cut-off values. Since relationship
of a stable taxon to all other taxa in the bootstrap trees
will not vary considerably, such a stable taxon will occur
predominantly in stable triplets. Hence, the LSI of a stable
taxon is close to the maximum LSI value of 1.0. Relation-
ships to evolutionary distant taxa have the same impact on
the LSI as evolutionary close relationships, whereas for the
TII this trade-off can be adjusted by the z parameter.

The LSI as used here represents one of the four variants of
this stability measure and is the most frequently used variant
(the results of alternative LSI variants are mostly equivalent;
see supplementary material of [13]).

While the TII can be applied as-is to unrooted trees, some
minor adaptations are required for the LSI (see [17]) by
considering quartets of taxa in unrooted trees rather than
triplets. The LSI has been used in some recent phylogenetic
studies [12], [13].

LSI and TII identify taxa R and Q in our example in Fig. 1
as the two most unstable taxa. Thus, if the somewhat arbi-
trary cutoff threshold for pruning taxa is chosen adequately,
R and Q will be correctly identified as rogues.

B. Merging Low-Support Bipartitions
Recently, Pattengale [18] proposed a method to directly

optimize the number of bipartitions in a consensus tree by



identifying and removing rogues. In most cases, pruning a
set of taxa from the initial tree set, will alter the number
of bipartitions included in the respective consensus tree.
This is because, pruning taxa can merge some biparti-
tions with each other, while other bipartitions may vanish
(when the number of taxa in one of the partitions becomes
≤ 1). As an example for merging bipartitions consider
the bipartitions A = A|A = abR|cdQ in Fig. 1(a) and
B = B|B = abQ|cdR in Fig. 1(b), where a, b, c, d,Q,R
are the respective taxon names. If we prune rogue taxa R
and Q from the trees in Fig. 1, the two bipartitions A (A and
A) and B (A and A) become identical and can be merged
into a single bipartition C = ab|cd. Bipartition C is now
contained in both pruned input trees and therefore defines
an inner branch in the SC and MRC consensi.

The above observation is the basis of Pattengale’s algo-
rithm (henceforth denoted as bipartition merging algorithm
(BMA)) that works as follows: At an abstract level, the
algorithm strives to determine a set of taxa (a so-called
drop set) that, if pruned, will yield a maximum increase
of bipartitions in the consensus tree.

To determine the drop set, the algorithm initially computes
a bipartition profile, which maps each bipartition of the tree
set to the set of trees in which it occurs. For each pair of
bipartitions in this profile that is not already part of the
consensus tree, the algorithm determines the required drop
set (taxa to be pruned) that will merge the bipartition pair. If
the resulting merged bipartition is contained in the consensus
tree, the corresponding drop set is added to a data structure
that maps drop sets to a list of bipartition merging events.

This drop set mapping is then used to select the drop
set (and prune the taxa therein) that will add the maximum
number of bipartitions to the consensus tree and requires
pruning the minimum number taxa from the trees. Both crite-
ria (minimize number of taxa to prune and maximize number
of consensus tree bipartitions added) are incorporated into
a single measure for optimizing this bicriterion problem
called the relative information content (RIC). The RIC of
a consensus tree C ′ for a pruned bootstrap tree collection is
defined as RIC(C ′) = B′+T ′

T−3+T , where B′ is the number of
bipartitions in C ′ and T ′ is the number of remaining taxa
after pruning. The denominator normalizes the RIC by the
number of taxa in the initial taxon set T and the maximum
number T−3 of possible consensus bipartitions in the initial
consensus tree C.

The above procedure for identifying (and pruning) rogue
taxa is applied iteratively until the RIC measure can not be
further improved. In other words, the algorithm will only
prune drop sets where the number of taxa pruned is smaller
than the number of bipartitions added to the consensus tree
by pruning those taxa.

The BMA allows for rapid identification of rogue taxa
in large data sets. However, it only represents a greedy
approximation, since the BMA does not check if existing

consensus bipartitions vanish or merge when a drop set is
pruned. Thus, the BMA may prune sub-optimal drop sets.
Furthermore, the algorithm can not detect potential merging
events that occur if more than two bipartitions are merged
into a consensus bipartition. The algorithm will also yield
an approximation error, when subsets of a drop set give rise
to additional consensus tree bipartitions.

III. ROGUE TAXON IDENTIFICATION ALGORITHM

Initially, we formulate an optimization criterion that is
similar to that of Pattengale et al. and propose a simple ap-
proximation algorithm. Then, we describe the experimental
setup for assessing alternative rogue identification methods.

A. Optimality Criterion

Apart from the number of remaining taxa, the RIC crite-
rion incorporates the number of bipartitions in the consensus
tree. In our optimality criterion, we opt for a more fine-grain
measure. Let sup(Bi) be the relative frequency of a bipar-
tition Bi in the bootstrap trees, l the number of consensus
bipartitions, and T the number of taxa in the initial taxon set.
Our optimality criterion, the relative bipartition information
content (RBIC) of a consensus tree C ′ is defined as

RBIC(C ′) =

∑
i={1..l} sup(Bi)

T − 3
.

Using the relative frequencies (i.e., support or frequency of
occurrence) of bipartitions for the RBIC has the advantage
that optimizing this criterion will preferably recover highly
supported bipartitions. In the most extreme case, the algo-
rithm can choose between pruning a taxon a for recovering
a bipartition Bi with sup(Bi) = 50% or pruning a taxon
b for recovering a bipartition Bj with sup(Bj) = 100%.
Using the RBIC will not only lead to pruning taxa that add
bipartitions to the consensus tree, but also prune taxa that
improve the support of existing consensus bipartitions.

The RBIC is normalized by the maximum possible sup-
port in a fully resolved consensus tree prior to pruning any
rogues. Thereby, the RBIC of a consensus tree C ′ represents
the (attained) proportion of the maximum possible support
in a consensus tree for the initial set of taxa. We did not
include the term T ′ in the RBIC (in contrast to the RIC
of Pattengale et al.). Instead, we optimize for maximal
accumulated support and let the user decide if, at some point,
improvements are too small to justify pruning additional
taxa.

B. Algorithm Description

The BMA does not fit the RBIC criterion particularly
well. According to initial experiments, the aforementioned
approximation errors have a more pronounced effect on the
support-based RBIC criterion than on the bipartition-based
RIC criterion. Furthermore, runtime requirements of the
BMA would increase significantly, since some RIC-specific
optimizations we can not be applied.



We therefore decided to directly calculate consensus trees
from sets of pruned bootstrap trees. The only (yet significant)
simplification in our algorithm is that, as opposed to the
BMA, we only test the impact of pruning one taxon at a time
to assess the corresponding RBIC improvement. The taxon
that yields the highest RBIC improvement (the most “rogue”
taxon) is then permanently removed from the bootstrap trees.

Once the most “rogue” taxon has been pruned, we it-
eratively apply this algorithm to the pruned tree set. In
each iteration we re-calculate the RBIC change induced
by pruning all remaining taxa (one at a time) and remove
the next most “rogue” taxon permanently. We repeat this
procedure until the RBIC can not be further improved. We
refer to this algorithm as single-taxon algorithm (STA).

The STA is the only rogue identification method that
can not optimally solve the initial example in Fig. 1. The
only way to improve the RBIC of the consensus in this
example is to prune rogue taxa R and Q simultaneously.
Thus, the STA will not obtain an RBIC improvement by
just pruning one of them and terminates without pruning
a taxon. However, this example has been constructed to
demonstrate the algorithm’s worst-case behavior. Evidence
that such configurations are uncommon in real biological
data is presented in Section IV-B.

The STA implementation relies on the optimized con-
sensus tree algorithm implementations in RAxML [19]. We
compute the bipartition profile of the tree set only once at
program initialization. Then, we compute the RBIC-change
induced by pruning one taxon at a time over all taxa in
parallel. Thus, the STA can be applied to comparatively
large data sets in terms of number of trees and/or number of
taxa (see Section III-C). Compared to the highly optimized
implementation of the BMA [18], the STA implementation
is up to two orders of magnitude slower (per iteration and for
data sets up to 714 taxa). However, the memory requirements
of STA are constant and proportional to the size of the
bipartition profile n, whereas the space requirements of
BMA are in O(n2) which limits its scalability [18].

C. Experimental Setup

For our comparative analysis we used a bootstrap tree
collection from a previous study by Pattengale [20] (some of
these data sets have also been used in the study introducing
the BMA [18]). Furthermore, the RAxML user community
provided rogue-suspicious data sets. We received 17 real-
world MSAs from the users and computed 1,000 bootstrap
trees on each using the RAxML rapid bootstrap algorithm
(RAxML v7.2.8 [21]) under the GTR+CAT approxima-
tion [22] of rate heterogeneity for DNA alignments and using
Dayhoff+CAT for amino acid alignments. The arbitrarily
chosen protein substitution model is of minor importance
because the key goal was to generate a sufficiently large
number of bootstrap replicates. The number of taxa in the
data sets ranges from 24 up to 2,254 taxa (see Table I). Since

some data sets are still unpublished, not all are available for
download yet at www.exelixis-lab.org/software/data.tbz.

The alternative rogue identification methods (TII,
LSI, BMA) were also integrated into the RAxML
framework (available at www.exelixis-lab.org/software/
raxml-rogue-edition.tbz). For TII and LSI we implemented
two variants: a monolithic version that initially computes the
stability measure and subsequently prunes a given number
of taxa as well as an iterative version. The iterative version
determines the most unstable taxon de novo at each iteration
and then immediately prunes it prior to recomputing the
stability scores on the reduced taxon set in analogy to
the STA. For our comparative analysis (see Section IV-A),
we pruned up to one third of the initial taxon set. For
each of the above rogue identification methods, we selected
the (intermediate) pruning step that maximized the RBIC
criterion, as the optimal solution.

IV. RESULTS

A. Performance of the Single Taxon Algorithm

We initially tested performance of STA, LSI, and TII
(see Section III-C; see below for an assessment of BMA).
For each data set, Table I shows the RBIC of the respective
pruned consensus trees for the three alternative methods and
the number of taxa that were pruned. The effect of the
intermediate pruning steps on the RBIC is depicted in Fig. 2
for the data sets with the highest improvement potential.

In almost all cases, STA achieves a higher RBIC in the
pruned consensus tree than the competing methods (see
Table I). On 12 data sets the RBIC improvement obtained
by STA is better by at least one order of magnitude than the
RBIC improvement achieved by LSI or TII. For instance,
on the MSA with 1,481 taxa, STA improves the RBIC
from 0.438 to 0.514, while TII achieves a RBIC score of
0.440. Similarly, for the 404-taxon MSA (see Fig. 2(c)), the
STA method increases the RBIC from 0.500 to 0.609, while
TII attains an RBIC of 0.539 and LSI yields an RBIC of
0.515. STA also performs particularly well on the MSAs
with 72 (Fig. 2(a)), 128 (Fig. 2(b)), and 885 (Fig. 2(d))
taxa. Note that, for the 885 taxon data set (Fig. 2(d)), the
initial consensus is particularly weak (RBIC: 0.162). The
STA prunes 59% of the taxa until the maximum RBIC is
attained. Most of these rogues have a weak impact on the
RBIC. As the MSA consists of only 623 characters/sites, we
assume that an overall lack of phylogenetic signal may be
the reason for this behavior.

The iterative versions of the stability indices do not per-
form consistently better than their monolithic counterparts
(see Table I). Thus, the specific implementation of the
stability index methods (iterative versus monolithic) does
not affect their accuracy.

Except for the 24- and 628-taxon data sets, the TII always
yields results that are at least as good as those obtained
by the LSI (see Table I). Remember that, for the LSI, all
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#taxa initial
RBIC

bip. merging single-taxon taxonomic instab. index leaf stability index
algorithm algorithm monolithic iterative monolithic iterative

#p RBIC #p RBIC #p RBIC #p RBIC #p RBIC #p RBIC
24 0.829 0 0.829 1 0.853 3 0.837 3 0.837 1 0.853 1 0.853
44 0.755 1 0.786 2 0.789 2 0.786 2 0.786 1 0.786 1 0.786
52 0.543 1 0.582 9 0.653 6 0.639 6 0.627 7 0.622 7 0.622
72 0.364 2 0.409 21 0.527 18 0.490 19 0.496 16 0.444 7 0.444
88 0.783 1 0.810 5 0.832 4 0.832 4 0.832 5 0.813 2 0.813

125 0.958 0 0.958 1 0.959 0 0.958 0 0.958 0 0.958 0 0.958
128 0.525 4 0.586 27 0.688 18 0.669 21 0.667 17 0.664 17 0.657
141 0.669 2 0.690 15 0.709 11 0.706 11 0.706 2 0.686 2 0.686
143 0.610 2 0.628 12 0.651 3 0.628 20 0.632 7 0.619 7 0.619
148 0.611 2 0.647 17 0.672 10 0.651 7 0.655 3 0.647 3 0.647
150 0.570 1 0.579 28 0.614 14 0.581 17 0.589 6 0.571 5 0.571
218 0.471 4 0.485 51 0.548 4 0.481 4 0.481 3 0.473 3 0.473
316 0.365 2 0.373 113 0.438 11 0.371 11 0.371 0 0.365 0 0.365
317 0.541 3 0.551 75 0.610 6 0.552 6 0.549 0 0.541 0 0.541
350 0.495 4 0.508 62 0.555 9 0.497 5 0.497 0 0.495 0 0.495
354 0.328 2 0.334 146 0.386 3 0.328 3 0.328 2 0.328 0 0.328
404 0.500 11 0.548 97 0.609 50 0.539 63 0.549 1 0.515
424 0.501 11 0.537 80 0.607 55 0.540 46 0.541 13 0.508
451 0.492 12 0.529 100 0.601 36 0.538 35 0.541 30 0.508
500 0.589 4 0.597 92 0.634 28 0.598 22 0.597 7 0.594
628 0.515 4 0.525 133 0.564 4 0.516 13 0.515 3 0.520
714 0.569 6 0.579 125 0.620 6 0.570 6 0.570 2 0.569
885 0.162 8 0.172 525 0.219 18 0.167 36 0.167 6 0.165
994 0.679 3 0.686 95 0.704 2 0.681 26 0.682 1 0.681

1,288 0.584 7 0.591 217 0.634 13 0.587
1,481 0.438 19 0.454 428 0.514 3 0.440
1,512 0.518 11 0.530 347 0.568 6 0.524
1,604 0.487 19 0.502 396 0.548 14 0.490
1,908 0.553 11 0.557 383 0.590 0 0.553
2,000 0.449 40 0.479 479 0.526 42 0.456
2,308 0.713 9 0.718 196 0.734 9 0.716
2,554 0.541 37 0.555 523 0.596 51 0.543

Table I: Performance comparison: RBIC of the unpruned consensus trees of all data sets under study compared to the RBIC maximum
achieved by pruning taxa according to the respective algorithms. Some data points are missing for some algorithms because of prohibitive
execution times. For each method, the maximum achieved RBIC (RBIC) and number of pruned taxa at the maximum (#p) is specified.

stability relationships (in form of quartet frequencies) have
the same impact on the measure. Thus, the LSI strives to
measure taxon stability at a global level, while—depending
on the z value—TII can identify taxon stability at a more
local level (see Section II-A). Thus, the TII predominantly
captures the local stability of a taxon. In this context, the
comparison between STA and the LSI/TII implies that rogue
taxa may be unstable at a local and (although less likely)
global scale. Inversely, unstable taxa are not necessarily
rogue taxa. This hypothesis is underlined by the observa-
tion that, the performance gap between the three methods
increases with data set size.

Fig. 2 also provides performance data for BMA. We
can not directly compare the maxima of the BMA curves
to STA performance, since the two approaches intend to
answer different questions. There exist three reasons why the
two performance curves can potentially disagree until BMA
convergence: (i) the data set contains interdependent rogue
taxa (as in our initial example) that can not be identified
by assessing the effect of pruning only one taxon at a
time, (ii) the approximation in the BMA prunes a sub-
optimal set of taxa, and (iii) the STA favors a taxon that

increases support in the consensus tree but does not generate
a new bipartition (STA optimizes the more fine-grained
RBIC instead of the RIC). However, until convergence of
the BMA, both algorithms choose largely identical taxa.
Overall, only 15.6% of taxa that are pruned by BMA are not
pruned by STA. Thus, the observed experimental agreement
between both approaches indicates that the aforementioned
phenomena (i), (ii), and (iii) that can lead to disagreements
do not occur often.

Given the lack of potential disagreement, we compare the
maximum RBIC values achieved by the BMA and the STA.
We observe that, the STA achieves an RBIC improvement
that is up to 8.7 times higher (average: 3.4) than the RBIC
improvement attained by BMA, while it prunes up to 72
times more taxa (average: 20.7). Thus, in general, the less
conservative stopping criterion in STA combined with the
more fine-grain RBIC optimality criterion can substantially
increase consensus support. Nevertheless, some data sets
(e.g., Fig. 2(c) and 2(d)) contain a large number of taxa that
only induce a weak RBIC improvement. On such data sets,
users may thus opt to stop pruning taxa before the RBIC
maximum is reached.
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Figure 2: Performance comparison: RBIC optimality of interme-
diate pruning steps of STA, the two (monolithic) stability index
algorithms and BMA on 4 data sets. Gray line (where present)
represents the maximum RBIC that can be achieved after the given
number of taxa have been pruned.

B. Practical Relevance of Bipartition Merging

In theory, the BMA is able to identify rogue taxa for in-
stances that can not be handled by the straight-forward STA
(see Section III-B). However, in Section IV-A we observed a
substantial agreement between the initial performance curves
of the STA and BMA methods. This raises the question how
relevant the theoretical advantage of BMA may be on real-
world data sets.

To this end, we conducted a more detailed analysis of
the drop sets computed by the BMA. To obtain a broader
data basis, we also computed the respective drop sets for
strict consensus (SC) trees. Fig. 3 depicts the frequency
distribution of drop sets according to the number of addi-
tional bipartitions that are generated in the consensus by the
respective drop set as well as the number of taxa that need to
be pruned for obtaining these additional bipartition(s). The
statistic comprises all drop sets computed across all data sets
in our study.

When using MRC and SC in the BMA, drop sets typically
consists of a single taxon (MRC: 92.5 %; SC: 89.7 %). In
these cases, STA is capable of producing the same result.
However, when the drop set contains more than one taxon,
STA does not necessarily fail. Thus, for each drop set D =
{t1..tn}, we compared the RIC change induced by pruning
the full drop set at once (denoted as RIC−D) with the sum
of RIC changes, if only one of the taxa in D is pruned
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Figure 3: Statistics for all drop sets that are pruned by the BMA
when applied to all data sets. On the y-axis, absolute frequencies
are depicted for drop sets that add x bipartitions to the consensus
tree while pruning z taxa. Drop set frequencies for a MRC thresh-
old are depicted in red, blue bars represent drop set frequencies
for a SC.

(denoted as
∑

RIC−ti ). If RIC−D >
∑

RIC−ti , then this
instance can usually not be solved optimally by STA (since
analogously to the example in Fig. 1, several taxa must be
pruned at once). If RIC−D <

∑
RIC−ti , the drop set is sub-

optimal and was only chosen because of an approximation
error in the BMA (e.g., a drop set merges three bipartitions
into one). Finally, the STA is capable of producing the same
result, if RIC−D =

∑
RIC−ti . For SC, we found that all 12

multi-taxon drop sets (10.3%) require merging, that is, they
are not due to approximation errors. For MR, we identified
8 multi-taxon drop sets (1.8%) that can only be optimally
solved by the BMA and not by STA. The multi-taxon drop
sets occur in data sets with ≥ 1, 481 taxa. On the other
hand, we have 15 cases of approximations errors for the MR
threshold (3.4%). For these instances, the STA yields more
optimal results because it computes RBIC changes explicitly.

C. Necessity of a de novo Bootstrap Analysis

One key issue when pruning taxa from bootstrap trees
(and MSAs) is that the consensus tree computed on the
pruned bootstrap tree collection may be different from the
consensus tree constructed on re-computed bootstrap trees
on a pruned MSA (that may also contain fewer alignment
sites). In other words, we ask whether it is necessary to re-
compute bootstrap trees after rogues have been identified and
pruned or if pruning them from the existing tree collection
is sufficient.

We address this question by pruning rogues identified
by STA from the corresponding MSAs and recomputing
bootstrap trees (and subsequently corresponding consensus
trees) on the pruned MSAs. We chose not to re-align the
sequence data, because initial alignments had been created
using various MSA tools and many of them were refined by
manual inspection. Thereby, we avoid an alignment method-
specific bias in these experiments. With re-alignment it
would be specifically hard to disentangle which topological



#initTaxa RFobs ppru prec zrec-pru
24 2 ≤ 0.001 ≤ 0.001 1.99
44 6 ≤ 0.001 ≤ 0.001 0.63
52 4 ≤ 0.001 ≤ 0.001 -1.28
72 5 ≤ 0.001 ≤ 0.001 -0.14
88 3 0.01 0.06 0.49

125 1 0.54 0.01 1.03
128 3 0.06 0.01 1.29
141 13 ≤ 0.001 ≤ 0.001 5.52
143 3 0.19 0.02 0.51
148 11 ≤ 0.001 ≤ 0.001 1.30
150 7 ≤ 0.001 ≤ 0.001 0.03
218 24 ≤ 0.001 ≤ 0.001 0.71
316 17 ≤ 0.001 ≤ 0.001 -1.36
317 11 ≤ 0.001 ≤ 0.001 -0.39
350 10 ≤ 0.001 ≤ 0.001 -0.48
354 7 0.01 ≤ 0.001 -0.47
404 34 ≤ 0.001 ≤ 0.001 2.02
424 31 ≤ 0.001 ≤ 0.001 -0.78
451 33 ≤ 0.001 ≤ 0.001 0.13
500 22 ≤ 0.001 ≤ 0.001 0.83
628 36 ≤ 0.001 ≤ 0.001 0.80
714 51 ≤ 0.001 ≤ 0.001 1.48
885 44 ≤ 0.001 ≤ 0.001 0.59

Table II: RF-distances (RFobs) between pruned bootstrap trees and
de novo bootstrap trees computed from pruned MSAs for data sets
with up to 885 taxa (#initTaxa). P-values (ppru and prec) indicate the
probability that the RF-distance of two collections of 1,000 trees of
T 10K
pru , resp. T 10K

rec (see text), is equal or greater than RFobs. zrec-pru
is the z-value of RFobs in a distribution of RF-distances between
consensus trees built from 1,000 trees of T 10K

pru and 1,000 trees of
T 10K
rec .

changes in the bootstrap tree collection are due to re-
alignment and which are due to re-computation of the trees
on a pruned, but otherwise unchanged, MSA.

We denote consensus trees obtained from the original
(pruned) bootstrap tree sets as Cpru and consensus trees
from re-computed bootstrap replicates (de novo replicates)
on the pruned MSAs as Crec. We computed the symmet-
ric Robinson-Foulds (RF) distance [23] between Cpru and
Crec (see column RFobs in Table II). Because of the high
computational requirements, we constrained this analysis to
data sets with up to 885 taxa. Over all data sets we tested
if Cpru and Crec are significantly more different from each
other with respect to the RF distance, than two consensus
trees created under identical conditions.

Therefore, we initially increased the number of bootstrap
replicate trees on the original, comprehensive MSAs, to
10,000 and subsequently pruned rogue taxa (the result is
denoted as T 10K

pru ). Then, we randomly drew tree set pairs
of 1,000 trees each from T 10K

pru without replacement and
measured the RF-distance between the respective consensus
trees. This procedure was repeated 1,000 times to obtain
a distribution of 1,000 randomized pair-wise RF-distances.
In Table II, ppru denotes the fraction of RF-distances in the
sample distribution being greater or equal to the observed
RF-distance RFobs (see above). Analogously, we also com-
puted 10,000 bootstrap trees on the pruned MSAs (denoted

as T 10K
rec ) and created a sample distribution of pairwise RF-

distances, once again chosen randomly from the bootstrap
tree collections in T 10K

rec to obtain a p-value (prec in Table II).
Finally, we sampled a distribution of 1,000 RF-distances
between a consensus tree of 1,000 trees of T 10K

rec and a
consensus tree of 1,000 trees of T 10K

pru , to obtain a z-value
of the observed RFobs compared to the sampled distribution
(denoted as zrec-pru in Table II).

As shown in Table II, the RF-distances between pruned
trees and de novo computed trees (RFobs) are usually sig-
nificantly higher than in the null distributions of ppru and
prec. For almost all data sets, the observed RF-distance
lies within the expected variation of RF-distances when the
consensus tree of 1,000 pruned bootstrap trees is compared
to a consensus tree of 1,000 re-computed bootstrap trees.
We conclude that, recomputing bootstrap trees de novo on
pruned MSAs yields trees that are significantly different
from pruned bootstrap trees. Thus, we suggest that bootstrap
replicates need to be recomputed after rogue taxa have been
pruned.

V. CONCLUSION AND FUTURE WORK

We have introduced and made available STA, a novel,
simple, and memory-efficient approach for rogue taxon
identification. Compared to BMA, it does not only add more
bipartitions to the consensus tree, but can also increase sup-
port of existing bipartitions by pruning taxa. Furthermore,
our algorithm is accurate, in the sense that it only produces
sub-optimal results when multi-taxon drop sets are required
for increasing support. As shown on a broad and diverse
collection of real-world biological MSAs only 1.8 % of the
drop sets identified by BMA (using an MR threshold) can
not be optimally recovered by STA. On many data sets, we
unraveled a substantial potential for improving bipartition
support in consensus trees, when a liberal stopping criterion
(as implemented in STA) is deployed.

Our study covers a broad spectrum of phylogenetic studies
(for further information see [24]) and MSA sizes ranging
between 24 and 2,554 taxa. Furthermore, we compared
STA and BMA (both integrated in RAxML) with two
broadly used taxon stability criteria. TII and LSI perform
significantly worse than STA and BMA. Potentially more
accurate iterative versions of TII and LSI did not exhibit
better performance than their monolithic counterparts. There
is a trend for LSI to produce less optimal results than
TII with respect to RBIC scores. Given the progressive
performance degradation of the TII and LSI on data sets
with more taxa, we conclude that there is a tendency for
rogue taxa to be unstable. However, rogue taxa are not
necessarily the most unstable taxa in the bootstrap tree
collection. Therefore, under the optimality criteria used here,
node stability methods do not appear to be well-suited for
identifying rogue taxa.



Finally, we addressed the question whether it is necessary
to conduct a de novo bootstrap analysis on pruned MSAs.
To this end, we determined RF-distances between consensus
trees from pruned bootstrap trees and de novo bootstrap
trees. Based on a statistical analysis, we find that differences
between consensi relying on pruned trees and de novo trees
on pruned MSAs are significantly larger than expected by
chance. Hence, a de novo bootstrap inference after rogue
identification and removal seems to be mandatory.

We plan to extend STA for optimization of bipartition
support in ML/MP trees (drawn from a bootstrap tree
collection) and to integrate support for different consensus
tree thresholds (i.e., MREC and SC). Beside that, we are
working on improving the runtime efficiency of the STA.
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