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Abstract—The Phylogenetic Likelihood Function (PLF) is
an important statistical function for evaluating phylogenetic
trees. To this end, the PLF isthe computational kernel of
all state-of-the-art likelihood-based phylogenetic inference
programs. Typically, it accounts for more than 85% of total
execution time in such programs. We present a substantially
improved hardware architecture for computing the PLF
based on previous experiences with implementing the PLF
on reconfigurable logic. Our new design is optimized for
computing the PLF on four-state (DNA) input data. It is
also adapted to the computational requirements of real-
world tree inference programs and completely independent of
the specific tree search algorithm at hand. Furthermore, we
describe how our architecture can be modified and adapted
to handle generaln-state data, such as protein (20 states) or
RNA secondary structure data (6, 7, or 16 states, depending
on the model). Finally, we designed an interface mechanism
such that our PLF hardware architecture can interact with
the widely-used phylogenetic inference tool RAxML. We
deploy FPGA technology to verify the correctness of the
architecture and to evaluate performance.

I. I NTRODUCTION

Phylogenetic inference is a discipline of computational
biology that deals with reconstructing trees (phylogenies)
that represent the evolutionary history of a set of species.
Inferences can, for instance, be based on molecular se-
quence data. Phylogenetic tree reconstruction has many
important applications in biological and medical research
(see e.g., [1]).

The input for a phylogenetic analysis consists of a list
of organism (species) names and their respective DNA
sequence data. Prior to conducting a phylogenetic analysis
using character-based inference methods (e.g., Maximum
Parsimony [2] or Maximum Likelihood [3]), a multiple
sequence alignment (MSA) of the sequences needs to be
computed in a pre-processing step. The goal of the MSA
step is to determine which nucleotides of the sequences
share a common evolutionary history. An exemplary MSA
of DNA sequences for the Human, the Mouse, the Cow,
and the Chicken is provided below:

Cow ATGGCATATCCCA-ACAACTAGGTCCAA
Chicken ATGGCCAACCACTCCCAACTAGGTTC-A
Human ATGGCACAT---GCGCAAGTAGGTAC-A
Mouse ATGG----CCCATTCCAACTTGGTACAA

The gap symbol- is inserted into the sequences by the
MSA process to indicate that nucleotide insertions or
deletions have occurred during the evolutionary history

of the organisms under study. After the MSA step, alln

sequences have the same lengthm, that is, the MSA has
m alignment columns (also called sites).

Given a MSA, the output of a phylogenetic analysis
is an unrootedbinary tree topology. The extant species
(for which DNA datacan be sequenced andis available)
are assigned to the leaves (tips) of such a tree, whereas
the inner nodes represent hypothetical extinct common
ancestors.

In general, a scoring function/criterion and a tree search
strategy are required to reconstruct a phylogeny from
a MSA. Finding the best-scoring tree under Maximum
Likelihood is known to be NP-hard [4]. Intuitively, this is
because the number of possible distinct unrooted binary
tree topologies forn organisms is super-exponential inn
(
∏n

i=3(2i− 5)). The scoring criteria/functions are used to
assess how well a specific tree topology explains (fits) the
underlying molecular sequence data.

The PLF represents one of the most widely used op-
timality criteria to score and thus choose among dis-
tinct evolutionary scenarios (phylogenetic trees). Numer-
ous phylogenetic inference packages implement the PLF,
either for standard ML-based optimization (RAxML [5],
GARLI [6], PHYML [7]) or for Bayesian phylogenetic
inference (MrBayes [8], PhyloBayes [9]). All PLF-based
phylogenetic inference programs spend the largest fraction
of overall run time (typically between 85% and 95% [10])
for computing the PLF. It is thus desirable to devise
hardware solutions for this widely-used and important
function.

The work we present here, is already the 4th generation
of our series of reconfigurable architectures for computing
the PLF. Initially, we explored two alternative approaches
(1st generation:[11] and 2nd generation:[12]) for paral-
lelizing the PLF on hardware. We found that, a deeply
pipelined tree-like placement of likelihood processing
units (1st generation design) can compute the PLF on fully
balanced binary trees in a fast and memory-efficient way.
However, a more flexible vector-like arrangement of like-
lihood processing units (2nd generation design) is more
suitable for real-world scenarios, since it is completely
independent of the tree-search strategy, the size, as well
as the shape of the tree. After adopting this generic vector-
like arrangement of processing units for the PLF, we
designed the 3rd generation architecture [13] that provided
the full functionality for offloading all PLF functions from



a real-world Maximum Likelihood program (RAxML) to
a co-processor. The 3rd generation design supports DNA,
AA, and RNA secondary structure data, scaling procedures
for avoiding numerical underflow, Newton-Raphson-based
branch length optimization, and the calculation of tran-
sition probability matrices (see Section III). We realized
that, such a highly flexible and generic architecture (capa-
ble of executing several PLF function types and handling
data with different numbers of states) can not be efficiently
mapped (compared to performance on x86 architectures)
onto present-day FPGAs.

The 4th generation of our architecture, which we present
here, combines the concepts developed for the 2nd and
3rd generation and has been significantly improved with
respect to resource utilization as well as performance.
In addition, our new architecture implements a generic,
FIFO-based interface for communicating with the outer
world via, for instance, external memory or PCIExpress.

The remainder of this paper is organized as follows: in
Section II we address related work and in Section III we
describe how the PLF is calculated. In Section IV we out-
line the architecture and in Section V we describe how the
software is (re-)organized to allow the RAxML application
code (running on the CPU) to efficiently offload operations
to the hardware architecture. We present performance
results in Section VI-B and conclude in Section VII.

II. RELATED WORK

While there exists a large diversity of methods and
software for phylogenetic inference, to date, only few
methods have been mapped to hardware. In [14] and [15],
Mak and Lam map a PLF implementation with reduced
floating-point precision to reconfigurable logic. The Jukes-
Cantor (JC69 [16]) model, which is implemented in this
work, represents the simplest statistical model of DNA
substitution and, as a consequence, is rarely used in
present-day biological analyses [17]. The performance
tests reported in [14] and [15] have been conducted on
trees with only 4 leaves (4 input sequences). Hence,
scalability beyond 4 species trees is not addressed.

In [18], Davis et al. present an implementation of a
simple tree reconstruction method called UPGMA (Un-
weighted Pair Group Method with Arithmetic Mean). Due
to the many simplifying assumptions made in the UPGMA
algorithm, it is practically not used for real-world analyses
any more.

In [19] and [20], Bakoset al. focus on the reconstruction
of phylogenetic trees using gene order input data, that
is, the order of corresponding genes in the genomes of
different organisms is used as input data for reconstructing
trees. Bakoset al. mapped GRAPPA [21], an open-
source implementation for gene order based phylogenetic
inference, onto FPGAs. The main difference to PLF-based
phylogenetic inference is that, the kernel function used
in gene order analyses is discrete. This means that, the
amount of floating-point operations required to reconstruct
a phylogeny is small and that a FPGA implementation can
mostly rely on integer arithmetics.
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Figure 1. Computation of ancestral probability vector entries.

Zierke and Bakos [22] presented a FPGA accelera-
tor for the PLF as required for Bayesian MCMC-based
(Markov Chain Monte Carlo) inference methods. The
authors mapped the MrBayes [8] PLF implementation
for DNA data to reconfigurable hardware. They included
numerical scaling techniques (see [23] for details on
numerical scaling in the PLF) to prevent underflow as well
as a component for calculating log likelihood scores. The
speedup estimates (based on the largest available Virtex 6
SX FPGA at time of publication) that are reported in the
paper vary between 2.5 and 8.7 compared to a single state-
of-the-art Intel Xeon 5500-series core. Note that, Bayesian
inference programs do not require numerical optimization
routines (e.g., Newton-Raphson) for branch length opti-
mization, since the MCMC procedure is used to integrate
over branch length distributions. Hence, the PLF as used
in Bayesian inference programs is less complex than for
ML programs. ML programs typically deploy Newton-
Raphson optimization procedures for branch length opti-
mization, which makes hardware design more challenging,
since dedicated components for computing the first and
second derivative of the likelihood are required.

Kasap and Benkrid [24] presented a FPGA design
for phylogenetic inference under parsimony and assessed
performance on a FPGA supercomputer. The implemen-
tation is limited to trees with up to 12 species, which
is very small by today’s standards (the largest published
parsimony-based tree has 73,060 taxa [25]). They report
speedups between a factor of 5 and up to a factor of
32,414 for utilizing 1, 2, 4, and 8 nodes (each node is
equipped with a Xilinx Virtex4 FX100 FPGA) on the
Maxwell system compared to a 2.2GHz Intel Centrino
Duo processor. However, the speedups reported are only
relative speedups with respect to the parsimony function
implementation in PAUP∗ [26] and not with respect to
the fastest-known parsimony implementation in the TNT
software package (used, e.g., in [25]).

In [27], Alachiotis and Stamatakis mapped a generic
version of the parsimony kernel to reconfigurable logic.
The implementation is independent of the number of
species and is adapted to the requirements of modern tree
search strategies. They verified the functionality of the
architecture using real-world datasets with up ton = 500



species andm = 48, 000 alignment sites. The speedups
ranged between a factor of 5.6 and 12.5. The parsimony
architecture was mapped to a Xilinx Virtex 6 SX475
FPGA and performance was compared to the highly opti-
mized version of the parsimony kernel in the Parsimonator
open-source code (available at: http://www.exelixis-lab.
org/software.html; Parsimonator uses SSE3 and AVX vec-
tor intrinsics) running on a Intel i7 2600 CPU at 3.4GHz.

III. T HE PHYLOGENETIC L IKELIHOOD FUNCTION

The Felsenstein pruning algorithm [3] is the standard
method for computing the PLF and the overall log likeli-
hood score on a given tree topology. In the following, we
provide an abstract description of this algorithm.

The first step consists in identifying a pair of child nodes
i and j in the given tree for which the probability vector
at the common ancestork (1 ≤ i, j, k ≤ 2n − 2) has
not yet been computed. Given nodesi and j, the second
step consists in calculating the ancestral probability vector
entries atk and to subsequently prune the child nodesi

andj from the tree. These steps are executed recursively
(essentially by means of a post-order tree traversal) until
the probability vector at the virtual rootvr has been
calculated. When this is the case, the pruning process has
transformed the initial tree to only one node (ancestral
probability vector) that is located at the virtual root of
the tree. Phylogenetic trees under ML are unrooted for
mathematical and computational reasons [3], but a virtual
root vr can be placed into any branch of the tree to evalu-
ate its likelihood score. Note that, under certain, standard,
model restrictions (namely time reversibility of the model
of nucleotide substitution) the overall log likelihood score
is identical regardless of the placement of the virtual root.

In order to compute the PLF on a given, fixed, tree
topology, apart from the tree shape itself, one also requires
the branch lengths and the parameters of the statistical
nucleotide substitution model (see [11] and [23] for de-
tails). For DNA data, a model of nucleotide substitution
is provided by a4 × 4 matrix (for protein data by a
20× 20 matrix) that is usually denoted asQ matrix. The
Q matrix contains the instantaneous transition probabili-
ties (for infinitesimal relative evolutionary timedt) of a
nucleotideA to change into a nucleotideA, C, G, or T etc.
To compute the nucleotide substitution probabilities for a
given branch lengtht (t essentially represents the evolu-
tionary time between two nodes in the tree), one has to
computeP (t) = eQt. This is usually implemented via an
eigenvalue/eigenvector decomposition. Thus, to compute
the likelihood on a fixed tree with given branch lengths
and model parameters, one initially needs to apply the
Felsenstein pruning algorithm and subsequently compute
the overall likelihood score of the tree based on the
ancestral probability vector at the virtual root.

Every probability vector entry at a positionc (c =
1...m) ~L(c) at the tips and at the inner nodes contains the
four probabilitiesP (A), P (C), P (G), P (T ) of observing
a nucleotideA, C, G, or T at a specific column/sitec of the
input alignment. The probabilities at the tips (leaves) of the
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Figure 2. Block diagram of the pipelined PLF architecture for DNA
data.

tree for which observed data (DNA sequences)is available
are set to 1.0 for the observed nucleotide character at
the respective positionc (e.g., for the nucleotide A:
~L(c) = (1.0, 0.0, 0.0, 0.0)).

Given, a parent nodek and two child nodesi andj, their
probability vectors~L(i) and ~L(j), the respective branch
lengths leading to the childrenbi and bj , and the transi-
tion probability matricesP (bi), P (bj), the probability of
observing anA at positionc of the ancestral (parent) vector
~L
(k)
A (c) is computed as follows:

~L
(k)
A (c) =

(

T
∑

S=A

PAS(bi)~L
(i)
S (c)

)(

T
∑

S=A

PAS(bj)~L
(j)
S (c)

)

(1)

A schematic outline of this procedure is provided in
Figure 1. As mentioned before, an important practical
implementation issue is that, the ancestral probability
vector entries need to be scaled for avoiding numerical
underflow because of increasingly small probability values
as we approach the virtual root.

When the procedure reaches the virtual root, the per-site
likelihood at site/columnc, l(c) is computed as follows
using the probability vector~L(vr) at the virtual root:

l(c) =

T
∑

S=A

πSLS
(vr)(c) (2)

The probabilitiesπA throughπT are the prior probabil-
ities (also called base frequencies) of observingA, C, G, or
T at vr and are typically drawn empirically from the input
data. The overall likelihood of the tree is then computed
as the sum over the logarithm of the per-site likelihoods:
∑m

c=1 log(l(c)).

IV. RECONFIGURABLE ARCHITECTURE

In the following, we describe the basic pipelined datap-
ath of the PLF, the complete likelihood core as adapted for
DNA data, the scaling unit, and the FIFO-based interface
to the “outer” world.

A. PLF Pipeline

Figure 2 illustrates our pipelined datapath. There are
four 64-bit wide input buses that are used for streaming
in the input data. We obtain the left and right transition
probability matrices (P (bi), P (bj)) over the lmat i and
rmat i buses. The probability vector entries of the left and
right probability vectors are streamed in (~L(i), ~L(j)) via
the lvec i andrvec i buses. The pipeline is organized into
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4 main stages which are distinguished by dashed lines in
Figure 2.Stage 1consists of 2 pipelined multipliers that
operate in parallel and compute the sum of the 2 input
arguments from the left and right child node. Thereafter,
Stage 2 accumulates the multiplier outputs within four
clock cycles (remember: DNA data has 4 states). The
results of the two parallel accumulation operations are
combined inStage 3via a multiplication. The combination
of stages 1, 2, and 3 implements Equation 1. Finally,Stage
4 executes the multiplication with the inverted eigenvector
matrix (this is a numerical detail that is related to the
exponentiation of theQ matrix as described in Section III).
Thus, a single pipeline instance can perform all operations
required to multiply a column of a transition probability
matrix P with a probability vector entry~L(c).

B. Likelihood Core

The complete likelihood core for DNA data is shown in
Figure 3. Four pipeline instances are required to accom-
modate the 4-state DNA model. Every pipeline instance
operates on a different column of the two4×4 probability
transition matrices (P (bi), P (bj)) that represent the branch
lengths leading to the left and right child node respectively.
All instances receive the same probability vector input and
the same inverted eigenvector matrix. Note that, only a
single Q matrix is used for calculating the PLF on the
entire tree. Thus, the eigenvector matrix for obtaining
P (bi) and P (bj) remains constant. The results of the
individual pipeline instances are then summed up using
the adder tree depicted in Figure 3. Theval o output bus
is used to stream out the ancestral probability vector entry
~L(k).

C. Scaling Unit

As already mentioned, the output values~L(k) of the
likelihood core need to be checked for potential numer-
ical underflow and scaled appropriately, if required (for
mathematical details, please refer to [23]). Therefore, we
designed a pipelined probability vector entry scaling unit
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Figure 4. Architecture of the pipelined ancestral vector entry scaling
unit.

(Figure 4). Thescaler unit works as follows. It monitors
the values that are generated by the likelihood core on
a per-site basis and scales/multiplies them by a constant
factor if all values in an ancestral probability vector entry
~L(k)(c) are smaller than a pre-defined thresholdǫ.

Initially, an adder is used to compare the incoming
probability values toǫ. This is achieved by adding the
negative value of the threshold to the input probabilities
that need to be checked for scaling. The sign bit of the
adder output indicates whether the values need to be scaled
or not. Since we only scale, ifall four probabilities of an
output vector are smaller thanǫ, we use three 1-bit shift
registers with a delay of one clock cycle. Then, a five-
way and operation is used to determine the value of the
sc en signal. Hence, thesc en is used to decide if we
need to scale or not. If we need to scale, we multiply
all four probabilities in~L(k)(c) by 2256. We implement
this multiplication via a 3-bit addition on the three most
significant bits of the mantissa.

D. System Design

Figure 5 illustrates how the likelihood core and the
scaler unit are connected with each other. The figure
also shows how the core components are integrated with
the FIFO input/output buffers that allow for efficient
communication with the outer world (e.g., an external
memory controller or a PCIExpress bus). Incoming data
are temporarily stored in the input FIFO buffers until
enough data have arrived for computing an ancestral
probability vector entry at a sitec. These dedicated FIFO
buffers that are specifically adapted to the operation of our
pipeline allow for simplifying the pipeline architecture and
thereby obtaining a more resource-efficient design with
improved performance.

An important aspect of the proposed architecture is
that, it can easily be adapted for accommodating PLF
computations on data with more states (e.g., protein data
with 20 states or RNA secondary structure data models
with 6,7, or 16 states). The required modifications are
straight-forward, since one only needs to appropriately
adapt the adder/accumulator parts of the PLF pipeline,
the likelihood core, and the number of shift registers in
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the scaler. More specifically, the current configuration of
pipelineStage 2accumulates input values over four clock
cycles. Extending this stage by more shift-register/adder
pairs, allows for deploying the pipeline on data with more
states. A different number of pipeline stages is required
in the likelihood core as well as for the adder-tree. The
number of shift-registers in the scaler component must be
increased to match the number of states minus one. Also
the size of theand gate needs to be adapted.

V. HOST-SIDE MANAGEMENT

In the following, we describe the required software-side
components required for using our FPGA-based system.
To design an efficient hardware implementation, we retain
the entire “logic” that offloadsto and steers operationson
the hardware, on the PC-side. Thereby, we can deploy
the hardware architecture to exclusively carry out the
expensive PLF computations. Therefore, the host (PC-
side) performs two main system tasks: (i) manage memory
and (ii) initiate computations on the FPGA.

A. Memory-management

The external memory (typically DRAM) on the FPGA
board is entirely managed by the host. To this end, we de-
veloped an abstract interface that allows for conveniently
managing vectors of fixed size. This interface organizes
(keeps track of the organization of) the on-board external
memory into an array of fixed-size memory blocks. The
size of each memory block exactly corresponds to the size
of one full-length probability vector~L. Each individual
memory block (probability vector) is associated with a
unified vector address that contains a slot number and a
bank number. The mapping of a slot number to a physical
address in the external memoryon the FPGA board
is implementation-dependent. Assuming a linear, byte-
addressable memory space (which for example is used on
the host to mirror the content of the external memory on
the FPGA board), the physical address of a slot number
Idxslot is Addrphys = Addrbase + Idxslot ∗ Sizeblock,
whereAddrbase is the start address of the memory region
used for block storage andSizeblock is the size (in # bytes)
of each block. On the FPGA, the data-organization is more
complex than for a linear address space, since one has to
distribute each vector over multiple FPGA-side memory
blocks to achieve high memory throughput. The host-
side interface hides the intrinsic complexity of dividing
the vectors into fragments and storing them in different
FPGA-side memory blocks. The bank number, that is,

the second part of the unified vector-address, is used to
distribute data blocks among different external memories
on the FPGA board interfaces. This allows for accessing
data blocks that reside in different banks in parallel. In the
PLF context, reading and writing data in parallel through
different memory interfaces is crucial to achieve maximum
performance because the contents of two probability child
vectors (~L(i), ~L(j)) can be read in parallel. Therefore, the
data blocks associated with the two probability vectors of
nodesi andj must be kept on different banks that are in
turn, associated with distinct memory interfaces.

The host interface implements functions for data block
transfer between the host DRAM and the FPGA. To
achieve this in practice, we augmented the internal
RAxML data-structures by unified probability vector ad-
dresses.

B. Offloading Functions to the FPGA

Apart from handling the entire memory management,
the host also orchestrates the PLF operations that are
executed on the FPGA. As mentioned above, the FPGA
implements the PLF, which represents a key component of
the RAxML tree search algorithm. One basic component
of the tree-search is tree evaluation (computation of the
overall log likelihood score of a tree topology) which, as
a prerequisite, requires to compute/update the ancestral
probability vectors at the inner nodes of the tree via the
Felsenstein pruning algorithm. These updates of ancestral
probability vectors which are required when the tree
topology is changed (in the course of the tree search)
account forthecomputationally most intensive part of the
PLF in RAxML (approximately 60-70% of total run time).
Therefore, we entirely offload these computations to the
FPGA.

To offload the computations, we need to transfer the
constant (because the DNA sequence is known) probability
vectors located at the tips to their corresponding memory
locations in the on-board external memory. Thereafter,
we traverse the tree from the tips toward the virtual
root to calculate the ancestral probability vectors in post-
order. To this end, we represent each post-order tree
traversal by a traversal descriptor (an ordered list of tree
node triplets:(i, j, k) representing the traversal) which is
initially transferred to the FPGA. More specifically, each
element in the traversal descriptor, contains a triplet of
unified vector addresses (corresponding to the address of
the parent nodek and the two child probability vectorsi
andj) and a pair of branch lengths (bi, bj). The FPGA then
executes the PLF as specified by the elements contained
in the traversal descriptorin sequenceuntil the PLF for all
triplets in the list has been computed. For each traversal
descriptor element, the reconfigurable architecture reads
the data of the two child vectors and writes the result to
the parent vector.

C. Host-side simulation

To test the memory-management concept and the FPGA
control “logic” we simulated the memory-management
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interface and implemented the PLF on the host in SW. We
created a “mock-up” that implements the FPGA memory
interface. Instead of transferring data between memories
on the host and the FPGA, the mock-up emulates the
FPGA memory content and the target FPGA memory
organization (using 2 banks consisting of 4 internal blocks
each) on a x86 architecture. Using this SW emulator,
we tested a basic version of the FPGA control logic.
Our experiments focused on transferring the probability
vectors associated with the tips of the tree to the emulated
FPGA memory and testing the iterations over the traversal
descriptor (see Section V-B). In our simulations, the PLF
was computed on the FPGA emulation (running on the
host) and then transferred back from the emulation via
the interface to the associated host-side destination address
in RAxML. Note that, for these simulations, the address
spaces of RAxML and the SW simulation of the FPGA
were completely separated. After completing the iteration
over the traversal descriptor, we compared the probability
vectors at the virtual root produced by the emulated
FPGA to the corresponding vectors as calculated directly
by RAxML. Thereby, we verified the correctness of the
unified vector-addresses storage scheme in RAxML and
tested the functionality of the memory allocation strategy.

D. System Overview

A schematic outline of the overall integrated system is
provided in Figure 6. RAxML interacts with the recon-
figurable hardware via the dedicated HW interface. On
the FPGA side, aControl Logicmodule organizes all the
incoming processing or data transfer requests that received
from the SW on the host side. The RAxML hardware
interface can also directly access the external on-board
memory to allow for overlapping data transfers with PLF
computations. The Control Logic module processes the
received traversal descriptor and generates corresponding
read/write addresses for the external memory on the
FPGA board. The PLF calculations are carried out by
the likelihood core and the ancestral state vectors are
written back to external on-board memory. The Control
Logic synchronizes the likelihood core calculations with
read/write operations to external memory. So far, we have
implemented the basic RAxML interface as well as an ini-
tial test-bench to generate and verify traversal descriptors
in software. On the FPGA side, we have implemented,
evaluated, and verified the likelihood core.

The hardware description of the reconfigurable system

Table I
RESOURCE OCCUPATION AND PERFORMANCE OF THEPLF

ARCHITECTURE ON A V IRTEX 6 SX475T-2 FPGA.

Resources 1 Core 8 Cores Maximum
Slice Registers 28,385 226,977 595,200

Slice LUTs 19,596 159,263 297,600
Occupied Slices 7,823 55,692 74,400

DSP48Es 235 1880 2016

is available for download at: http://www.exelixis-lab.org/
countLiCoGen4.php.

VI. V ERIFICATION AND RESULTS

We describe the verification of the reconfigurable ar-
chitecture in Section VI-A and present a performance
evaluation of the reconfigurable system in Section VI-B.

A. Verification of the PLF Architecture

Our reconfigurable architecture was implemented in
VHDL and mapped to a Virtex 6 SX475T-2 FPGA.
We verified the correctness of the hardware design by
extensive post place and route simulations using Modelsim
6.3f by Mentor Graphics. We generated input data for
the simulations by using RAxML on real-world DNA
sequences. In the future, we also intend to conduct tests on
an actual chip using a HTG-V5-PCIE development board
with a Virtex 5 SX95T FPGA and integrate our open-
source PC↔ FPGA communication platform [28] (avail-
able at http://opencores.org/project,pcfpga com) into the
RAxML source code for a real-world tests of the entire
system.

B. Performance Evaluation

Table I shows the resource requirements for a single
instance of the likelihood core on a Virtex 6 SX475-
2 FPGA. A direct comparison to previous generations
of our architecture can be misleading, since each PLF
hardware generation is organized in a different way and
represents a distinct approach to the problem. Nonetheless,
the basic computational pipeline that performs the matrix-
vector multiplications of the PLF on DNA data (Figure 2)
occupies approximately the same amount of resources as
the respective pipelined 3rd generation data-path (Figure
3 in [13]). For this comparison, our 4th generation PLF
pipeline was mapped to the same FPGA used in [13]
(Virtex 5 SX95T-2). A significant difference between the
two generations is that, the 4th generation pipeline is op-
timized for DNA data and can currently not accommodate
statistical models for among site rate heterogeneity (see,
e.g., [29] or [32]). The PLF pipeline has an initial latency
of 115 clock cycles. Thereafter, it is able to compute one
ancestral probability value during each clock cycle with a
clock frequency of 293.3 MHz.

To evaluate the new PLF architecture, we compare
it to the RAxML reference implementation on a state-
of-the-art CPU (Intel i7 2600 at 3.4 GHz). Since this
CPU provides 256-bit wide AVX vector instructions, we
used the most efficient version of the PLF that deploys



AVX vector intrinsics (available in RAxML-Light: https:
//github.com/stamatak/RAxML-Light-1.0.5). To conduct a
fair comparison between the CPU and the FPGA we intro-
duce a new metric called VEUPS (Vector Entry Updates
Per Second). A similar metric (CUPS; Cell Updates Per
Second) is used in Bioinformatics to compare performance
of pair-wise alignment kernels among various hardware
platforms [30], [31]. The vector-entry size depends on the
number of states in the model. Therefore, VEUPS-based
performance comparisons can be misleading if they do not
refer to vector entries of the same size. We measured the
VEUPS number of RAxML-Light on DNA data without
accommodating for rate heterogeneity. Using one core
of the Intel i7 CPU and a real-world DNA alignment,
the peak CPU performance is 78.83 Mega VEUPS. The
respective performance of a single FPGA likelihood core
instance amounts to 73.54 Mega VEUPS.

This shows that, the per-core VEUPS performance
on a x86 architecture (when using AVX) is better than
the respective per-PLF core performance on a FPGA.
Nonetheless, modern FPGAs allow for instantiating up
to 8 such likelihood-cores. However, such a dense de-
sign with several PLF hardware cores requires additional
routing effort. Therefore, the maximum operating clock
frequency decreases to 167.78 MHz. We estimate that the
peak device-performance that can be achieved for the PLF
from the instantiation of 8 likelihood cores on a Virtex 6
FPGA amounts to 335.57 Mega VEUPS (approximately
42 Mega VEUPS per instantiated core).

VII. C ONCLUSION

We have presented the 4th generation of our series of
architectures for computing the PLF on reconfigurable
logic. The architecture is adapted to the computational
requirements of modern tree search strategies. Approxi-
mately 60-70% of the core PLF calculations for ML-based
programs and even a larger fraction for Bayesian programs
that do not require explicit branch length optimization
can thereby be offloaded to a FPGA. The new design
is optimized for DNA data and can easily be adapted to
support data with more states (e.g., protein data). We find
that, for PLF calculations, current state-of-the-art FPGA
devices achieve a speedup of factor four over single, high-
end CPU cores.

In addition, we have presented (and emulated in SW)
a novel approach for managing memory resources on the
FPGA by maintaining a consistent view of the on-board
FPGA memory organization on the host architecture that
also steers computations. This approach can be deployed
with real world applications such as RAxML to efficiently
orchestrate the scarce and performance critical on-board
memory resources.

With respect to future work, we plan to devise a method
for transmitting data from the CPU to the external memory
on the FPGA board via PCIExpress. Thus will allow
us to design a fully functional system for exploiting the
potential of our 4th generation reconfigurable architecture
as accelerator for PLF calculations.
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