
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–3

RAxML-Light: A Tool for computing TeraByte Phylogenies
A. Stamatakis 1,∗∗, A.J. Aberer 1, C. Goll 1, S.A. Smith 2, S.A. Berger 1,
F. Izquierdo-Carrasco 1

1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies,
Schloss-Wolfsbrunnenweg 35, D-68159 Heidelberg
2Blackrim Lab, Department of Ecology and Evolutionary Biology, University of Michigan, 2071A
Kraus Natural Science Building, 830 North University Ann Arbor, MI 48109-1048
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Because of advances in molecular sequencing and
the increasingly rapid collection of molecular data, the field
of phyloinformatics is transforming into a computational science.
Therefore, new tools are required that can be deployed in
supercomputing environments and that scale to hundreds or
thousands of cores.
Results: We describe RAxML-Light, a tool for large-scale
phylogenetic inference on supercomputers under maximum likelihood.
It implements a light-weight checkpointing mechanism, deploys 128-
bit (SSE3) and 256-bit (AVX) vector intrinsics, offers two orthogonal
memory saving techniques, and provides a fine-grain production-
level MPI (Message Passing Interface) parallelization of the likelihood
function. To demonstrate scalability and robustness of the code, we
inferred a phylogeny on a simulated DNA alignment (1481 taxa,
20,000,000 bp) using 672 cores. This dataset requires one TeraByte
of RAM to compute the likelihood score on a single tree.
Code Availability: https://github.com/stamatak/RAxML-Light-1.
0.5

Data Availability: http://www.exelixis-lab.org/onLineMaterial.
tar.bz2

Contact: Alexandros.Stamatakis@h-its.org

1 INTRODUCTION
Phyloinformatics is facing a paradigm shift toward becoming a
’real’ computational science. Molecular sequencing technologies
are developing at a rapid pace, generating enormous amountsof
new data. Due to the necessity to process (and store) huge amounts
of data, we expect the field to undergo an analogous transition that
physics or computational fluid dynamics underwent 20 to 30 years
ago.

Projects such as the 1000 insect transcriptome sequencing
project (www.1kite.org) already face these challenges. Such
evolutionary studies require software that scales beyond a
single node, that can be checkpointed and restarted, and that
can accommodate the memory requirements of whole-genome
datasets under likelihood-based models. RAxML-Light, is a
production-level tool for phylogenetic inference on supercomputers
that implements new approaches for handling load imbalance,

∗to whom correspondence should be addressed

checkpointing, and reducing the RAM requirements of likelihood
computations. Implementation details are discussed in theon-line
supplement.

2 FEATURES
We briefly discuss the features that distinguish RAxML-Light from standard
RAxML, other likelihood-based phylogeny programs, and theBEAGLE
library (Ayreset al., 2011). One important feature (in contrast to BEAGLE,
MrBayes (Ronquist & Huelsenbeck, 2003), or GARLI (Zwickl, 2006)) is
that, RAxML-Light implements a fine-grain MPI parallelization to compute
the likelihood on a single huge dataset and a single tree across several nodes.
We introduced the proof-of-concept implementation in Ottet al. (2007). The
work is split by distributing alignment sites or entire partitions (depending
on the selected command line options) among processors.

Another essential feature is the light-weight checkpointing and restart
capability, that is required on typical HPC systems that have queues with
24- or 48-hour run time limits. Light-weight means that onlythose data-
structures are stored in a checkpoint which are really required to restart the
code. The design goal is to minimize checkpoint writing/reading times and
file sizes.

To the best of our knowledge, RAxML-Light comprises the onlyfine-
grain parallelization of the likelihood function that alsoincorporates load
balance mechanisms as described in Stamatakis & Ott (2009) and Zhang
& Stamatakis (2012). Load imbalance can deteriorate parallel efficiency in
partitioned phylogenetic analyses.

RAxML-Light also contains a production-level implementation of two
orthogonal memory saving techniques that can be used simultaneously
(described in Izquierdo-Carrascoet al. (2011a) and in Izquierdo-Carrasco
et al. (2011b)). These techniques allow for deploying RAxML-Light on
systems that do not have enough RAM to store all conditional probability
vectors required for likelihood calculations.

Finally, RAxML-Light also uses 256-bit wide AVX vector intrinsics
to accelerate likelihood computations on Intel Sandy-Bridge and AMD
Bulldozer CPUs that will become available in many HPC systems over the
next 2-3 years.

3 PERFORMANCE & STRESS TESTS
Parallel Scalability: We measured the relative speedup of the MPI version
of RAxML-Light on a dataset with 150 taxa and 20,000,000 bp (extracted
from the above simulated dataset) on an AMD Magny-Cours based cluster
with a Qlogic Infiniband interconnect and a total of 50 48-core nodes
equipped with 128GB (46 nodes) or 256GB (4 nodes) of RAM per node.

c© Oxford University Press 2005. 1

Stamatakis et al

For comparison, we also measured execution times of the PThreads-based
version on a stand-alone 48-core AMD server with 256GB RAM. In Figure 1
we provide execution times for the PThreads and MPI versionson multiples
of 48 cores under the CAT (Stamatakis, 2006) andΓ (using 4 discrete rate
categories) models of rate heterogeneity. The test datasetrequires almost
256GB of RAM underΓ which explains the bad initial performance under
Γ on one and two cluster nodes. The nodes in the cluster have slightly
different swapping configurations than the stand-alone node (same server
type) we used. Overall, the code scales well up to 1536 cores.On 1536
cores, RAxML-Light requires less than two hours (6108 secs)to complete a
full tree search underΓ.

Load balance: The initial work on improving load balance for partitioned
datasets (Stamatakis & Ott, 2009) is hard-coded in RAxML-Light and
can improve parallel efficiency by more than 50%. The recent work
on the ’multi-processor scheduling problem in phylogenetics’ (Zhang &
Stamatakis (2012),-Q option) should only be applied when the number of
partitions/genes is substantially larger than the cores that shall be used. This
alternative data distribution scheme improved parallel run times by one order
of magnitude on a partitioned protein alignment with 1000 partitions under
CAT.

Computing a TeraByte Tree: To conduct a thorough stress test, we simulated
a DNA alignment with 1481 taxa and 20,000,000 bp using SeqGen(Rambaut
& Grass, 1997). The 1481 taxon tree we used to generate the alignment is a
ML tree inferred on a real-world single gene dataset. Under the CAT model
of rate heterogeneity, this dataset requires about 1TB of RAM to compute
the likelihood on a single tree. We executed a single tree search on 672 cores
(14 48-core nodes) which required 40 hours to converge for the standard
RAxML search algorithm. The relative RF (Robinson-Foulds)distance to
the true tree was 7%.

Computing a 116,334 Taxon Tree: For the NSF plant tree of life grand
challenge project, we deployed the PThreads version (running on a single 48-
core node) to carry out 100 ML searches (each search startingfrom distinct
randomized stepwise addition order parsimony starting tree) on a real-world
DNA alignment (116,334 taxa, 16,079 bp) under CAT and a partitioned
model. With the ML search convergence criterion enabled (see Stamatakis,
2011) the runs required 2 automatic restarts (using appropriate Sun Grid
Engine scripts) from checkpoints to complete within three 48 hour queue
slots. While the runs were successful, the resulting trees did not make
’biological sense’. This is in part a result of trying to construct, with the
data available at the time in GenBank (ca. 2008), alignmentswith more
than 100,000 species. Viridiplantae did not have data for more than 100,000
species with any of traditionally well sampled gene regions. So we had to 1)
expand the dataset with less well sampled gene regions for plants, 2) include
ribosomal regions 18S and 26S, and 3) include a large Fungi outgroup. These
complications allowed us to construct a large dataset with more than 100,000
species, but led to some unexpected taxonomic placements. Nonetheless, we
make the alignment and trees available for benchmarking purposes.

Memory Saving Techniques: The scalability of RAxML-Light is limited by
the number of sites in the alignment, because RAxML-Light isparallelized
over sites/partitions. Hence, it does not make sense to analyze datasets as
the one above (116,334 taxa) in parallel on more than one node. On such
gappy datasets with missing data, we can deploy the subtree equality vector
technique (-S option) to substantially reduce memory requirements. The
key idea of this technique is to keep track of subtrees in partitions (genes)
that entirely consist of missing data and omit computing as well as storing
the ancestral probability vectors for these ’empty’ subtrees. In the above
case, using-S led to a reduction of RAM requirements from 66GB down to
26.5GB. This allowed us to also execute some tree searches onsingle nodes
of the Texas Advanced Computing Center, that only have 32GB of RAM
available. The-S option generally also decreases execution times, because
a large number of unecessary computations are omitted (see Izquierdo-
Carrascoet al. (2011b) for performance details). Note that, performance of

 two 256GB nodes

 two 128GB nodes

MPI single 256GB node
Pthreads single 256GB node

CAT
Pthreads &

MPI

"GAMMA"
"CAT"

 1000

 10000

 100000

 1e+06

 0 96 192 384 768 1536
Number of Cores

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Fig. 1. Parallel execution times of the MPI and PThreads versions under
CAT andΓ on a DNA dataset with 150 taxa and 20,000,000 sites.

Table 1. Execution times of unvectorized, SSE3-
and AVX-vectorized RAxML versions

Data Model unvectorized SSE3 AVX

DNA CAT 100 87 76
DNA Γ 520 433 353
PROT CAT 117 83 49
PROT Γ 423 249 187

Unvectorized execution times have been measured using
the standard RAxML version.

this technique also depends heavily on the memory allocatorbeing used (see
supplementary material).

We also tested the MPI version of the recomputation technique (with
reduction factors of-r 0.2 and-r 0.15) on just a single 48-core node
with 256GB RAM on the dense simulated 1TB dataset that does not contain
any gaps. The recomputation technique saves memory by not storing all
ancestral probability vectors, but only a fraction of them as specified by
the-r switch (e.g., setting-r 0.2 means that only 20% of the ancestral
vectors are stored). When an ancestral vector needs to be read that has
not been stored in RAM, we simply recompute it. Evidently, execution
times will increase because of recomputations, but the increase is small
(≈ 40%) even when storing only 10% (-r 0.1) of the required vectors
in RAM (Izquierdo-Carrascoet al., 2011a). Our tests showed that, using
the recomputation technique, a dataset requiring 1TB of RAMcan be
successfully and correctly analyzed on a single multi-coreserver with only
256GB RAM (for additional details see supplementary material).

Vector Intrinsics for Likelihood: We tested the performance of the AVX-
vectorization in RAxML-Light using a DNA dataset with 150 taxa and 1269
bp (1130 distinct site patterns) and a protein dataset with 40 taxa and 1104
bp (958 distinct site patterns) on a single Intel i7-2620M core running at
2.7 GHz. We measured execution times under the CAT and underΓ and
averaged execution times over 3 runs. For reference, we alsoincluded the
execution times of the standard RAxML version without vectorization in
Table 1.

4 CONCLUSION & FUTURE WORK
We have presented, RAxML-Light, a scalable, AVX-vectorized, and
checkpointable open-source code for large-scale phylogenetic inference on
supercomputers. User support will be provided viagroups.google.

2

TeraByte Phylogenies

com/group/raxml and continued development will be provided via the
github repository.

For partitioned whole-genome datasets with thousands of partitions, the
code requires some substantial re-engineering (in addition to the techniques
presented here) to further reduce communication costs. Under the current
fork-join parallelization paradigm (also used in BEAGLE),communication
to trigger parallel regions for partitioned whole-genome datasets becomes
bandwidth-bound instead of latency-bound. This problem isindependent
of and orthogonal to the load balance issues discussed here and only
became apparent in the course of some currently on-going partitioned
whole-genome analyses. We also expect energy-efficiency and core failure
tolerance to become important future research topics with respect to scaling
phylogenetics codes to Exascale HPC systems.

REFERENCES
Ayres, D., Darling, A., Zwickl, D., Beerli, P., Holder, M., Lewis, P., Huelsenbeck, J.,

Ronquist, F., Swofford, D., Cummings, M.et al. (2011) BEAGLE: an Application
Programming Interface and High-Performance Computing Library for Statistical
Phylogenetics.Systematic Biology, .

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O.
(2010) New algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of phyml 3.0.Systematic biology, 59 (3), 307–321.

Izquierdo-Carrasco, F., Gagneur, J. & Stamatakis, A. (2011a). Trading Memory
for Running Time in Phylogenetic Likelihood Computations.Technical report

Heidelberg Institute for Theoretical Studies.
Izquierdo-Carrasco, F., Smith, S. & Stamatakis, A. (2011b) Algorithms, data structures,

and numerics for likelihood-based phylogenetic inferenceof huge trees. BMC
Bioinformatics, 12 (1), 470.

Ott, M., Zola, J., Aluru, S. & Stamatakis, A. (2007) Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene/L. InProc. of IEEE/ACM
Supercomputing Conference 2007 (SC2007).

Rambaut, A. & Grass, N. (1997) Seq-gen: an application for the monte carlo simulation
of dna sequence evolution along phylogenetic trees.Computer applications in the
biosciences: CABIOS, 13 (3), 235.

Ronquist, F. & Huelsenbeck, J. (2003) MrBayes 3: Bayesian phylogenetic inference
under mixed models.Bioinformatics, 19 (12), 1572–1574.

Stamatakis, A. (2006) Phylogenetic Models of Rate Heterogeneity: A High
Performance Computing Perspective. InProc. of IPDPS2006 HICOMB Workshop,
Proceedings on CD, Rhodos, Greece.

Stamatakis, A. (2011) Phylogenetic search algorithms for maximum likelihood.
Algorithms in Computational Molecular Biology, , 547–577.

Stamatakis, A. & Ott, M. (2009) Load Balance in the Phylogenetic Likelihood Kernel.
In Proceedings of ICPP 2009. accepted for publication.

Zhang, J. & Stamatakis, A. (2012). The Multi-Processor Scheduling Problem in
Phylogenetics. Technical report Heidelberg Institute forTheoretical Studies.

Zwickl, D. (2006). Genetic Algorithm Approaches for the Phylogenetic Analysis of
Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD
thesis, University of Texas at Austin.

3

