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Abstract 

Automated DNA sequencers  generate  chromatograms that  contain raw sequencing data.  They also 
generate  data  that  translates  the  chromatograms  into  molecular  sequences  of  A,  C,  G,  T,  or  N 
(undetermined)  characters.  Since  chromatogram translation  programs frequently  introduce  errors,  a 
manual  inspection  of  the  generated  sequence  data  is  required.  As  sequence  numbers  and  lengths 
increase, visual inspection and manual correction of chromatograms and corresponding sequences on a 
per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, 
we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the 
inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. 
To provide  users  full  control  over  the error  correction process,  a fully  automated  error  correction 
algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment 
(MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be 
attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in 
ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic 
sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing 
error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of 
peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing 
errors is important, because population genetic and phylogenetic inferences can be misled by MSAs 
with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be 
affected two- to three-fold by uncorrected errors. 
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Introduction 
Genomic sequence analysis is an important task in bioinformatics and computational biology. Several 
applications, such as phylogenetic tree reconstruction or inference of population genetic parameters 
rely on genomic sequence data. Phylogenetic studies can be used to determine how a virus spreads over 
the globe [1] or to describe major shifts in the diversification rates of plants [2]. Population genetics 
can  be  used  to  infer  demographic  information  such  as  expansion,  migration,  mutation  and 
recombination  rate  in  a  population,  or  the  location  and  intensity  of  selection  processes  within  a 
genome. 

In general,  molecular  sequence analyses  involve  a  multitude  of  steps  which  depend on the 
specific  scientific  question  at  hand.  Regardless  of  the  concrete  (downstream)  steps  in  an  analysis 
pipeline, the precise content and order of nucleotides in a stretch of DNA needs to be determined at the 
very beginning. The raw molecular sequence data is produced by DNA sequencing machines which 
analyze light signals that originate from flurochromes which are attached to nucleotides. Typically, the 
obtained raw sequences are provided as input to (multiple) sequence alignment programs. Once an 
MSA file  has been generated,  the analysis  proceeds  to  address specific  questions (e.g.,  phylogeny 
reconstruction or inferences of population genetic parameters). Thus, the quality of the initial MSA is 
of primary importance. 

In  some  cases,  only  partially  different  or  slightly  erroneous  MSAs  can  yield  substantially 
different  parameter  values.  For  example,  alignment  errors  can  mislead  the  branch-site  test  [3]  for 
positive  selection  such  that  it  returns  unacceptably  high  false  positives  [4].  Also,  a  slight 
over-representation  of  rare  alleles  may  lead  to  inferring  a  population  size  expansion  instead  of 
obtaining a constant population size [5]. In phylogenetics, an uncorrected MSA may lead to biased 
estimates of tree topologies and branch lengths. In general, pseudo-polymorphic sites (sites that only 
appear to be polymorphic because of sequencing errors) can mislead downstream analyses. 

A widely-used technique for reducing the number of sequencing errors and improving MSA 
quality  consists  in  manually  inspecting  and  visually  verifying  sequencer  output  based  on  the 
corresponding chromatogram files. This approach becomes increasingly tedious and error-prone as the 
number of sequences in the alignment as well as the length of sequences increases, since all sites need 
to be inspected individually. For each polymorphic site, users need to identify the exact chromatogram 
positions  of  polymorphic  characters  for  that  specific  site  and  verify  that  they  do  not  represent  a 
pseudo-polymorphism. 

We propose an approach for systematic detection and correction of sequencing errors in MSAs 
that relies on chromatogram data, henceforth denoted as the “CGF framework”. The goal is to generate 
corrected MSAs with the following property: each nucleotide in the MSA can be correctly mapped 
back to the corresponding chromatogram position by a few simple arithmetic operations. We denote 
this mapping property (or consistency) as CGP, and an MSA for which this property holds as CGA. 
Creating CGP-compliant  alignments  facilitates  the detection and correction of  possible  sequencing 
errors in an MSA, because locating and identifying the potential error in the chromatogram trace signal 
now becomes straightforward. The user simply needs to approve or reject the respective base calls by 
visually inspecting the (automatically located) trace signal. 



Figure  1:  A chromatogram snapshot  that  shows  base  mis-calls  and  an  undefined  character  at  the 
highlighted positions. 

Figure  1  depicts  a  chromatogram region that  contains  sequencing errors  at  the  highlighted 
positions. At position 472, for instance, the slight expansion of the peak led to the insertion of the  
additional character C in the sequence. A similar peak expansion gave rise to duplication of the Gs at 
positions 475 and 481. Furthermore, the slightly shifted peaks at positions 478 and 480 resulted in the 
insertion of an undefined character N at position 479. 

ChromatoGate  implements  the  aforementioned  CGF  framework  and  thereby  substantially 
simplifies  the  process  of  detecting  sequencing  errors  and  creating  CGP-compliant  MSAs.  The 
development  of  ChromatoGate   was  motivated  and  guided  by  observing  the  workflow  for 
reconstructing a phylogeny of 325 Mullus surmuletus sequences. While MSA tools (e.g., ClustalW [6], 
MAFFT [7], and MUSCLE [8]) required a few minutes and phylogeny reconstruction programs (e.g., 
RAxML [9] or MrBayes [10]) required a few hours to run to completion, the inspection of the MSA for 
detecting  and  correcting  sequencing  errors  required  several  days.  The  tool  is  freely  available  for 
download at http://www.exelixis-lab.org/software.html. 

There already exist some programs that provide a similar,  but not identical,  functionality to 
ChromatoGate.  The  Phred,  Phrap,  and  Consed  program  suite  [11,12,13–15]  offers  solutions  for 
reviewing and editing sequence assemblies, such as trimming and assembling shotgun DNA sequence 
data. More specifically, Phred reads DNA sequencer trace files, associates them with the appropriate 
nucleotide base, and assigns a quality value to every base call. Thereafter, these quality values are used 
to trim the sequences. Phrap is intended for assembling shotgun DNA sequence data, and uses the 
entire sequence — not just  the trimmed,  high quality,  part  of a  sequence.  Phrap then constructs a 
contiguous sequence by merging the read segments with the highest quality, rather than by building a 
consensus  sequence.  Finally,  the  Consed/Autofinish  tools  aid  the  user  in  reviewing,  editing,  and 
finalizing  Phrap-based  sequence  assemblies.  Users  can  also  select  primers  and  templates,  suggest 
additional sequencing reactions that shall be performed, and verify assembly accuracy. 

http://www.exelixis-lab.org/software.html


DNA Chromatogram  Explorer  [16]  is  a  dedicated  interactive  software  for  DNA sequence 
analysis and manipulation. Via an appropriate visualization method, it can trim low quality bases at 
either end of the sequences. The DNA Baser Sequence Assembler tool in Chromatogram Explorer can 
be used for DNA sequence assembly and analysis as well as for contig editing and mutation detection. 
An easy-to-use graphical editor is available to view and edit chromatograms, cut primers, assemble 
contigs, and reverse-complement sequences. 

Sequencher 5.0 [17] (a commercial product by Gene Codes) is more similar to ChromatoGate in 
terms of functionality. The user can work with the chromatogram data and—at the same time—edit the 
corresponding raw sequences. Sequence edge trimming as well as tools for detection and annotation of 
polymorphisms  are  also  available.  Sequencher  represents  a  useful  software  package  that  provides 
several tools for improving MSA quality,  but  the high software license cost  ($ 1000) represents a 
substantial drawback. 

ProSeq  v3  (Processor  of  Sequences)  [18]  allows  for  the  preparation  of  DNA sequence 
polymorphism datasets. It includes an internal relational database that links sequences to individuals 
and individuals to populations, thereby simplifying the analysis of datasets that contain multiple genes. 
Furthermore, it allows for visual inspection of DNA sequence chromatograms to correct base-calling 
and sequencing errors. Chromatogram quality checking is followed by assembly of individual sequence 
reads into longer contigs using Phred and Phrap (these are not included in ProSeq because of licensing 
issues). ProSeq v3 was developed for population genetic analyses and it also includes a tool for basic 
phylogenetic analysis that can construct and visualize neighbor-joining trees. 

A significant  difference  between  ChromatoGate  and  the  aforementioned  tools  is  that,  in 
ChromatoGate,  chromatogram editing  is  not  implemented  by  visual  alignment  and  chromatogram 
inspection, but via automatically generated reports. These reports only entail  those nucleotides and 
associated chromatogram positions that require further inspection. By means of this pre-filtering, the 
user  does  not  need  to  inspect  the  entire  sequence  base-by-base  to  correct  sequencing  errors, 
accelerating the error correction process. 

Experimental procedure
Underlying Idea 
The goal of our tool is to generate CGP-compliant alignments with a minimal number of sequencing 
errors.  This  is  achieved  by  a  step-by-step  alignment  assembly  and  correction  procedure  which  is 
illustrated in Figure 2. The steps outlined in Figure 2 are described in more detail below. Nonetheless, it 
should be evident that this workflow does not reflect the standard workflow of visual detection and 
manual correction of sequencing errors. The standard approach requires to consecutively correct all 
sequences prior to computing the MSA. Existing commercial (DNASTAR [19]) as well as open-source 
(Staden Package [20]) programs can be used for this purpose. They are able to identify weak-signal 
chromatogram peaks and report their positions to the user. Thereby, the user is not required to manually 
inspect all peaks in each chromatogram but only the indicated ones. 



Figure 2: The steps of the CGF framework. The dashed-line boxes represent actions that need to be 
performed manually. The single-line boxes are used to refer to operations that can be performed by 
third-party software and the double-line boxes refer to ChromatoGate functions. 

The semi-automatic ChromatoGate approach also requires the user to inspect a limited number of peaks 
in every chromatogram. The main idea is to inverse the process by scanning an initial—uncorrected— 
MSA for potential sequencing errors. Guided by this preliminary MSA, the user then only inspects 
those chromatogram peaks that form part of polymorphic sites in the alignment. Due to this inversed 
procedure for eliminating sequencing errors, ChromatoGate does not use base call quality information 
generated by programs such as Phred [11, 12]. 



In general, our approach treats every polymorphic site as a potential sequencing error. Usually, 
the  sequencing error  rate  is  not  large  (typically  < 1%; [21]).  Hence,  base  mis-calls  will  generate 
low-frequency polymorphisms,  that  is,  polymorphisms that  only  occur  in  a  few (typically  1 or  2) 
sequences of an MSA site. If a polymorphic site is not generated by a sequencing error but represents a 
true polymorphism, all characters at this site must have a clear, unequivocal chromatogram signal. If 
the corresponding peaks for a few characters (typically 1 or 2) at a polymorphic site are ambiguous,  
this can be attributed to a sequencing error rather than to a true polymorphism. Thus, the user only 
needs to visually inspect the chromatogram peaks of the comparatively small fraction of base calls that 
differ from the majority of bases at the site. Note that, ChromatoGate does not decide upon potentially 
erroneous base calls. Therefore, neither alignment sites are removed nor are base calls corrected. The 
tool assumes that a sequencing error most probably generates a low-frequency polymorphism in the 
alignment (see Figure 8). Evidently, removing all low-frequency polymorphisms from an alignment can 
not be desirable because it will generate a significant bias in the analysis (many genuine singletons will 
be  removed  along  with  the  sequencing  errors).  To  this  end,  ChromatoGate  does  not  remove  any 
low-frequency polymorphisms at all. Instead, it highlights them and maps them to the corresponding 
chromatogram peaks such that the user can assess if there is a sequencing error or a genuine singleton. 

Note that, if recombination has occurred,  it is likely that  the number of base mis-calls in the 
MSA  will  be  increased. ChromatoGate,  however,  cannot detect  recombination.  Therefore,  if 
recombination has occurred, the ChromatoGate reports will be larger. Similar increase in the number of 
base mis-calls  and thus in the size of the reports can be observed because of  a very large nucleotide 
diversity  in  the  MSA.  In  any  case,  the  user  can  reduce  the  size  of  the  reports by  lowering  the 
user-defined threshold, and thus determining in advance the amount of time he wishes to invest on the 
correction of the MSA.

When an existing MSA is  extended by new sequences,  this  MSA-based correction  process 
ensures that adding new sequences will not decrease the quality of an existing, curated reference MSA. 
Hence,  ChromatoGate  can  not  only  be  deployed  for  de  novo  MSA assembly,  but  also  for  MSA 
extension. We describe the CGF workflow and the corresponding ChromatoGate functions in more 
detail below. 

CGF Framework
Step1: Edge trimming
Typically, the chromatogram-based sequence S returned by a sequencer does not yield a clear signal 
over the entire sequence length.  Thus, ambiguous subsequences S.U (Sequence.Undefined) that are 
characterized by a large number of undetermined characters appear  at  both ends of a  sequence S. 
Typically, a clean subsequence S.C (Sequence.Clean) is located between S.U subsequences at either 
end. Only the clean subsequence entails nucleotides that can be identified by the sequencer with a high 
degree of confidence (Figure 3). Therefore, S.U subsequences must be trimmed to prevent biasing the 
downstream analysis. The responsibility to trim unreliable/undetermined subsequences rests with the 
user,  because  it  is  hard  to  design  a  sufficiently  sensitive  but  not  too  sensitive  tool  for  automatic 
trimming. Thus, for each sequence, the user needs to pass trimming position information (see below for 
details) to ChromatoGate.



 

Figure 3: Example of the trimming process. A: The clean (S.C) and undefined (S.U) subsequences of S 
are  shown. B: Trim-Indicators (TIs) of length 3 have been inserted in both S.U subsequences.

Although several  third-party tools  for  automated sequence  trimming are available  (e.g.,  the 
Lucy  open-source  code  [22]  using  Phred  scores  or  the  Trim  Ends  function  of  the  commercial 
Sequencher [17] package), deploying them in conjunction with ChromatoGate is not possible because 
base calls will be incorrectly mapped to corresponding chromatogram peaks. ChromatoGate uses the 
raw sequences (i.e., the exact position of each base call in the sequence) for mapping nucleotides to 
chromatograms.  Hence,  when  edge-trimmed  sequences  are  provided,  this  mapping  will  become 
inconsistent. 

In Figure 3A we provide an example for sequence trimming. To preserve the CGP property, the 
S.U lengths for each sequence in a MSA must be known. Therefore, ChromatoGate keeps track of the 
initial sequence length, the length of trimmed subsequences, as well as the start and end positions of the 
S.C subsequences.  User-driven trimming is  implemented  by Trim-Indicators  (TIs)  which  are  short 
sequences  of one or more gaps  that  must  be inserted by the user  into the sequence to  denote the 
beginning and end of the clean part of the (yet unaligned) sequence. The user will need to replace the  
last X characters of the left S.U by X gaps and the first Y characters of the right S.U by Y gaps. When 
no trimming is required, the user does not need to insert any gaps. In Figure 3B we provide an example 
for the trimming process (with X := 3 and Y := 3). 

Step 2: Consensus Sequence Generation 
The second step (optional) consists of calculating consensus sequences for samples that have been 
amplified with forward and reverse primers. A DNA sequence is usually sequenced in both directions 
with a forward and a reverse primer (denoted as seqF and seqR respectively) when the entire length of 
the amplified gene product can not be obtained by a single primer. To obtain the full-length sequence, 
the reversed and complemented sequence seqRC of seqR needs to be aligned (matched) to seqF (note 
that, seqRC and seqF typically do not fully overlap). Finally, a consensus sequence is built for the 
pairwise  alignment  of  seqF and seqRC (where  seqF and seqRC overlap).  ChromatoGate  does  not 
support consensus sequence generation from multiple pairs of forward and reverse reads at present. We 
will however, include this feature in the next release. 

The pairwise alignment and consensus sequence calculation in ChromatoGate is outlined in 
Figure 4. Initially, seqF and seqR are trimmed according to the TIs. Thereafter, seqR is reversed and 
complemented to obtain seqRC. Subsequently, ChromatoGate computes a local alignment of seqF and 
seqRC using a straightforward, naive implementation of the Smith-Waterman algorithm [23], since this 
step is not performance-critical. Two scoring matrices can be used for local alignment: (i) a default 
score matrix and (ii) a user-defined matrix. Note that, the Smith-Waterman algorithm locally aligns 
seqF to seqRC. Thus, we obtain an alignment in which seqF and seqRC only overlap partially. The 



trailing (non-overlapping) ends of seqF and seqRC are therefore attached again to the respective ends 
of the local alignment (see Figure 4). Finally, the sequences are checked for alignment mismatches to  
calculate a consensus sequence. 

ChromatoGate offers two strategies for handling mismatches. It can either represent mismatches 
by the undetermined character N (N strategy) or by inserting the corresponding ambiguous character 
(e.g., S, R, Y, etc.; AMB strategy). In Figure 4, the alignment mismatch at site 7 can be handled by 
inserting an N (N strategy) or S (AMB strategy). In a subsequent step, ChromatoGate will provide the 
corresponding chromatogram positions of those mismatches, and allow the user to resolve them. 
The consensus method handles mismatches as follows: 

1. If the mismatch consists of a gap and a character, the character is used. 
2. If the mismatch consists of two characters and none of them is an ambiguous character, then it  

will either be replaced by N (N strategy) or by the corresponding ambiguous character (AMB 
strategy).

3. If a mismatch consists of a character and an ambiguous character, then the (non-ambiguous) 
character is selected. 

Figure 4: Steps of the Consensus Sequence Generation (CSG) procedure followed by ChromatoGate. 



The final consensus sequence consists of three subsequences: (i) the initial (non-overlapping with seqF) 
part of seqRC, (ii) the local alignment of seqRC and seqF for the part where they overlap, and (iii) the 
final (non-overlapping with seqRC) part of seqF. 

Evidently, when extracting consensus sequences, the insertion variant is always selected (see 
Figure 5). This simplifies the detection of a possible sequencing error at a latter CGF step (see PSD – 
Polymorphic Site Detection). By selecting the insertion variant, it will generate alignment sites that are 
dominated  by  gaps  and  one  or  just  a  few  characters.  The  characters  of  consensus  sequences  of 
gap-dominated sites are a consequence of selecting the constant insertion variant during consensus 
sequence  generation.  These  'extra'  characters  are  usually  generated  by  erroneously  extended 
chromatogram peaks. The PSD step will classify these sites as sites with probable sequencing errors 
and report them to the user along with the positions of the corresponding chromatogram peaks. 

When reconstructing consensus sequences based on a pairwise sequence alignment, additional 
information needs to be stored to maintain the CGP property. During pairwise alignment and consensus 
sequence generation, each character in seqF and seqRC can potentially be shifted and/or replaced by 
another character. ChromatoGate keeps track of all shift and replacement operations that are conducted 
prior to the computation of the multiple sequence alignment. 

Figure  5:  Detection  of  insertion/deletion  sequencing  errors  in  consensus  sequences.  During  the 
generation  of  the  consensus  sequence  seqX,  the  insertion  variant  is  selected  for  the  mismatch  at 
position i. If character T of sequence seqF is actually the result of a sequencing error, the multiple 
sequence alignment will contain a gap-dominated site. The Polymorphic Site Detection (PSD) function 
will mark this site as one with a possible sequencing error. 

Step 3: Preliminary File Generation 
After edge trimming, pairwise alignment, and consensus sequence generation, ChromatoGate generates 
a preliminary file of unaligned sequences in FASTA format (Preliminary File Generation - PFG). This 
preliminary file can then be used with any MSA program. 

Apart from creating this FASTA file, ChromatoGate also maintains information for associating 



each  nucleotide  to  the  corresponding  position  in  the  respective  chromatograms.  Using  the 
PFG-generated file for calculating MSAs ensures that it will be a CGP-compliant alignment regardless 
of the chosen MSA program. For every sequence in the PFG file and the MSA, ChromatoGate has 
maintained information on how each nucleotide was generated. This information can now be used to 
improve MSA quality. 

Step 4: Ambiguous Character Detection 
When the initial MSA has been calculated from the preliminary unaligned FASTA file, the Ambiguous 
Character Detection (ACD) function of ChromatoGate can be used to detect, inspect, and eventually 
correct  all  ambiguous  characters  in  the  MSA.  For  each  ambiguous  character,  ChromatoGate 
automatically yields the correct position in the corresponding chromatogram and thereby substantially 
simplifies this process.

More  specifically,  ChromatoGate generates  a  report  for  every ambiguous character/site  that 
allows the user to inspect the corresponding chromatogram positions. Erroneous ambiguous characters 
(as identified by visual chromatogram inspection) need to be corrected manually, and in this case, the 
respective ACD report entry must be updated accordingly. Figure 6A shows a typical ACD report entry 
for an ambiguous character. The ACD entry indicates that the ambiguous character was found at site 
155 of sequence seqX in the MSA. 

Figure  6:  Example  of  an  Ambiguous  Character  Detection  (ACD) and Polymorphic  Site  Detection 
(PSD) report entries. 

The chromatogram position field is of the form: FW.X − RV.Y, where X and Y correspond to the 
chromatogram positions in a forward and a reverse sequence respectively. For consensus sequences, 
both  the  F  W.X  and  RV.Y fields  are  present  while  for  forward  or  reverse  sequences  only  the 
corresponding single field is shown. Therefore, from the ACD entry of Figure 6A one can deduce that  
the ambiguous character of seqX at site 155 was initially present in the reversed sequence and that it is  
located at position 555 of the respective chromatogram file. 

If the user wants to correct this character he needs to update/edit the MSA (with an editor of his 
choice, e.g., BioEdit [24]) and update the corresponding ACD report entry by replacing the question 
mark (see Figure 6) with the new character in the “Changed To” field. Once all ambiguous characters 



have been inspected and potentially corrected the user needs to realign the sequences after de-gapping 
(removing the gaps from the previous alignment) them using the MSA editor. This new MSA should 
contain a lower number of polymorphic sites. 

Step 5: Polymorphic Site Detection 
A polymorphic site can either represent a “true” polymorphism or a base mis-call. The terms “pseudo- 
polymorphism” and “pseudo-polymorphic sites” are used synonymously to denote sites that appear to 
be polymorphic in an MSA due to one or more sequencing errors. 

The Polymorphic Site Detection (PSD) function of ChromatoGate can be used for correcting 
pseudo-polymorphic sites.  The PSD function implements  a  site-selection/-filtering mechanism with 
user-defined sensitivity. The selection sensitivity is set by a threshold which represents the maximum 
fraction of nucleotides that have to be different from the majority of nucleotides at a site such that the 
site is considered as polymorphic. 

The output of the PSD function is a text file containing one entry for each polymorphic site in 
the MSA. Each entry contains the MSA site index, the nucleotide frequencies at that site, the names of 
those  sequences  whose  nucleotides  differ  from  the  majority  nucleotides  at  the  site,  and  the 
corresponding chromatogram positions.  As before,  the PSD report  can now be used to inspect  the 
respective chromatogram files and correct errors. Figure 6B illustrates an entry of the PSD report. The 
report shows that site 109 of the MSA is polymorphic and contains 9 As, 1 G, and that the remaining 
characters, if any, are gaps. Nucleotide G belongs to the consensus sequence seqX and there are two 
corresponding chromatogram peaks:  (i)  the chromatogram peak that  corresponds to  character  G at 
position 83 in the forward-primer-amplified sequence and (ii) the chromatogram peak that corresponds 
to character C at position 601 in the reverse-primer-amplified sequence. Once the PSD function has 
been applied to correct potential sequencing errors, the curated MSA will hopefully contain only a 
small number of ambiguous characters and sequencing errors. 

Results and Discussion 
We assess the effect of uncorrected sequencing errors on phylogenetic and population genetics studies 
by means of simulations. Our simulated datasets consist of non-recombining genomic segments. 

Base mis-call simulation 
We used two distinct settings (errA, errB) for incorporating sequencing error rates. Despite the fact that 
error  rates  typically  vary  significantly  along  a  genomic  segment  [21],  we  simplified  the  error 
simulation process by assuming that base mis-calls are distributed uniformly along a genomic segment. 
There are two types of errors: (i) substitution errors that refer to erroneous calls of nucleotide states,  
that is, substitution of a base with an A, C, G, T, or N, and (ii) errors that lead to an insertion or 
deletion.  We  refer  to  the  latter  type  of  errors  as  frameshift  errors.  Frameshift  errors  are  further 
sub-divided into nucleotide-state insertions (A, C, G, T, N), base deletions, or base-call extensions. For 
errA, the substitution error rate is set to 0.001 per base and the frameshift error rate is set to 0.0001. For 
errB, we set the substitution error rate to 0.01 and the frameshift error rate to 0.0005 (also see Figures 1 
and  3  in  [21]).  The  error  rates  are  summarized  in  Table  1.  Sequencing  errors  are  introduced 
independently and uniformly for each sequence and for each base. Note that we neglect the effect of 
base  mis-calls  (especially  frameshift  errors)  on  the  MSA by  preserving  homologous  sites  in  the 
alignment. For example, if a base is inserted into a sequence, then a gap (-) is automatically inserted 
into all remaining sequences at the same position. 



Table 1: Four error types were introduced in the simulated alignments. These errors correspond to i) 
misidentification, ii) insertion, iii) deletion, and iv) extension of a base. Two sets of error rates,  errA 
and errB, were used in this study. 

Error type Error rate per bp (errA) Error rate per bp (errB)

Misidentification 0.001 0.01

Insertion 0.0001 0.0005

Deletion 0.0001 0.0005

Extension 0.0001 0.0005

Effect of mis-calls on phylogenetic tree reconstruction 
We generated simulated DNA alignments to assess the effect of base mis-calls on phylogenetic tree 
reconstruction accuracy. To obtain realistic simulation parameters (GTR rates, α-shape parameter of the 
Γ model of rate heterogeneity [25], empirical base frequencies, reference tree) we initially conducted a 
single standard ML tree search with RAxML [9] on an empirical 500-taxon dataset [26] that has been 
frequently used for benchmarking phylogenetics software [27, 28, 29]. 

We then deployed INDELible [30] to generate 100 simulated datasets on the RAxML-based ML 
tree  (using  the  ML  model  parameters  as  inferred  for  the  empirical  dataset)  with  a  length  of 
approximately 1,000 bp each. Indels were intentionally not simulated, since our goal was to explore the 
effects of sequencing errors on tree reconstruction accuracy. Hence, we avoided introducing further 
potential  error  sources  (indels)  that  may  also  lead  to  decreased  reconstruction  accuracy  to  better 
identify the effects of base mis-calls. We then inserted base mis-calls into the 100 simulated alignments 
as described in Section “Base mis-call simulation” to generate an additional 100 simulated datasets 
with errors. Then, we conducted one ML tree search with RAxML (standard tree search, GTR model of 
nucleotide substitution, Γ model of rate heterogeneity) on the 200 simulated datasets (100 with and 100 
without base mis-calls). 

Finally, we used the Robinson-Foulds (RF) metric [31] to determine the topological distance of 
the ML trees inferred on the simulated datasets with and without base mis-call errors to the respective 
true  tree.  As  shown  in  Figure  7,  base  mis-calls  significantly  increase  the  RF  distances 
(Kolmogorov-Smirnov statistic p-value = 0.0079) between the inferred ML tree and the true tree for the 
errB setting  (substitution  error  probability:  0.01;  frame change probability:  0.0005).  However,  RF 
distances only increased by 0.0045% on average for simulated alignments including sequencing errors. 
This may be attributed to the fact that maximum likelihood-based phylogenetic inference is relatively 
robust with respect to sequencing errors and noise. For smaller error probabilities (errA setting), the RF 
distances  to  the  true  tree  are  not  significantly  different  on  the  datasets  with  and  without  errors 
(Kolmogorov-Smirnov statistic p-value = 0.527). 



Figure 7: Robinson-Foulds (RF) distances distributions between inferred and real phylogenies when 
sequencing errors are absent (black line) or present (gray line) in the analysis. A) Error rates correspond 
to the values from the errA of Table 1. B) Error rates correspond to the values from the errB of Table 1. 
RF-distance quantifies the dissimilarity between two trees. Eliminating the sequencing errors from the 
analysis results in a statistical significant improvement of the similarity between the inferred and the 
true genealogy only for the higher error rates (errB), even though this difference is not very large. 

Effect of mis-calls on population genetic parameters inference 
We also examined the effect of base mis-calls on the inference of population genetic parameters. Our 
results  indicate that,  correcting for sequencing errors in the MSA is necessary.  We simulated 2000 
coalescent  trees  using  Hudson’s  ms  [32]  tool.  Each  coalescent  tree  models  the  genealogy  of  100 
orthologous  non-recombining genomic  regions  sampled from a constant  population.  We then used 
INDELible  to  simulate  a  1-kb  long,  non-recombining  single-gene  dataset  on  each  of  the  2000 
coalescent trees with the same empirical ML model parameters as above. 

The  branch  lengths  of  the  coalescent  trees  were  scaled  by  a  factor  of  0.01,  such  that  the 
population mutation parameter  θ = 4Neμ is equal to 10 mutations per kilobase per  4Ne generations, 
where Ne denotes the effective population size and μ the mutation rate per generation and per kilobase. 
We then introduced sequencing errors as described in Section “Base mis-call simulation”. MSAs were 
then converted to binary format (0,1), assuming an infinite site model [33]. This conversion is required 
because INDELible generates datasets for a finite site model, whereas the analysis assumes that the 
data  follow  the  infinite  site  model.  For  every  MSA column  the  most  frequent  nucleotide  was 
transformed to state 0 and all remaining nucleotides to state 1. This infinite site model transformation is 
standard practice in population genetic data analysis and is justified by the small mutation rates. For all  
simulated datasets (with and without mis-calls) we calculated corresponding summary statistics such as 
to compare the respective distributions (Figure 8). 



Figure 8: Biases in summary statistics that base mis-calls introduce in the analysis. At the upper panel 
we compare summary statistics calculated from datasets that contain no errors versus the datasets that 
contain errors from the set  errA (see Table 1). For the bottom panel the error rates are described in 
errB. A and D: Base mis-calls shift the site frequency spectrum toward low-frequency polymorphisms. 
B and E: number of polymorphic sites, and C and F: Tajima’s D. In all cases error rates introduce biases 
in the summary statistics. The biases are larger for higher error rates. 

On the simulated datasets with errors, the Site Frequency Spectrum (SFS) shifts toward rare 
alleles (Figure 8A and 8D).  Also,  the number of  singletons increases  on average by a factor  of 3 
(compared  to  datasets  without  errors),  even  for  small  error  rates  (setting  errA).  The  amount  of 
polymorphic sites (as counted in the untransformed MSAs) increased by a factor of 2 for setting errA 
(Figure 8B) and by a factor of 7 for setting errB (Figure 8D) and Tajima’s D [34] assumed extreme 
negative values (Figure 8C and 8F). Thus, base mis-calls dramatically affect estimates of population 
genetic parameters. 

We  also  simulated  a  multi-gene  dataset  from  a  constant  population  using  msABC  [35], 
comprising 20 independent, non-recombining genes with a length of 1 kb. This dataset represents the 
reference  alignment  without  base  mis-calls.  Thereafter,  we introduced errors  as  before  to  create  a 
reference dataset with base mis-calls. These datasets were used to infer population parameters using an 
Approximate Bayesian Computation (ABC) method as implemented in the ‘abc’ package [36] of the R 
programming  language  for  statistical  computing  [37].  We  sampled  1,000,000  candidate  parameter 
vectors and used them to simulate multi-gene datasets with msABC [35]. The simulated and reference 
datasets were summarized using the average values of θπ [38], θW [39], ZNS [40], and H [41]. For each 
dataset we retained the 1,000 most similar simulations, based on the distance between the summary 
statistics of the simulated and the reference datasets. Then, we assessed the bias introduced by mis calls 



on estimates of the population mutation rate θ and past population size changes. 

Figure 9: Base mis-calls bias the estimation of population genetics parameters. On the first two rows 
(A-F) the posterior distributions of parameters have been inferred from datasets that contain sequencing 
errors. At the bottom panel, sequencing errors have been removed. In figures A-C the error rates are 
given  by  the  setA in  Table  1,  whereas  Figures  D-F  error  rates  are  described  by  the  setB.  The 
simulations implement a model of constant population size and θ = 10. Parameters were estimated 
using the ABC framework (see main text). In A, D, and G, we compare the posterior distribution of the 
population mutation parameter θ. B, E, and H show the posterior distributions of the time of population 
expansion, and C, F, and I  show the expansion rate. Obviously,  θ is overestimated when sequencing 
errors have been introduced. Furthermore, low-frequency alleles due to base mis-calls bias the analysis 
creating a signal of population size expansion. As expected, for MSAs with mis-calls, the estimated θ 
value  is  higher  than  the  true  value  (Figures  9A,  9D,  9G)  and a  population  expansion is  detected 
(Figures 9B, 9C, 9E, 9F) when sequencing errors are present in the MSA. For small error rates (set  
errA in Table 1), the estimated θ value is 3 times higher than the real θ value. Furthermore, a recent and 
strong expansion is inferred (Figures 9B and 9C). For higher, but still realistic, error rates (set errB in 
Table  1),  the  inferred  θ  value  is  more  than  20  times  greater  than  the  real  θ  value  (Figure  9D). 
Additionally, a very recent expansion—that occurred just before the present—is inferred (Figure 9E). 
In contrast to this, analogous inference on the reference dataset without base mis-calls did not yield 
significant deviations from the true, simulated parameter values (Figures 9G, 9H, 9I). The estimated θ 
value is 10 (Figure 9G), the maximum a posteriori rate of expansion is -2.23, and the inferred time of 
expansion amounts to approximately 1.8 Ne generations. In other words, a very old and weak expansion 
has been inferred on the reference dataset without base mis-calls. 



Saving Analysis Time with ChromatoGate 
To obtain an estimate of  potential  analysis  time savings,  EV tested ChromatoGate on 325  Mullus  
surmuletus sequences from the D-loop region with a length of 350 base pairs. These sequences had 
already been manually corrected by EV within 3 working days. EV repeated the error detection and 
correction procedure using ChromatoGate in 6 hours. The ChromatoGate-based correction detected 
more sequencing errors within a significantly smaller amount of time. 

Conclusions 
We have presented the freely available and easy-to-use software ChromatoGate that allows for rapidly 
identifying and correcting base mis-calls as generated by capillary and gel-based sequencers. It also 
allows for aligning and merging forward and backward sequences and computing respective consensus 
sequences. The key feature of ChromatoGate is that it maintains meta-data that allows the user to “go 
back” and inspect chromatogram peaks at any point of the MSA assembly process and correct potential 
errors.  A purely  empirical  assessment  of  the  time  saving  that  can  be  achieved  by  using  such  a  
semi-automatic tool indicates that biologists can save approximately one order of magnitude of office 
time by deploying ChromatoGate. 

We also address the more fundamental question whether base-mis calls need to be corrected at 
all  for phylogenetic and population genetic analyses by means of simulated data experiments.  Our 
experiments indicate that correcting for base mis-calls in MSAs used for phylogenetic analyses is not 
absolutely necessary. However, correcting for base mis-calls in population genetic analyses, which rely 
on inferring many parameters based on a substantially smaller number of evolutionary events than in 
phylogenetic analyses, appears to be absolutely necessary. If one does not correct for base mis-calls to 
get  those  few  mutations  right  in  population  genetic  analyses,  parameter  estimates  can  deviate 
significantly from their true values. 
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