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Abstract. Assigning an optimal combination of empirical amino acid
substitution models (e.g., WAG, LG, MTART) to partitioned multi-gene
datasets when branch lengths across partitions are linked, is suspected
to be an NP-hard problem. Given p partitions and the approximately 20
empirical protein models that are available, one needs to compute the
log likelihood score of 20p possible model-to-partition assignments for
obtaining the optimal assignment.
Initially, we show that protein model assignment (PMA) matters for em-
pirical datasets in the sense that different (optimal versus suboptimal)
PMAs can yield distinct final tree topologies when tree searches are con-
ducted using RAxML.
In addition, we introduce and test several heuristics for finding near-
optimal PMAs and present generally applicable techniques for reducing
the execution times of these heuristics. We show that our heuristics can
find PMAs with better log likelihood scores on a fixed, reasonable tree
topology than the näıve approach to the PMA, which ignores the fact
that branch lengths are linked across partitions. By re-analyzing a large
empirical dataset, we show that phylogenies inferred under a PMA cal-
culated by our heuristics have a different topology than trees inferred
under a näıvely calculated PMA; these differences also induce distinct
biological conclusions. The heuristics have been implemented and are
available in a proof-of-concept version of RAxML.

Keywords: phylogenetic inference, maximum likelihood, model assign-
ment, protein data

1 Introduction

An important task in phylogenetics consists in computing the (maximum) like-
lihood score on a given tree topology. Typically, the logarithm of the likelihood
is computed for numerical reasons. Throughout the paper, we use likelihood and
log likelihood as synonyms. The likelihood score represents the probability of
observing the data (a set of aligned molecular sequences), given a strictly bifur-
cating unrooted tree. A statistical model of evolution is required to specify how



the observed data (e.g., an alignment of amino acid sequences) was generated by
the given topology, that is, the model provides transition rates between possible
states (e.g., amino acid characters).

For DNA data, a general time reversible substitution model [1] is typically
being used, which requires a direct maximum likelihood estimate of the transition
rates. For amino acid data, this is mostly not considered, because it may result in
over-parametrizing the model (DNA has 5 rates, protein data has 189 transition
rates). Therefore, a plethora of empirical protein substitution models such as
MTART [2], WAG [3], and LG [4], have been derived from large collections of
real-world protein alignments. Some of these models are intended for general use
(e.g., WAG and LG) and some have been optimized for specific organisms (e.g.,
the MTART model for Arthropoda).

Selecting an appropriate empirical protein substitution model for the data at
hand represents an important and generally non-trivial task. This is because us-
ing an inappropriate model that does not fit the data well, can lead to erroneous
phylogenetic estimates (see, e.g., [5] or [6]).

Here, we consider the case of protein model assignment for partitioned (dif-
ferent sets of sites evolve under distinct evolutionary models) multi-gene amino
acid sequence alignments. Note that, determining an appropriate partitioning
scheme is also a non-trivial problem (e.g., [7]) but outside the scope of this pa-
per. Therefore, we assume that an appropriate partitioning scheme is given. We
denote this task as protein model assignment (PMA) problem. Given a fixed, rea-
sonable (i.e., non-random) tree we want to assign the best-fit empirical protein
substitution model to each partition such that the overall likelihood is maxi-
mized. Note that, using the optimal (with respect to the likelihood score) PMA
does not increase the number of parameters in the model. Hence, over-fitting the
data is not an issue and we can directly obtain the optimal PMA by finding the
assignment that maximizes the likelihood. However, finding the optimal PMA is
challenging if we assume that branch lengths are shared across partitions, that
is, partitions are linked via a joint branch length estimate.

Using a joint branch length estimate across partitions is important because
it drastically reduces the number of free parameters in the model. The number
of inner branches in a strictly binary unrooted tree is 2n − 3, where n is the
number of taxa. Thus, each set of independent branch lengths that is estimated
increases the number of model parameters by 2n − 3. Therefore, joint branch
length estimates can be deployed to avoid over-parametrizing the model.

Simply calculating the maximum likelihood score for all possible PMAs on a
fixed, reasonable (i.e., non-random) tree, for p partitions and the approximately
20 available protein substitution models, is computationally prohibitive because
of the exponential number (20p) of possible assignments. We have already devel-
oped a proof (preprint available at http://www.exelixis-lab.org/Exelixis-RRDR-
2012-9.pdf) that shows that the PMA problem is NP-hard. Here, we introduce
and evaluate three heuristic strategies for computing ’good’ PMAs for parti-
tioned protein alignments under joint branch length estimates.



For small problem instances with p := 3 partitions (extracted from publicly
available real datasets [8] and [9]) we observed substantial differences in final
RAxML-based tree topologies inferred under the optimal PMA obtained from
the exhaustive algorithm and suboptimal PMAs obtained via a näıve approach
that is currently being used for determining the PMA. On simulated datasets,
which generally tend to exhibit stronger signal (see, e.g., [10]), we did not ob-
serve that the PMA has an impact on final tree topologies, presumably because
simulated data tend to be ’too perfect’. As we show here, finding a ’good’ PMA
is important for empirical analyses of real biological data because it changes
the results, that is, the final tree topologies. Our heuristic PMA search strate-
gies consistently find better PMAs, with respect to the likelihood score (without
increasing the number of parameters in the model!) than the commonly used
näıve heuristics that disregard the fact that partitions are linked via the branch
lengths.

The remainder of this paper is organized as follows: In Section 2 we briefly
review related work on the general problem of protein model selection. In Sec-
tion 3 we introduce our heuristics and computational shortcuts for reducing the
computational burden of computing likelihood scores for candidate PMAs. In
Section 4 we discuss the experimental setup and provide experimental results.
We conclude in Section 5 and discuss directions of future work.

2 Related Work

To the best of our knowledge, this paper and the paper addressing the NP-
hardness proof are the first to identify and address the PMA problem.

Hence, we will briefly review work on the protein model selection methods
in phylogenetics. There exists an extensive literature on methods for selecting
models of nucleotide or amino acid substitution (see [11] for an in-depth review).

Initially, model testing pipelines applied likelihood ratio tests for selecting the
best fit model. However, these tests require the models to be nested, which is
not always the case. Therefore, tests relying on the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC), that do not require the
models to be nested, have recently gained momentum

One of the most widely used tools for selecting protein models is ProtTest [12].
Another, fairly similar tool, for protein model selection is Aminosan [13].

As stated above, none of the existing pipelines address the PMA problem.
Keep in mind that, PMA is essentially not a model selection problem, but an
optimization problem because the number of model parameters is constant for all
20p possible PMAs. As such, computing a ’good’ PMA (finding the optimal PMA
is NP-hard!) for partitions that are linked via a joint branch length estimate
forms part of the general model selection process that is implemented by the
above tools.



3 Heuristics

For all heuristics described here, we assume that a reasonable (i.e., non-random)
tree is given. Such a tree can be obtained by executing a neighbor joining or
parsimony tree search. It is broadly accepted that using a fixed, parsimony or
neighbor joining tree for estimating model parameters is sufficient to obtain
accurate parameter estimates [14]. Hence, given such a reasonable fixed tree and
a data partitioning scheme with p data partitions, our goal is to find the PMA
that maximizes the likelihood. This PMA can then be used for a subsequent
maximum likelihood (ML) tree search using, for instance, RAxML.

Initially, we briefly describe the näıve heuristics that represent a simple and
straight-forward approach to obtain a somewhat reasonable PMA. The näıve
heuristics simply ignore the fact that partitions are linked via branch lengths
and determine the best-scoring protein substitution model independently for
each partition (by looping over the protein models) using a per-partition branch
length estimate. The PMA obtained by this näıve approach can be used as initial
seed for the search algorithms presented in Sections 3.3 and 3.4 to accelerate
convergence.

If the number of partitions is small (e.g., p := 3) one can also perform an
exhaustive search by computing the maximum likelihood scores for all possible
203 = 8000 PMAs to obtain the global maximum, that is, the exact solution.

In our heuristics, we want to explore an as large as possible fraction of the
search space by evaluating as many candidate PMAs as possible. However, com-
puting the likelihood on candidate PMAs is expensive, because model parameters
such as the α shape parameter of the Γ model of rate heterogeneity [15] and the
joint branch lengths need to be re-optimized for each PMA. Therefore, we ini-
tially discuss some general computational shortcuts to reduce the computational
cost of calculating likelihood scores for candidate PMAs.

3.1 Accelerating the Evaluation of Candidate PMAs

In the course of the searches we need to compute the maximum likelihood score
for a large number of candidate PMAs. This entails fully re-optimizing all model
parameters such as the branch lengths and the α shape parameter for each new
PMA from scratch, that is, from some initial default values for α and the branch
lengths. These parameters are optimized via standard numerical optimization
procedures such as Brent’s algorithm (α) and the Newton-Raphson procedure
(branch lengths). Instead of re-optimizing all parameters from scratch, we can,
re-use the parameter values of the current PMA i as initial values for optimizing
the parameters and scoring a new PMA i + 1. This will generally be faster, be-
cause the parameter estimates (especially the α parameter) for assignment i will
not differ substantially from those of assignment i+ 1. The differences in model
parameter estimates between PMAs i and i + 1 are also small because in the
heuristics presented below, we only change the protein model of one partition
at a time to obtain PMA i+ 1 from PMA i. Hence, the numerical optimization
routines will require less iterations to converge because the initial parameter



values are ’good’. In our tests, this modification only yielded minimal devia-
tions in likelihood scores (less than 0.5 log likelihood units) while improving
execution times by a factor of 2.8 on average (see [16] for details, available at
http://www.exelixis-lab.org/pubs/JoergHauserMasterThesis.pdf).

The second approach to reducing execution times of candidate PMAs strives
to avoid evaluating candidate PMAs that are not promising. In other words,
given a PMA that needs to be scored by computing its maximum likelihood
score, we deploy an inexpensive pre-scoring criterion to determine whether or not
it is worth to evaluate this PMA. To pre-score PMAs we use the per-partition
likelihood scores for each partition and each protein substitution model that
can be computed using the näıve approach outlined above. These scores, albeit
obtained under a per-partition branch length estimate, can be used to pre-score
candidate PMAs because of a strong correlation between the overall (across
all partitions) likelihood scores under a joint branch length estimate and the
likelihood scores under a per-partition branch length estimate. In Figure 1 we
depict the full (left y-axis) and approximate (right y-axis) likelihood scores for
100 random PMAs on a dataset with 50 partitions and 50 taxa that was sub-
sampled from the real biological dataset [8] used in Section 4.
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Fig. 1. Full likelihoods and approximate likelihoods for 100 random PMAs on a real
biological dataset.

Because of this strong correlation, the per-partition likelihood scores as ob-
tained under a per-partition branch length estimate can be used to omit the
evaluation of candidate PMAs that do not appear to be promising. For details
on computing the threshold for deciding which candidate PMA evaluations to
skip, please refer to [16]. By using this technique we were able to accelerate the
heuristics by a factor of 1.5 to 2.



3.2 Greedy Partition Addition Strategy

The greedy partition addition heuristics represent a constructive approach that
gradually extends the alignment by adding one partition (and model) at a time.
We start with the first partition and determine and fix the best protein substi-
tution model for this partition. Then, we add the second partition and compute
the likelihood scores for all 20 possible protein model assignments to this second
partition while keeping the model for the first partition fixed. Once we have
determined the best protein model for the second partition, we fix the model for
the second partition as well. Thereafter, we add the third partition and compute
the likelihood scores for all possible 20 model assignments to this third parti-
tion while keeping the models for the first and second partition fixed. Note that,
the per-partition likelihood scores are re-computed for all partitions each time
a new model is assigned to the new partition that is being added because the
joint branch lengths are re-estimated for the entire alignment.

We continue extending the alignment (and PMA) in this way until all parti-
tions have been added to the alignment. For this algorithm, we need to evaluate
p ∗ 20 candidate PMAs, where p is the number of partitions. Note that, the final
PMA obtained by applying this strategy can be different depending on the order
by which we add partitions. Therefore, we have implemented a fixed partition
addition order by sorting the partitions by their length in terms of number of
sites and adding them in descending order (longest partition first). We chose to
optimize the model for the longest partition first because the longest partition
typically contributes most to the overall likelihood score of the full alignment.
However, this had no notable effect on performance of the heuristics with respect
to the final likelihood scores of the best PMA that was found [16].

3.3 Steepest Ascent Strategy

The steepest ascent approach implements a classic neighborhood-based hill climb-
ing strategy. Given some initial PMA, which can either be a random assignment,
the result of the näıve heuristics, or the assignment computed by the greedy ad-
dition strategy (see above), we proceed as follows: We evaluate the likelihood
scores of all PMAs that differ by one model-to-partition assignment from the
current assignment. In other words, we explore a neighborhood of size 1. We
need to calculate the likelihood scores of (20 − 1) ∗ p PMAs to explore the size
1 neighborhood of the current assignment (when not using the pre-scoring ap-
proach). Once all 19 ∗ p scores have been calculated, we select the PMA that
yields the largest likelihood improvement. We then explore the neighborhood of
this new assignment. If there does not exist a PMA in the size 1 neighborhood
that further improves the likelihood, we have reached a local optimum and the
algorithm terminates.

3.4 Simulated Annealing Strategy

We also implemented a simulated annealing algorithm because of its ability to
navigate out of local maxima [17].



We can initialize the PMA for the simulated annealing strategy either at
random or with the result of the näıve heuristics. As for the steepest ascent
algorithm, we explore the size 1 neighborhood of the current PMA. There are
nonetheless some fundamental differences. We iteratively evaluate the neighbor-
ing assignments of the current PMA and compute their corresponding likelihood
scores.

For each neighboring assignment that is evaluated, we carry out an accep-
tance/rejection step. Thus, if the likelihood of the candidate PMA is better
than that of the current PMA, we accept it immediately and use it as current
assignment (in analogy to a greedy hill climbing strategy). If the likelihood of
the candidate PMA is worse than that of the current PMA we need to decide
whether to accept a backward step or not. We accept a PMA that decreases the

likelihood if r < e
−

l−l
′

T
k , where r is a uniform random number in [0; 1], l is the

likelihood of the current assignment, and l′ the likelihood of the candidate PMA.
Finally, Tk is the temperature of the annealing process at iteration k (evalua-
tion of the kth PMA). This procedure is also known as Metropolis criterion (see
[18]). We implemented a standard cooling schedule Tk = ⌊T0β

k⌋, where T0 is
the starting temperature and β ∈ [0; 1] represents a parameter that needs to be
tuned. We empirically determined a setting of β := 0.992 (see [16] for details).
The simulated annealing process terminates at iteration n when Tn = 0 and
when a PMA is generated that has a worse likelihood score than the currently
best one.

4 Performance Assessment

The modified RAxML code, the test datasets, as well as the wrapper scripts
(greedy algorithm) are available at http://exelixis-lab.org/joerg/pma.tar.gz.

4.1 Experimental Setup

We implemented the three search strategies outlined in Sections 3.2 through 3.4
as well as the näıve and exhaustive search algorithms in the standard RAxML
version [19] and via wrapper scripts. We also used RAxML to compute Robinson-
Foulds distances [20] between trees. Computational experiments were performed
on our institutional cluster, which is equipped with 50 48-core AMD Magny-
Cours nodes (equipped with 128GB RAM each) and connected via Infiniband.

4.2 Test-Datasets

We used real (empirical) and simulated datasets to test (i) whether a good PMA
’matters’ with respect to the final tree topology and (ii) to evaluate our heuristic
search strategies. We used three partitioned real-world data sets from two stud-
ies [8, 21] that encompass data from all three domains of life. The properties of
the datasets are summarized in Table 4.2.



We simulated datasets using INDELible [22] on random ’true’ tree shapes
with 40 taxa that were generated via a R script provided by David Posada
(included in the on-line data archive) and 2, 4, 8, 16, 32, 64, and 128 partitions,
respectively. Partition lengths were randomly generated and ranged between 300
and 500 sites. Protein substitution models to simulate the data along the tree
for each partition were also assigned at random.

Domain # taxa # partitions length reference

Eukaryotes 117 129 37,476 [8]
Bacteria 992 56 20,609 [21]
Archaea 86 68 17,639 [21]

4.3 Results

Does the PMA matter? Initially, we address the question whether obtaining
a good PMA actually matters, that is, if it alters the final tree topology when ap-
plying a standard RAxML maximum likelihood tree search. For this purpose, we
randomly sub-sampled 50 datasets containing three partitions and 50 taxa from
each of the three real-world datasets listed in Table 4.2. We thereby generated
a total of 150 small real-world test datasets. For each sub-sampled alignment
we then computed a PMA using the näıve algorithm and the exhaustive algo-
rithm to obtain the globally optimal PMA. Note that, running the exhaustive
algorithm on more than 3 (203 = 8000 distinct possible PMAs) partitions was
computationally not feasible. Model assignments differed for 86 out of the 150
alignments. Thus, the näıve approach yields suboptimal PMAs for more than
half of the datasets. For those 86 datasets where the PMAs differed we executed
10 standard RAxML tree searches (staring from distinct randomized addition
order parsimony trees) per dataset to obtain the best-known ML tree under the
näıve and optimal PMA. We only obtained topologically identical ML trees for
14% of the 86 datasets. The average topological RF-distance between the trees
inferred under the näıve and the optimal assignment was 9%. As expected the
näıve PMA never yielded a final tree with a better likelihood than the optimal
PMA. Hence, on real data, investing computational effort to finding a ’good’
PMA is important, because it has a noticable impact on the structure of the
final tree topology.

We then also calculated the PMAs using the steepest ascent heuristics on
these 150 datasets. The inferred PMAs differed from the optimal PMA obtained
by the exhaustive algorithm for only 10 out of 150 datasets (7%). Furthermore,
the best-known ML trees inferred on those 10 datasets showed an average RF-
distance of only 3%. We conclude that, (i) the steepest ascent heuristics are able
to infer the optimal PMA in the majority of the cases and (ii) when the heuristics
yield a suboptimal PMA, the inferred PMA nonetheless induces a substantially
smaller topological error than the näıve PMA.



For the simulated datasets, we inferred ML trees using a random PMA,
the näıve assignment, and the known, true PMA under which the data was
generated. Thereafter, we calculated the RF distances between the ML trees
inferred using the random PMA and the true PMA as well as the RF-distance
between the trees inferred under the näıve PMA and the true, known PMA.
We found differences in RF distance to be negligible in both cases (random and
näıve PMAs) on simulated data. We suspect that this is due to the fact that
simulated data tends to be more perfect than real data [10].

The important finding is that determining a PMA that fits the data well has
a substantial impact on real word data analyses.

Performance of Heuristics: To assess the relative performance and quality of
the three heuristic strategies we propose, we sub-sampled 15 datasets containing
50 taxa and 50 partitions from each of the three real-world datasets. This was
done to reduce the computational burden of these analyses.

We intend to determine which strategy performs best with respect to exe-
cution times and result quality which we quantify as the maximum likelihood
score of the respective PMAs. Note that, the number of free model parameters is
identical for all candidate PMAs, hence a likelihood-based comparison of PMAs
is meaningful. As a reference, we used the likelihood score and the execution
time required by the näıve heuristics. The simulated annealing and steepest as-
cent algorithms were seeded with the PMAs obtained from the näıve heuristics.
These two search strategies were also seeded with a random seed, but performed
worse (results not shown).

We summarize the results in Figure 2. The figure contains average execution
times in seconds and average score improvements in log likelihood units over
the 15 test datasets for the three PMA heuristics we propose. The execution
times displayed for the simulated annealing and steepest ascent strategy include
the execution time of the näıve algorithm whose assignment is used as a seed.
For all 15 test datasets, we were able to find a PMA with a better likelihood
than obtained via the näıve algorithm on the the same, fixed, reasonable tree
topology. Overall, the steepest ascent algorithm performs best with respect to
execution times and result quality.

Re-Analysis of a Biological Dataset: We inferred ML trees and bootstrap
support values on the main empirical dataset used in [8] with (i) the PMA as
used in the original study (WAG assigned to all partitions; denoted as allWAG)
and (ii) the PMA as obtained from the steepest ascent heuristics (denoted as
optimized). The relative RF distance between the resulting best-known ML
trees was 8%. Hence, an optimized PMA can change the shape of final tree
topologies as well as the biological conclusions which we discuss in the following.

The most conspicuous difference between the two trees is the position of
the bristle tail (Lepismachilis ysignata, a wingless insect of the Archaeognatha
insect order), which belongs to the primarily wingless hexapods. Insects in the
Archaeognatha order are typically assumed to be a sister group (neighboring
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Fig. 2. Execution times in seconds of the three strategies and average improvement in
terms of log likelihood units over the PMA obtained from the näıve approach

subtree) of the so-called Dicondylia that include all winged insects (the so-called
Pterygota). Therefore, the phylogenetic position of the bristle tail within the
winged insects in the allWAG analysis is rather implausible, since it also shows
low bootstrap support. Moreover, its position in the optimized phylogeny re-
ceived strong bootstrap support. Its phylogenetic position as a sister group of the
winged insects as obtained from the optimized analysis has also been observed
in prior studies based on molecular and morphological data [8, 23, 24].

Another notable difference is the placement of Locusta migratoria from the
orderOrthoptera. Orthoptera (grasshoppers, crickets, weta, and locusts) are com-
monly assumed to form a monophyletic clade (be located in a single, distinct
subtree). Hence, the placement of Locusta migratoria is more plausible in the
allWAG analysis in which Orthoptera are monophyletic. However, its position in
the optimized tree only received moderate bootstrap support, such that it is
difficult to draw conclusions regarding its placement based on the dataset at
hand. Note that, the phylogenetic position of Locusta migratoria is generally
considered difficult and hard-to-resolve [8]. The placement of Locusta migrato-
ria highly depends on the dataset being used [25]. There is some evidence that
Locusta migratoria might be a so-called rogue taxon [26].

Overall, from a biological perspective, the tree obtained via the optimized

tree inference has to be favored. Furthermore, our re-analysis shows that bio-
logically meaningful differences can be observed when inferring trees under an
appropriately optimized PMA.

5 Conclusion and Future Work

We addressed the problem of assigning empirical protein substitution models
to partitioned datasets that are analyzed under a joint branch length estimate



across partitions. This paper is the first paper addressing this problem empiri-
cally. We show that obtaining a ’good’ PMA (with respect to the likelihood score)
matters on empirical datasets, because tree inferences under a näıve PMA can
yield a topologically and biologically different phylogeny with worse likelihood
scores than inferences under the optimal PMA. We specifically use the term
’good’ PMA because finding the optimal PMA is NP-hard. While we can com-
pute the globally optimal assignment for datasets with three partitions via an
exhaustive search, finding a ’good’ PMA on datasets with more partitions re-
quires heuristic search strategies. We introduce, make available, and test three
’classic’ search strategies for combinatorial optimization problems and adapt
them to the problem at hand. We show that all three strategies can produce
PMAs with better likelihood scores than the näıve search on all test data sets.
Moreover, we presented two techniques for reducing the computational cost of
our heuristics.

On a large biological dataset [8], we demonstrate that investing computa-
tional effort to optimize the PMA is important because it has an impact on the
final tree topology as inferred with RAxML and on the biological interpretation
of the tree.

We are currently integrating the steepest ascent strategy that performed best
in our experiments into the standard RAxML version. Moreover, we also intend
to parallelize the heuristic strategies by using a hybrid MPI/PThreads approach.
In this setting, the evaluation of candidate PMAs can be distributed among MPI
processes that conduct the likelihood calculations in parallel using the fine-grain
PThreads parallelization of the phylogenetic likelihood function in RAxML.
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phylogenomics: results, problems and the impact of matrix composition. Proc.
Royal Soc. B 279(1741) (2012) 3282–3290

26. von Reumont, B., Jenner, R., Wills, M., DellAmpio, E., Pass, G., Ebersberger,
I., Meyer, B., Koenemann, S., Iliffe, T., Stamatakis, A., et al.: Pancrustacean
phylogeny in the light of new phylogenomic data: support for Remipedia as the
possible sister group of Hexapoda. Mol. Biol. Evol. 29(3) (2012) 1031–1045


