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Motivation

fail-stop faults

More CPUs→ more faults → more recoveries

Lower operational voltage of CPUs → less energy used, more faults

Node failure → reload dynamic program state and static (e.g., input) data

The parallel file system is a bottleneck

E
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Shrinking vs Substituting Recovery
Substituting Recovery Shrinking Recovery
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Shrinking vs Substituting Recovery
Substituting Recovery Shrinking Recovery

E
E

Up to 5% of nodes idling

Limited number of failures supported

Recovery time does not scale

All nodes participate in computation

Unlimited number of failures supported

Recovery time scales with 1/p
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Shrinking vs Substituting Recovery
Substituting Recovery Shrinking Recovery

E
E

data loaded

Single PE receives all messages
→ bottleneck
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Design Goals

in-memory access to the parallel file system is a bottleneck

no spare nodes required spare nodes are wasted resources

no checkpointing nodes required checkpoint nodes are wasted resources

scalable recovery ∈ O(1/p) time per failure

arbitrary replication level more flexibility and robustness

rapid recovery that’s what we needed for our application
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Related Work

ftRMA Fenix SCR Lu GPI CP ReStore

Features
in-memory checkpointing ✓ ✓ ✗ ✓ ✓ ✓

substituting recovery ✓ ✓ ✓ ✓ ✓ ✓

shrinking recovery ✗ ✗ ✗ ✗ ✗ ✓

all nodes participate in computation ✗2 (✓)1 (✓)1 ✗2 (✓)1 ✓

scaleable recovery ✗ ✗ ✗ ✗ ✗ ✓

programming model MPI RDMA MPI MPI MPI PGAS/GPI MPI

1 Need for nodes idling until they replace a failing node
2 Additionally, some nodes used solely to store checkpoints
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Basic Data Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

data

Data distributed across PEs

Data divided into blocks

Blocks addressable via IDs

7
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Basic Data Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

1 2 3 4 5 6 78 9 10 11 12 13 14 15 0

copy 1

copy 2
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Basic Data Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

1 2 3 4 5 6 78 9 10 11 12 13 14 15 0

copy 1

copy 2

On recovery: r = 2 sending nodes → bottleneck
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Data Distribution for Faster Recovery

Idea: Break up access pattern using a random permutation for the block IDs

More PEs serving data after failure

Too many PEs serving data → messages too small

Empirical optimum: Permute 256KiB together

7 12 13 4 5 0 1 14 15 2 3 10 11 8 96

PE 0 PE 1 PE 2 PE 3

copy 1
copy 2 14 15 2 3 10 11 8 9 7 12 13 4 5 0 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150appl. data

submit

R
eS

to
re
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Data Distribution for Faster Recovery

Idea: Break up access pattern using a random permutation for the block IDs

More PEs serving data after failure

Too many PEs serving data → messages too small

Empirical optimum: Permute 256KiB together

7 12 13 4 5 0 1 14 15 2 3 10 11 8 96

PE 0 PE 1 PE 2 PE 3

copy 1
copy 2 14 15 2 3 10 11 8 9 7 12 13 4 5 0 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150appl. data

submit

PE 0 failedload

requested data

R
eS

to
re

E 0 1 2 3
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Implementation and Experimental Setup

Implementation
C++; header-only; modern CMake

https://github.com/ReStoreCpp/ReStore

Experimental Setup
SuperMUC-NG

10 repetitions per experiment

MPI Implementation: OpenMPI during experiments, ULFM during unit tests

RAxML-NG
Existing bioinformatics tool

Real-world application, cited 50 000+ times

Checkpointing dynamic data part of previous work

Slow loading of input data from parallel file system → ReStore
10
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Evaluating ID Randomization

16MiB/PE
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Probability of Irrecoverable Data Loss

Number of replicas r divides number of PEs p
→ groups of PEs storing the same data

7 12 13 4 5 0 1 14 15 2 3 10 11 8 96

PE 0 PE 1 PE 2 PE 3

copy 1
copy 2 14 15 2 3 10 11 8 9 7 12 13 4 5 0 16

=
=
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Probability of Irrecoverable Data Loss

. . .

. . .

group 1 group 2 group 3 group 4 group p/r

1st PE in group

2nd PE in group

3rd PE in group

r -th PE in group

Given f failures, what is the probability, that all PEs of any group failed?

E E

E E

E

=
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Probability of Irrecoverable Data Loss

empirical
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Probability of Irrecoverable Data Loss

theoretical
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In-Memory vs. Parallel File System

16MiB data per PE
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November 8, 2022 Lukas Hübner, Demian Hespe, Peter Sanders, Alexandros Stamatakis
ReStore: In-Memory REplicated STORagE for Rapid Recovery

HITS • Computational Molecular Evolution
KIT • Institute of Theoretical Informatics

Overhead of ReStore in RAxML-NG

19.1GiB synthetic dataset
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November 8, 2022 Lukas Hübner, Demian Hespe, Peter Sanders, Alexandros Stamatakis
ReStore: In-Memory REplicated STORagE for Rapid Recovery

HITS • Computational Molecular Evolution
KIT • Institute of Theoretical Informatics

Overhead of ReStore in RAxML-NG

empirical datasets19.1GiB synthetic dataset
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Overhead of ReStore in k-means

16MiB data per PE

1% of PEs fail

Overall running time includes:
load balancer
identifying failed PEs
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Recovering Replicas After a Node Failure

nodes

Goal: Restore lost replicas after a failure; copying only the lost data

Idea: For each block x , draw pseudorandom permutation ρx on [0, p − 1]

Place copies on ρx (0), ρx (1), . . .

Nodes on which this block is stored? O(r + f ) time, O(1) space

Block x

ρx (0) ρx (1) ρx (2)

r = 3
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Recovering Replicas After a Node Failure

nodes

Goal: Restore lost replicas after a failure; copying only the lost data

Idea: For each block x , draw pseudorandom permutation ρx on [0, p − 1]

Place copies on ρx (0), ρx (1), . . .

Nodes on which this block is stored? O(r + f ) time, O(1) space

Block x

ρx (0) ρx (1) ρx (2) ρx (3)

r = 3

E

No need to redistribute any block that did not lose a replica!
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Conclusion

Permutation-based data distribution enables recovery of lost data in milliseconds
on tens of thousands of PEs

First in-memory library to support shrinking recovery

RAxML-NG’s recovery performance improved by up to two orders of magnitude

Extension to easily restore lost replicas after a failure

Provably small probability of data loss

https://github.com/ReStoreCpp/ReStore
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Thanks for listening :-)
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November 8, 2022 Lukas Hübner, Demian Hespe, Peter Sanders, Alexandros Stamatakis
ReStore: In-Memory REplicated STORagE for Rapid Recovery

HITS • Computational Molecular Evolution
KIT • Institute of Theoretical Informatics

Basic Data Distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

1 2 3 4 5 6 78 9 10 11 12 13 14 15 0

copy 1

copy 2

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 0appl. data

Avoid storing the blocks needed after a failure of node i on node i

No need to change the distribution of the application data; assigning different IDs
when submitting to ReStore is sufficient
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Implementation and Experimental Setup

Experimental Setup
We benchmark on the SuperMUC-NG

Two Intel Skylake Xeon 8174 processors with 24 cores each per node

96GiB of RAM per node

Omnipath interconnect with 100Gbit s−1

OpenMPI as MPI implementation

10 repetitions per experiment
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Probability of Irrecoverable Data Loss

. . .

. . .

group 1 group 2 group 3 group 4 group p/r

PE 1 in group

PE 2 in group

PE 3 in group

PE r in group

Given f failures, what is the probability, that all copies of group 1 failed?

E E

E E

E
Number of possibilities to draw f nodes from p nodes:

(p
f

)
Number of possibilities to draw all r copies of group 1 plus f − r other nodes:

(p−r
f−r

)
P(All nodes of group 1 failed) =

(p−r
f−r

)
/
(p

f

)
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Probability of Irrecoverable Data Loss

A

B
C

A ∩ B

A ∩ C

B ∩ B

A ∩ B ∩ C

Inclusion-exclusion principle

|A ∪ B ∪ C| =|A| + |B| + |C|
−|A ∩ B| − |A ∩ C| − |B ∩ C|
+|A ∩ B ∩ C|
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Probability of Irrecoverable Data Loss

P≤
IDL(f ) =

∑g
j=1 (−1)j+1(g

j

)(p−j r
f−j r)
(p

f )

Given f , there are
(p−r

f−r

)
configurations of failed nodes which lead to data loss

Summing up over all groups would count certain states twice, trice, . . .

E.g., states in which all nodes of group 1 and group 2 failed would be counted twice
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Probability of Irrecoverable Data Loss

P≤
IDL(f ) =

∑g
j=1 (−1)j+1(g

j

)(p−j r
f−j r)
(p

f )

Given f , there are
(p−r

f−r

)
configurations of failed nodes which lead to data loss

Summing up over all groups would count certain states twice, trice, . . .

E.g., states in which all nodes of group 1 and group 2 failed would be counted twice

probability of
irrecoverable data
loss at failure f or
any failure before
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Probability of Irrecoverable Data Loss

P≤
IDL(f ) =

∑g
j=1 (−1)j+1(g

j

)(p−j r
f−j r)
(p

f )

inclusion-exclusion
principle

all combinations of
1, . . . , j , . . . , g

groups in which all
nodes failed

Given f , there are
(p−r

f−r

)
configurations of failed nodes which lead to data loss

Summing up over all groups would count certain states twice, trice, . . .

E.g., states in which all nodes of group 1 and group 2 failed would be counted twice

probability of
irrecoverable data
loss at failure f or
any failure before
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P≤
IDL(f ) =

∑g
j=1 (−1)j+1(g

j

)(p−j r
f−j r)
(p

f )

inclusion-exclusion
principle

all combinations of
1, . . . , j , . . . , g

groups in which all
nodes failed

number of
configurations

Given f , there are
(p−r

f−r

)
configurations of failed nodes which lead to data loss

Summing up over all groups would count certain states twice, trice, . . .

E.g., states in which all nodes of group 1 and group 2 failed would be counted twice

probability of
irrecoverable data
loss at failure f or
any failure before
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