
Parallel Inference of Phylogenetic Stands
with Gentrius

Anastasis Togkousidis, Olga Chernomor,
Alexandros Stamatakis

1

HiCOMB 2023 - 22nd IEEE International Workshop on
High Performance Computational Biology

15 May 2023

Introduction

2

General Pipeline

Input
MSA

Binary Species
tree

3

Tree Inference

Standard Approach

4

- The MSA is a single gene or locus (genome region)

- Tree Inference: Maximum Likelihood (ML) or Bayesian Inference
- Assumption: This gene/locus constitutes a valid proxy for the entire

evolutionary history of the species.

- Different genes might have evolved under different models and
parameters

- Tree inferences conducted on distinct genes often yield incongruent
tree topologies

Problems of Standard Approach

5

Alternative Approach

6

- The MSA comprises multiple genes/loci (multi-partitioned)

- The information derived from multiple genes is summarized into a
single species tree

- Multiple species tree inference approaches (Supermatrix, Supertree
etc).

Missing data in multi-partitioned MSAs

7

- Multi-partitioned MSAs often exhibit missing data
- A species may have no data present in a specific locus (sampling

issues or absence of target gene)

Missing data in multi-partitioned MSAs

8

- Multi-partitioned MSAs often exhibit missing data
- A species may have no data present in a specific locus (sampling

issues or absence of target gene)

Presence - Absence
Matrix (PAM)

Our problem

9

- Given a set of incomplete
unrooted gene trees

Our problem

10

- Given a set of incomplete
unrooted gene trees

Taxon1

Taxon4
Taxon5

Taxon6
Taxon1

Taxon2 Taxon5

Taxon6 Taxon2

Taxon3

Taxon6

Taxon4
Taxon3

Our problem

11

- Given a set of incomplete
unrooted gene trees

- We want to enumerate all
complete species trees
which are compatible with
the incomplete gene trees

Taxon1

Taxon3
Taxon4

Taxon5

Taxon6
Taxon1

Taxon2 Taxon5

Taxon6 Taxon2

Taxon3

Taxon6

Taxon4

Our problem
- Given a set of incomplete

unrooted gene trees

- We want to enumerate all
complete species trees
which are compatible with
the incomplete gene trees

Taxon1

Taxon3 Taxon4
Taxon5

Taxon6
Taxon2

Taxon1

Taxon3

Taxon4 Taxon5

Taxon6

Taxon2

1 2

…..

Taxon1

Taxon4
Taxon5

Taxon6
Taxon1

Taxon2 Taxon5

Taxon6 Taxon2

Taxon3

Taxon6

Taxon4

…..
12

Taxon3

Our problem
- Given a set of incomplete

unrooted gene trees

- We want to enumerate all
complete species trees
which are compatible with
the incomplete gene trees

Taxon1

Taxon3 Taxon4
Taxon5

Taxon6
Taxon2

Taxon1

Taxon3

Taxon4 Taxon5

Taxon6

Taxon2

1 2

…..

Taxon1

Taxon4
Taxon5

Taxon6
Taxon1

Taxon2 Taxon5

Taxon6 Taxon2

Taxon3

Taxon6

Taxon4

…..
13

Taxon3

Stand To be defined …

Equivalent problem

14

T1

T2

T3

T4 T5 T6 T7

T8

T9

G1 G2 G3 G4

T1 1 0 1 1

T2 0 0 1 0

T3 1 0 1 1

T4 1 0 1 0

T5 0 1 0 0

T6 0 1 1 0

T7 1 1 1 1

T8 0 1 1 0

T9 1 0 0 1

PAM

Complete
Species Tree

Equivalent problem

15

T1

T2

T3

T4 T5 T6 T7

T8

T9

G1 G2 G3 G4

T1 1 0 1 1

T2 0 0 1 0

T3 1 0 1 1

T4 1 0 1 0

T5 0 1 0 0

T6 0 1 1 0

T7 1 1 1 1

T8 0 1 1 0

T9 1 0 0 1

PAM

T1

T3

T4 T7

T9

T5

T6 T7

T8
T2

T3

T4 T7

T6
T1

T3 T7

T9

T8

Complete
Species Tree

Equivalent problem

16

T1

T2

T3

T4 T5 T6 T7

T8

T9

G1 G2 G3 G4

T1 1 0 1 1

T2 0 0 1 0

T3 1 0 1 1

T4 1 0 1 0

T5 0 1 0 0

T6 0 1 1 0

T7 1 1 1 1

T8 0 1 1 0

T9 1 0 0 1

PAM

T1

T3

T4 T7

T9

T5

T6 T7

T8
T2

T3

T4 T7

T6
T1

T3 T7

T9

T8

Incomplete
induced / displayed

subtrees

At least one tree
on stand

Complete
Species Tree

Background

17

- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents

18

Compatibility

19

t1

t2

t3

t4

We say that an incomplete tree Ti with taxa Yi
(e.g. Yi = {t1,t2,t3,t4})

Ti

We say that an incomplete tree Ti with taxa Yi
(e.g. Yi = {t1,t2,t3,t4})

is compatible with a complete species tree T
with taxa Y⊇ Yi (e.g. Y = {t1,t2,t3,t4,t5,t6})

Compatibility

20

t1

t2

t3

t4

t1

t2

t3

t4

t6

t5

Ti

T

We say that an incomplete tree Ti with taxa Yi
(e.g. Yi = {t1,t2,t3,t4})

is compatible with a complete species tree T
with taxa Y⊇ Yi (e.g. Y = {t1,t2,t3,t4,t5,t6})

if T can be reduced to Ti by collapsing some of
its edges (simply put, remove the extra taxa)

Compatibility

21

t1

t2

t3

t4

t1

t2

t3

t4

t6

t5

T|Yi = Ti

Ti

T

We say that an incomplete tree Ti with taxa Yi
(e.g. Yi = {t1,t2,t3,t4})

is compatible with a complete species tree T
with taxa Y⊇ Yi (e.g. Y = {t1,t2,t3,t4,t5,t6})

if T can be reduced to Ti by collapsing some of
its edges (simply put, remove the extra taxa)

Equivalent Phrases: T displays Ti, T is reduced to
Ti, Ti is induced by T (or is an induced subtree)

Compatibility

22

t1

t2

t3

t4

t1

t2

t3

t4

t6

t5

T|Yi = Ti

Ti

T

Compatibility (Generalized)

23

t1

t2

t3

t4

We say that two (incomplete) trees

- T1 with taxa Y1 (e.g. Y1 = {t1,t2,t3,t4})
- T2 with taxa Y2 (e.g. Y2 = {t1,t3,t4,t5})

T1

t1

t4

t3

t5

T2

Compatibility (Generalized)

24

t1

t2

t3

t4

We say that two (incomplete) trees

- T1 with taxa Y1 (e.g. Y1 = {t1,t2,t3,t4})
- T2 with taxa Y2 (e.g. Y2 = {t1,t3,t4,t5})

Are compatible if there is a tree T that
displays both (with taxa Y = Y1 ⋃ Y2)

T1

t1

t4

t3

t5

T2
t1

t2

t3

t4

t5

T

Compatibility (Generalized)

25

t1

t2

t3

t4

We say that two (incomplete) trees

- T1 with taxa Y1 (e.g. Y1 = {t1,t2,t3,t4})
- T2 with taxa Y2 (e.g. Y2 = {t1,t3,t4,t5})

Are compatible if there is a tree T that
displays both (with taxa Y = Y1 ⋃ Y2)

T1

t1

t2

t3

t4

t5

T

t1

t4

t3

t5

T2

Compatibility (Generalized)

26

t1

t2

t3

t4

We say that two (incomplete) trees

- T1 with taxa Y1 (e.g. Y1 = {t1,t2,t3,t4})
- T2 with taxa Y2 (e.g. Y2 = {t3,t4,t5,t5})

Are compatible if there is a tree T that
displays both (with taxa Y = Y1 ⋃ Y2)

T1

t1

t2

t3

t4

t5

T

t1

t4

t3

t5

T2

- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents

27

- Given a set of incomplete unrooted trees

Gentrius Algorithm (Chernomor et al.)

28

t1

t2

t3

t4

t6

t7

t3

t4

t1

t6

t5

t4

t1

t2

t3

t4t5 t5

- Given a set of incomplete unrooted trees

- Gentrius generates all trees on stand (trees that are compatible
with all the unrooted subtrees)

Gentrius Algorithm (Chernomor et al.)

29

t1

t2

t3

t4

t6

t7

t3

t4

t1

t6

t5

t4

t1

t2

t3

t4t5 t5

t3

t4
t5

t3

t4
t5

t1

t2

t6

t6

t1

t7

t2

1 2

…..

t7

- Given a set of incomplete unrooted trees

- Gentrius generates all trees on stand (trees that are compatible
with all the unrooted subtrees)

Gentrius Algorithm (Chernomor et al.)

30

t1

t2

t3

t4

t6

t7

t3

t4

t1

t6

t5

t4

t1

t2

t3

t4t5 t5

t3

t4
t5

t3

t4
t5

t1

t2

t6

t6

t1

t7

t2

1 2

….. It can be exponentially
many :(…

t7

- Deterministic, Branch and bound algorithm
- One tree serves as the initial tree (agile tree).
- The whole stand is generated by stepwise taxon insertion. Missing

taxa are sequentially inserted into the agile tree
- Missing taxa are inserted into admissible branches on the agile tree
- Admissible branches are determined mathematically from the

double-edged mappings (see Chernomor et al.)

How Gentrius Works

31

- Initial set of incomplete unrooted trees

Simple Example

32

t1

t2

t3

t4

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8t5 t6

- Initial set of incomplete unrooted trees

- Gentrius selects the tree with the largest number of shared taxa
as the initial agile tree

Simple Example

33

t1

t2

t3

t4

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8t5 t6

- Initial set of incomplete unrooted trees

- Gentrius selects the tree with the largest number of shared taxa
as the initial agile tree

Simple Example

34

t1

t2

t3

t4

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8t5 t6

5 3 3 3

Agile tree

Simple Example

35

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

Constraint TreesAgile tree

T

Simple Example

36

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

Constraint TreesAgile tree

T

State of the
algorithm

Simple Example

37

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

- t7 is present on constraint trees T1 and T2

T1 T2 T3

T

Simple Example

38

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

- Build common subtree between T and T1

T1 T2 T3

T
t1

t5

t6

Simple Example

39

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

- Map edges (I’m omitting some mappings for simplicity)

T1 T2 T3

T
t1

t5

t6

Simple Example

40

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

- Find the edge in which t7 is mapped (it is only one edge)

T1 T2 T3

T
t1

t5

t6

Simple Example

41

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

- Map backwards

T1 T2 T3

T
t1

t5

t6

Simple Example

42

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T
Admissible branches

(We’re not finished yet …)

Simple Example

43

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

- Build common subtree between T and T2

t1 t2

t5

Simple Example

44

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

- Map edges (I’m omitting some mappings for simplicity)

t1 t2

t5

Simple Example

45

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t1 t2

t5

- Find the edge in which t7 is mapped (it is only one edge)

Simple Example

46

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t1 t2

t5

- Map backwards (take the intersection)

These two branches are omitted

Simple Example

47

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

- One admissible branch, add t7

t7

Simple Example

48

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- t8 is present on constraint tree T3

Simple Example

49

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Build common subtree between T and T3

t4

t5

t6

Simple Example

50

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

t4

t5

t6

- Map edges (I’m omitting some mappings for simplicity)

Simple Example

51

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

t4

t5

t6

- Find the edge in which t8 is mapped (it is only one edge)

Simple Example

52

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

t4

t5

t6

- Map backwards

Simple Example

53

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 0

Simple Example

54

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 1Add

t8

Simple Example

55

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 1Remove

Simple Example

56

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 2Add

t8

Simple Example

57

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 2Remove

Simple Example

58

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t7

- Three admissible branches for t8 (now branch and bound)

Stand Trees = 3Add

t8 🥳🥳🥳Three stand trees in total

State = agile tree + constraint trees

- If the agile tree is incomplete intermediate state
- If the agile tree is complete stand tree
- If the agile tree is incomplete but no more taxa can be

inserted, because compatibility is violated: dead end

Types of States

59

Initial state

State 1
Taxon a at branch 1

State 4
Taxon a at branch 2

State 2
Taxon b at branch 3

State 3
Taxon b at branch 4

State 5
Taxon b at branch 3

State 6
Taxon b at branch 4

 Insert taxon a
into branch 1

Remove
taxon b from

branch 3

 Insert taxon b
into branch 3

 Insert
taxon b into

branch 4

 Insert taxon a
into branch 2

 Insert taxon b
into branch 3

 Insert taxon b
into branch 4

Remove
taxon b from

branch 4

Remove
taxon a from

branch 1

Remove
taxon b

from
branch 3

Remove
taxon b from

branch 4

Remove
taxon a from

branch 2

4

1

2

5
3

7

10

6

8

9

11

12

Initial state

Taxon a can be inserted
into branches 1 and 2,

while taxon b into
branches 3 and 4

a b

2
3

4

1

- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree

structure
- We cannot know a priori the admissible branches for all taxa

Comments

61

- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree

structure
- We cannot know a priori the admissible branches for all taxa

Comments

62

A

B1

Both taxa a and b are allowed
to be inserted into branch 1

a b

Comments

63

A

B1

Both taxa a and b are allowed
to be inserted into branch 1

Insertion of
taxon b

A

B

3

1 2

ba b a

Taxon a can now be inserted into
branches 1, 2 and 3 of the new tree

- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree

structure
- We cannot know a priori the admissible branches for all taxa

- Dynamic taxon insertion heuristic
- Every time, the taxon with the smallest number of admissible

branches is selected for insertion

Comments

64

- In the worst-case scenario, the number of trees on a stand can
be exponentially many

- To prevent excessive runtimes, Gentrius employs three stopping
rules:
- when the algorithm counts more than N stand trees (default

N=106)
- when more than M intermediate states have been visited

(default M=108)
- when the execution requires more than T hours (default

T=168h)

Stopping Rules

65

- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents

66

- Stands are associated with the concept of terraces
- We say that trees inferred from multi-partitioned MSAs with

missing data lie on a terrace when they have equal analytical score
(ML score, quartet-consistency score)

- Under certain criteria, stand trees are also terrace trees
- Identifying stands is a quantification of the uncertainty of the tree

inference under certain methods

Why care about stands?

67

Gentrius preprint

Parallelization

69

Preliminares

70

- The workflow graph, i.e. the graph of states of the algorithm, has a
treelike structure

- From now on, the trees in this presentation will represent the
workflow graph (tree of states), not phylogenetic trees

Basic idea

71

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

Basic idea

72

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

New (intermediate)
state: Taxon2 can be
inserted into multiple

branches

Basic idea

73

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

New (intermediate)
state: Taxon2 can be
inserted into multiple

branches

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Basic idea

74

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

New (intermediate)
state: Taxon2 can be
inserted into multiple

branches

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Thread 1 Thread 2 Thread N

Basic idea

75

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

New (intermediate)
state: Taxon2 can be
inserted into multiple

branches

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Thread 1 Thread 2 Thread N

standTrees1 standTrees2 standTreesN+ + . . . + = standTrees

Basic idea

76

Incomplete
Agile tree

Constraint
Trees

Initial State

Initial state: Taxon1 can
be inserted into only one

branch

New (intermediate)
state: Taxon2 can be
inserted into multiple

branches

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Thread 1 Thread 2 Thread N

standTrees1 standTrees2 standTreesN+ + . . . + = standTrees

State of
initial split

The first state in which
a taxon has multiple
admissible branches

Thread 3

Thread 1

… …

…

… …

…

… …

…

… …

…

State of
initial split

Thread 2Thread 1

Thread 2 Thread 3

Alternative Parallelization Scheme
- When the number of threads used is greater than the number of

admissible branches on the state of initial split

- The workflow tree is often highly unbalanced
- We cannot know a priori its structure, since we cannot know a

priori the admissible branches for each taxon

Problem

78

- We use a thread pooling approach
- We introduce a taskqueue
- Active (working) threads create and push new tasks into the

queue
- Inactive threads (those that finished their jobs) remain in

busy-wait mode until a new task becomes available in the
queue.

Solution

79

Example

80

TaskQueue

Initial state

Example

81

TaskQueue

Initial state

… Threads have
not been

separated yetState of
initial split

Example

82

TaskQueue

Initial state

…

. . .

Example

83

TaskQueue

Initial state

…

. . .

Thread 1

Example

84

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Example

85

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

Example

86

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

Task 1 pushed
on queue

Example

87

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

Thread 2

Example

88

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

Thread 2

. . .

. . .

Example

89

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

Example

90

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

T2

Task 2 pushed
on queue

Example

91

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

T2

Thread 3

Example

92

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

T2

Thread 3

Dead end

Example

93

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

T2

Thread 3 returns to
the state of initial split

Dead end

Example

94

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

T1

. . .

. . .

Task 2 Thread 2

T2

Grabs a task

Dead end

T1

Example

95

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Task 1

. . .

. . .

Task 2 Thread 2

T2

Dead end

Thread 3 moves to the
state of Task 1

Example

96

TaskQueue

Initial state

…

. . .

Thread 1

. . .

. . .

Thread 3

. . .

. . .

Task 2 Thread 2

T2

Dead end

Executes the task

- The execution finishes when all threads are inactive and no task
is available on queue.

- We use mutexes/locks to push/pull tasks into the queue.

Comments

97

- The execution finishes when all threads are inactive and no task
is available on queue.

- We use mutexes/locks to push/pull tasks into the queue.

Comments

98

Thresholds
1. To avoid task overflow, we set a threshold into the number of

tasks that the queue can concurrently hold.
2. We also set a threshold in task creation. If an active thread is

in a state with less than 3 remaining taxa, this thread cannot
create and push tasks

Results

99

Experimental Setup

100

Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Experimental Setup

101

Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering

Experimental Setup

102

Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering Gentrius

Threads: {1, 2, 4, 8, 12, 16}

Stopping Rules:
N = 108 stand trees
M = 108 intermediate states
T = 5 hours of execution

Experimental Setup

103

Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering Gentrius

Threads: {1, 2, 4, 8, 12, 16}

Stopping Rules:
N = 108 stand trees
M = 108 intermediate states
T = 5 hours of execution

Plots

Empirical data

104

Simulated data

105

Speedup variances

106

- The following unbalanced structure in the workflow tree can
either cause super-linear speedup or speedup plateau.

A B

: initial split
: workflow subtree

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

Speedup variances

107

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution

1 Thread 2 Threads

Stand trees - -

Intermediate
states

- -

Time - -

Speedup variances

108

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Thread 1 reaches the state
of initial split

1 Thread 2 Threads

Stand trees - -

Intermediate
states

- -

Time - -

Speedup variances

109

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Thread 1 enters the left
subtree, with many
intermediate states and
dead ends

1 Thread 2 Threads

Stand trees - -

Intermediate
states

- -

Time - -

Speedup variances

110

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Stopping rule for intermediate
states is activated. The
execution terminates.

1 Thread 2 Threads

Stand trees 0 -

Intermediate
states

107 -

Time 100 s -

STOP

Speedup variances

111

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 -

Intermediate
states

107 -

Time 100 s -

Threads 1 and 2 reach the
state of initial split

Threads: 1 2

Speedup variances

112

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 -

Intermediate
states

107 -

Time 100 s -

Split:
Thread 1 enters the left
subtree with many
intermediate states and
dead ends
Thread 2 enters the right
subtree with 106 stand trees

Threads: 1 2

1 2

Speedup variances

113

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 106

Intermediate
states

107 < 107

Time 100 s 10 s

Threads: 1 2

1 2
Stopping rule for stand trees
is activated (Thread 2). The
execution terminates.

STOP

Speedup variances

114

a) Superliner speedups (Example)

A B

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 106

Intermediate
states

107 < 107

Time 100 s 10 s

Threads: 1 2

1 2
Stopping rule for stand trees
is activated (Thread 2). The
execution terminates.

STOP

Speedup 10x !

Example datasets:
sr_sim-data-44

Speedup variances

115

b) Speedup plateaus

We will describe how speedup plateaus
can be reached

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Speedup variances

116

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Speedup variances

117

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution

Speedup variances

118

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

Sequential Execution

Stopping rule for stand trees is
activated. The execution
terminates.

STOP

Speedup variances

119

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 threads

Speedup variances

120

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 threads

Thread 1 Thread 2

Speedup variances

121

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

2 threads

Thread 1 Thread 2

STOP

Stopping rule for stand trees is
activated.
Speedup ~ 2x

Speedup variances

122

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

3 threads

Speedup variances

123

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

3 threads

Thread 1 Thread 2Thread 3

Speedup variances

124

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

3 threads

Thread 1 Thread 2Thread 3

STOP

Stopping rule for stand trees is
activated.
Speedup ~ 2x

This thread does not
contribute much :(

Speedup variances

125

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

4 threads

Speedup variances

126

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

4 threads

Thread 1 Thread 2Thread 3Thread 4

Speedup variances

127

b) Speedup plateaus

> 1 million
stand trees

0 stand trees,
many intermediate
states + dead ends

: initial split
: workflow subtree

4 threads

Thread 1 Thread 2Thread 3

STOP

Stopping rule for stand trees is
activated.
Speedup ~ 2x

These two threads do not
contribute much :(

Thread 4

Example datasets:
sim-data-1511 , sim-data-1792,
sim-data-1795

Conclusion

128

- Gentrius enumerates all trees on stand
- The size of stand is important, because it quantifies the uncertainty of

phylogenetic inference
- We designed, implemented and tested a parallelization scheme for

Gentrius algorithm
- To avoid difficulties, we used a thread pooling scheme
- We achieve linear speedups up to 16 threads
- In some rare cases, we achieve super-linear speedups

Summary

129

● Parallel Gentrius is available under GNU GPL:
○ https://www.github.com/togkousa/iqtree2/tree/terragen

● Manuscript (to be published):
○ Togkousidis, A., Chernomor, O., Stamatakis. A., (2023). Parallel

Inference of Phylogenetic Stands with Gentrius. IEEE Proceedings

Availability

130

https://github.com/togkousa/iqtree2/tree/terragen

Thank you

131

