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Standard Approach

4

- The MSA is a single gene or locus (genome region)

- Tree Inference: Maximum Likelihood (ML) or Bayesian Inference
- Assumption: This gene/locus constitutes a valid proxy for the entire 

evolutionary history of the species.



- Different genes might have evolved under different models and 
parameters

- Tree inferences conducted on distinct genes often yield incongruent 
tree topologies

Problems of Standard Approach
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Alternative Approach
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- The MSA comprises multiple genes/loci (multi-partitioned)

- The information derived from multiple genes is summarized into a 
single species tree

- Multiple species tree inference approaches (Supermatrix, Supertree 
etc).



Missing data in multi-partitioned MSAs
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- Multi-partitioned MSAs often exhibit missing data
- A species may have no data present in a specific locus (sampling 

issues or absence of target gene)



Missing data in multi-partitioned MSAs
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- Multi-partitioned MSAs often exhibit missing data
- A species may have no data present in a specific locus (sampling 

issues or absence of target gene)

Presence - Absence 
Matrix (PAM)



Our problem
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- Given a set of incomplete 
unrooted gene trees
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Our problem
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- Given a set of incomplete 
unrooted gene trees

- We want to enumerate all 
complete species trees 
which are compatible with 
the incomplete gene trees
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Our problem
- Given a set of incomplete 

unrooted gene trees

- We want to enumerate all 
complete species trees 
which are compatible with 
the incomplete gene trees
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Our problem
- Given a set of incomplete 

unrooted gene trees

- We want to enumerate all 
complete species trees 
which are compatible with 
the incomplete gene trees
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Taxon3

Stand To be defined …



Equivalent problem
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Equivalent problem
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Background
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- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents
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Compatibility
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We say that an incomplete tree Ti with taxa Yi  
(e.g. Yi = {t1,t2,t3,t4} )

is compatible with a complete species tree T 
with taxa Y⊇ Yi  (e.g. Y = {t1,t2,t3,t4,t5,t6} )
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We say that an incomplete tree Ti with taxa Yi  
(e.g. Yi = {t1,t2,t3,t4} )

is compatible with a complete species tree T 
with taxa Y⊇ Yi  (e.g. Y = {t1,t2,t3,t4,t5,t6} )

if T can be reduced to Ti by collapsing some of 
its edges (simply put, remove the extra taxa)

Compatibility
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We say that an incomplete tree Ti with taxa Yi  
(e.g. Yi = {t1,t2,t3,t4} )

is compatible with a complete species tree T 
with taxa Y⊇ Yi  (e.g. Y = {t1,t2,t3,t4,t5,t6} )

if T can be reduced to Ti by collapsing some of 
its edges (simply put, remove the extra taxa)

Equivalent Phrases: T displays Ti, T is reduced to 
Ti, Ti is induced by T (or is an induced subtree)

Compatibility
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Compatibility (Generalized)
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Compatibility (Generalized)
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Compatibility (Generalized)
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Compatibility (Generalized)
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- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents
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- Given a set of incomplete unrooted trees

Gentrius Algorithm (Chernomor et al.)
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- Given a set of incomplete unrooted trees

- Gentrius generates all trees on stand (trees that are compatible 
with all the unrooted subtrees)

Gentrius Algorithm (Chernomor et al.)
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- Given a set of incomplete unrooted trees

- Gentrius generates all trees on stand (trees that are compatible 
with all the unrooted subtrees)

Gentrius Algorithm (Chernomor et al.)
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- Deterministic, Branch and bound algorithm
- One tree serves as the initial tree (agile tree). 
- The whole stand is generated by stepwise taxon insertion. Missing 

taxa are sequentially inserted into the agile tree
- Missing taxa are inserted into admissible branches on the agile tree
- Admissible branches are determined mathematically from the 

double-edged mappings (see Chernomor et al.)

How Gentrius Works
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- Initial set of incomplete unrooted trees

Simple Example
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- Initial set of incomplete unrooted trees

- Gentrius selects the tree with the largest number of shared taxa 
as the initial agile tree

Simple Example
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- Initial set of incomplete unrooted trees

- Gentrius selects the tree with the largest number of shared taxa 
as the initial agile tree

Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example

45

t1 t2

t3 t4

t5

t6

t1

t7

t5

t6

t1

t7

t5

t2

t5

t6

t4

t8

Missing Taxa: t7, t8

T1 T2 T3

T

t1 t2

t5

- Find the edge in which t7 is mapped (it is only one edge)



Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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Simple Example
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State = agile tree + constraint trees

- If the agile tree is incomplete intermediate state
- If the agile tree is complete stand tree
- If the agile tree is incomplete but no more taxa can be 

inserted, because compatibility is violated: dead end 

Types of States

59



Initial state

State 1
Taxon a at branch 1

State 4
Taxon a at branch 2

State 2
Taxon b at branch 3

State 3
Taxon b at branch 4

State 5
Taxon b at branch 3

State 6
Taxon b at branch 4

 Insert taxon a 
into branch 1

Remove 
taxon b from 

branch 3

 Insert taxon b 
into branch 3

 Insert 
taxon b into 

branch 4

 Insert taxon a 
into branch 2

 Insert taxon b 
into branch 3

 Insert taxon b 
into branch 4

Remove 
taxon b from 

branch 4

Remove 
taxon a from 

branch 1

Remove 
taxon b 

from 
branch 3

Remove 
taxon b from 

branch 4

Remove 
taxon a from 

branch 2

4

1
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5
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Initial state

Taxon a can be inserted 
into branches 1 and 2, 

while taxon b into 
branches 3 and 4
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- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree 

structure
- We cannot know a priori the admissible branches for all taxa

Comments
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- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree 

structure
- We cannot know a priori the admissible branches for all taxa

Comments
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Comments
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A

B1

Both taxa a and b are allowed 
to be inserted into branch 1

Insertion of 
taxon b 

A

B

3

1 2

ba b a

Taxon a can now be inserted into 
branches 1, 2 and 3 of the new tree

- Gentrius is a branch and bound algorithm
- Thus, the workflow graph (graph of states) itself has a tree 

structure
- We cannot know a priori the admissible branches for all taxa



- Dynamic taxon insertion heuristic
- Every time, the taxon with the smallest number of admissible 

branches is selected for insertion

Comments
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- In the worst-case scenario, the number of trees on a stand can 
be exponentially many

- To prevent excessive runtimes, Gentrius employs three stopping 
rules:
- when the algorithm counts more than N stand trees (default 

N=106)
- when more than M intermediate states have been visited 

(default M=108)
- when the execution requires more than T hours (default 

T=168h)

Stopping Rules
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- Compatibility
- Gentrius Algorithm
- Why care about stands?

Contents
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- Stands are associated with the concept of terraces
- We say that trees inferred from multi-partitioned MSAs with 

missing data lie on a terrace when they have equal analytical score 
(ML score, quartet-consistency score)

- Under certain criteria, stand trees are also terrace trees
- Identifying stands is a quantification of the uncertainty of the tree 

inference under certain methods

Why care about stands?

67



Gentrius preprint



Parallelization
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Preliminares

70

- The workflow graph, i.e. the graph of states of the algorithm, has a 
treelike structure

- From now on, the trees in this presentation will represent the 
workflow graph (tree of states), not phylogenetic trees



Basic idea
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Basic idea
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Incomplete 
Agile tree

Constraint 
Trees

Initial State

Initial state: Taxon1 can 
be inserted into only one 

branch 

New (intermediate) 
state: Taxon2 can be 
inserted into multiple 

branches 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

Thread 1 Thread 2 Thread N

standTrees1 standTrees2 standTreesN+ + . . . + = standTrees

State of 
initial split

The first state in which 
a taxon has multiple 
admissible branches



Thread 3

Thread 1

… …

…

… …

…

… …

…

… …

…

State of 
initial split

Thread 2Thread 1

Thread 2 Thread 3

Alternative Parallelization Scheme
- When the number of threads used is greater than the number of 

admissible branches on the state of initial split



- The workflow tree is often highly unbalanced
- We cannot know a priori its structure, since we cannot know a 

priori the admissible branches for each taxon

Problem
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- We use a thread pooling approach
- We introduce a taskqueue
- Active (working) threads create and push new tasks into the 

queue
- Inactive threads (those that finished their jobs) remain in 

busy-wait mode until a new task becomes available in the 
queue.

Solution
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Example
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TaskQueue

Initial state



Example
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TaskQueue

Initial state

… Threads have 
not been 

separated yetState of 
initial split
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TaskQueue

Initial state

…

. . . 
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TaskQueue

Initial state

…

. . . 

Thread 1
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

Task 1 pushed 
on queue
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

Thread 2
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

Thread 2

. . . 

. . . 
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2

T2

Task 2 pushed 
on queue



Example

91

TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2

T2

Thread 3



Example

92

TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2

T2

Thread 3

Dead end
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2

T2

Thread 3 returns to 
the state of initial split

Dead end
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

T1

. . . 

. . . 

Task 2 Thread 2

T2

Grabs a task

Dead end

T1
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Task 1

. . . 

. . . 

Task 2 Thread 2

T2

Dead end

Thread 3 moves to the 
state of Task 1



Example
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TaskQueue

Initial state

…

. . . 

Thread 1

. . . 

. . . 

Thread 3

. . . 

. . . 

Task 2 Thread 2

T2

Dead end

Executes the task



- The execution finishes when all threads are inactive and no task 
is available on queue.

- We use mutexes/locks to push/pull tasks into the queue.

Comments
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- The execution finishes when all threads are inactive and no task 
is available on queue.

- We use mutexes/locks to push/pull tasks into the queue.

Comments
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Thresholds
1. To avoid task overflow, we set a threshold into the number of 

tasks that the queue can concurrently hold.
2. We also set a threshold in task creation. If an active thread is 

in a state with less than 3 remaining taxa, this thread cannot 
create and push tasks 



Results
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Experimental Setup
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Empirical data
RAxML Grove database

Simulated data
Chernomor et al.
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Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering
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Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering Gentrius

Threads: {1, 2, 4, 8, 12, 16}

Stopping Rules:
N = 108 stand trees
M = 108 intermediate states
T = 5 hours of execution



Experimental Setup
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Empirical data
RAxML Grove database

Simulated data
Chernomor et al.

Filtering Gentrius

Threads: {1, 2, 4, 8, 12, 16}

Stopping Rules:
N = 108 stand trees
M = 108 intermediate states
T = 5 hours of execution

Plots



Empirical data
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Simulated data
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Speedup variances
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- The following unbalanced structure in the workflow tree can 
either cause super-linear speedup or speedup plateau.

A B

: initial split
: workflow subtree

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends



Speedup variances
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution

1 Thread 2 Threads

Stand trees - -

Intermediate 
states

- -

Time - -
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Thread 1 reaches the state 
of initial split

1 Thread 2 Threads

Stand trees - -

Intermediate 
states

- -

Time - -
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Thread 1 enters the left 
subtree, with many 
intermediate states and 
dead ends

1 Thread 2 Threads

Stand trees - -

Intermediate 
states

- -

Time - -
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution
Thread 1

Stopping rule for intermediate 
states is activated. The 
execution terminates.

1 Thread 2 Threads

Stand trees 0 -

Intermediate 
states

107 -

Time 100 s -

STOP
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 -

Intermediate 
states

107 -

Time 100 s -

Threads 1 and 2 reach the 
state of initial split

Threads: 1    2
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 -

Intermediate 
states

107 -

Time 100 s -

Split: 
Thread 1 enters the left 
subtree with many 
intermediate states and 
dead ends
Thread 2 enters the right 
subtree with 106 stand trees

Threads: 1    2

1 2
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 106

Intermediate 
states

107 < 107

Time 100 s 10 s

Threads: 1    2

1 2
Stopping rule for stand trees 
is activated (Thread 2). The 
execution terminates.

STOP
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a) Superliner speedups (Example)

A B

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 Threads

1 Thread 2 Threads

Stand trees 0 106

Intermediate 
states

107 < 107

Time 100 s 10 s

Threads: 1    2

1 2
Stopping rule for stand trees 
is activated (Thread 2). The 
execution terminates.

STOP

Speedup 10x !

Example datasets:
sr_sim-data-44



Speedup variances
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b) Speedup plateaus

We will describe how speedup plateaus 
can be reached

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

Sequential Execution

Stopping rule for stand trees is 
activated. The execution 
terminates.

STOP
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 threads
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 threads

Thread 1 Thread 2
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

2 threads

Thread 1 Thread 2

STOP

Stopping rule for stand trees is 
activated.
Speedup ~ 2x
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

3 threads
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

3 threads

Thread 1 Thread 2Thread 3
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

3 threads

Thread 1 Thread 2Thread 3

STOP

Stopping rule for stand trees is 
activated.
Speedup ~ 2x

This thread does not 
contribute much :(



Speedup variances

125

b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

4 threads
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

4 threads

Thread 1 Thread 2Thread 3Thread 4
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b) Speedup plateaus

> 1 million 
stand trees

0 stand trees,
many intermediate 
states + dead ends

: initial split
: workflow subtree

4 threads

Thread 1 Thread 2Thread 3

STOP

Stopping rule for stand trees is 
activated.
Speedup ~ 2x

These two threads do not 
contribute much :(

Thread 4

Example datasets:
sim-data-1511 , sim-data-1792, 
sim-data-1795
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- Gentrius enumerates all trees on stand
- The size of stand is important, because it quantifies the uncertainty of 

phylogenetic inference
- We designed, implemented and tested a parallelization scheme for 

Gentrius algorithm
- To avoid difficulties, we used a thread pooling scheme 
- We achieve linear speedups up to 16 threads
- In some rare cases, we achieve super-linear speedups

Summary
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● Parallel Gentrius is available under GNU GPL:
○ https://www.github.com/togkousa/iqtree2/tree/terragen

● Manuscript (to be published):
○ Togkousidis, A., Chernomor, O., Stamatakis. A., (2023). Parallel 

Inference of Phylogenetic Stands with Gentrius. IEEE Proceedings

Availability
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https://github.com/togkousa/iqtree2/tree/terragen


Thank you
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