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Easy datasets:

● For some datasets, independent ML tree searches starting from 
different trees, converge to a single - or topologically similar - 
tree(s)

● We say that these datasets exhibit a “clear phylogenetic signal”

The concept of difficulty
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The concept of difficulty

Difficult datasets:

● Other datasets yield topologically highly distinct, yet equally 
likely trees (equal score)

● These trees are also statistically indistinguishable based on 
IQ-TREE 2 significance tests
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Comments

● These two examples demonstrate two extreme-case dataset types
● There is a whole spectrum of in-between dataset cases (e.g. 

datastets in which RAxML infers
● This diverse behavior is essentially quantified by pythia
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Höhler et al. (preprint)
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● Compared RAxML-NG, IQ-TREE 2 and FastTree 2 on datasets with 
varying difficulty.  
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● Compared RAxML-NG, IQ-TREE 2 and FastTree 2 on datasets with 
varying difficulty.  

1.0

0.0

0.5

0.3

0.7

On easy MSAs, all tools perform similarly in terms 
of likelihood score and topological accuracy

On intermediate MSAs, RAxML-NG and 
IQ-TREE 2 infer significantly better trees

On difficult MSAs, all tools perform similarly 
but only in terms of likelihood score



Adaptive RAxML-NG

32



Standard RAxML-NG

● Initiates 10 random + 10 MP starting trees
● Applies a tree search heuristic to each of them, using exclusively SPR 

moves
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Standard RAxML-NG

● Initiates 10 random + 10 MP starting trees
● Applies a tree search heuristic to each of them, using exclusively SPR 

moves
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SPR round

● Sequence of SPR moves
● Hill-climbing - greedy heuristic
● Two types of SPRs round in RAxML-NG: Fast and Slow SPR round
● SPR radius: parameter of SPR rounds, denotes the maximum distance 

between the pruning and regrafting edge 
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SPR radius

● Example with SPR radius = 2
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● Example with SPR radius = 2
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SPR radius

● Example with SPR radius = 2
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Fast SPR round

● In Fast SPR round, RAxML-NG computes the likelihood using the 
branch lengths of the initial tree topology 
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Fast SPR round

● In Fast SPR round, RAxML-NG computes the likelihood using the 
branch lengths of the initial tree topology 
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Slow SPR round

● In Slow SPR round, RAxML-NG computes the likelihood by optimizing 
the three branch lengths around the insertion node
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Slow SPR round

● In Slow SPR round, RAxML-NG computes the likelihood using the 
branch lengths of the initial tree topology 
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Slow SPR round

● In Slow SPR round, RAxML-NG computes the likelihood using the 
branch lengths of the initial tree topology 
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Slow SPR round

● Also, in Slow SPR round, RAxML-NG stores the top-20 best-scoring 
topologies on a list
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Slow SPR round

● Also, in Slow SPR round, RAxML-NG stores the top-20 best-scoring 
topologies on a list

● At the end of the round, branch lengths are optimized in all top-20 
topologies to check whether any of them gives a higher LH score
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Adaptive heuristic in RAxML-NG

● We modify (with respect to difficulty) :
○ the number of ML tree searches 
○ the radius in Slow SPR round

● We further introduce:
○ The NNI moves
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Adaptive heuristic in RAxML-NG
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Adaptive heuristic in RAxML-NG

The MP starting trees curve is wider, due 
to the observation made by Morel et al. 54
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NNI round
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● Sequence of NNI moves (hill-climbing/greedy heuristic)
● For each inner branch e, we check all three neighboring NNI topologies
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NNI round
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● Sequence of NNI moves (hill-climbing/greedy heuristic)
● For each inner branch e, we check all three neighboring NNI topologies
● We optimize the five central branches and calculate the likelihoods
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NNI round
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● Sequence of NNI moves (hill-climbing/greedy heuristic)
● For each inner branch e, we check all three neighboring NNI topologies
● We optimize the five central branches and calculate the likelihoods
● Accept the best-scoring topology. Proceed to adjacent inner branches
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Adaptive heuristic in RAxML-NG

● We alternate between SPR and NNI rounds
● The alternation between SPR and NNI rounds achieves faster likelihood 

convergence, while maintaining the accuracy
● On easy and difficult datasets, we begin with an NNI round, since 

the probability of rapid convergence on those datasets is comparatively 
high
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Experimental setup

● 10,000 empirical - 5,000 simulated datasets
● Empirical data from TreeBASE [DNA/AA, single/multi partitioned]
● Simulated data from Höhler et al. (RAxML Grove reference trees)
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Experimental pipeline
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Difficulty score distribution
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Likelihood score comparison

● Log-ikelihood difference metric (LD):

● Relative log-ikelihood difference metric (RLD):

● In cases the adaptive tree has higher LH, LD<0 and RLD<0
● In 98% of empirical/simulated data, LD < 2 LHU
● In 99% of the cases (on empirical/simulated data) RLD<10-3 (0.1%), 

while in all cases, RLD<10-2 (1%) 
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IQ-TREE 2 significance tests
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Relative RF distances
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Future work

● Concerning our future work, we intend to:
○ Focus more on heuristics
○ Experiment with statistical tests for early termination of the 

tree search (KH test, Bonferroni correction on multiple testing)
○ Consider the sequence error rate during the inference
○ Efficient parallelization of adaptive RAxML-NG
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For now

● RAxML-NG is currently available under GNU GPL:
○ https://github.com/togkousa/raxml-ng/tree/adaptive

● Preprint:
○ Togkousidis, A., Kozlov, A. M., Haag, J., Höhler, D., & Stamatakis, A. 

(2023). Adaptive RAxML-NG: Accelerating Phylogenetic inference under 
Maximum Likelihood using dataset difficulty. bioRxiv, 2023-05. 
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● Recently, Haag et al. proposed a definition for the difficulty of 
analyzing an MSA

● The difficulty score essentially quantifies the amount of 
phylogenetic signal on a given MSA

● Difficulty score is a real number between 0.0 (easy MSAs) and 1.0 
(difficult MSAs)

● They also implemented and published Pythia, a Random-Forest 
Regressor able to accurately predict the difficulty score of an MSA 

Difficulty prediction (Haag et al.) 
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Summary of their work 

● Quantified difficulty on ~3,000 empirical MSAs from TreeBASE. For each 
dataset they:
○ conducted 100 ML RAxML-NG tree searches 
○ extracted the plausible tree set (PST)

● Trained and tested Pythia on the inferred difficulty labels
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Using Pythia

● Pythia uses eight features to represent each dataset as a data point
● Six of them are dataset’s attributes (fast-to-compute)
● For the remaining two features, Pythia conducts 100 MP tree 

inferences
● The two remaining features are attributes of the MP output tree set
● Predicting the difficulty is on average five times faster than a 

single ML tree inference in RAxML-NG
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Beyond Pythia

● Based on the difficulty score, one can classify MSAs into easy, 
intermediate and difficult (hard/hopeless) to analyze.

● Our suggestion:
○ Easy datasets ( Difficulty < 0.3 )
○ Intermediate ( 0.3 ≤ Difficulty ≤ 0.7 )
○ Difficult datasets ( Difficulty > 0.7 )

● The concept of difficulty provides adequate explanation for the 
ambiguities arising from different tool performance-assessment studies 
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Our idea

● The three observations made in Höhler et al. study indicate that one can 
modify the thoroughness of the tree search heuristic based on the 
predicted difficulty of the MSA

● On easy and difficult datasets, fast heuristics perform equally well
● On easy datasets, tree searches converge rapidly 
● Difficult datasets are hopeless to analyze, and thus it suffices to quickly 

infer only a few out of the many equally likely trees, to reduce overall 
execution time
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Heuristic step by step

● Adaptive RAxML-NG begins with a BLO and MPO round. In case the 
dataset is easy or difficult, it applies an NNI round + MPO. If likelihood 
convergence is achieved, it proceeds directly to the second stage

Checks if likelihood convergence 
was achieved (1% likelihood 
convergence interval). If so, it 
skips the first stage

Branch-length optimization
Model parameter optimization
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Heuristic step by step

● During the first stage, Fast-SPR round are alternated with NNI rounds

The three conditions for 
terminating the first stage

Alternating between Fast SPR 
and NNI rounds
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Heuristic step by step

● During the first stage, Fast-SPR round are alternated with NNI rounds

Model parameter optimization

Alternating between Slow SPR 
and NNI rounds

Returns the Slow SPR radius 
based on difficulty

Final model parameter optimization
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Adaptive heuristic in RAxML-NG

● The heuristic is divided into two stages. During the first stage, 
Fast-SPR rounds are alternated with NNI rounds.

● The first stage is terminated if:
○ The likelihood improvement is less than ε OR
○ The RF distance between two consecutive tree topologies is 0 OR 
○ The likelihood is less than 1% lower from the score of the best ML 

tree found so far from a finished tree inference (1% likelihood 
convergence interval)
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Adaptive heuristic in RAxML-NG

● During the second stage, Slow-SPR rounds are alternated with NNI 
rounds.

● The second round is terminated if the likelihood improvement is less 
than ε

● Before and after each stage, adaptive RAxML-NG conducts 
Branch-Length Optimization (BLO) and Model Parameter Optimization 
(MPO)
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Adaptive heuristic in RAxML-NG

● On easy and difficult datasets, adaptive RAxML-NG begins with an NNI 
round + MPO

● The probability of achieving likelihood convergence with only an NNI 
round is comparatively high on such datasets
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Experimental setup

● We collected 10,000 empirical MSAs from TreeBASE and used the 5,000 
simulated MSAs from Höhler et al. study.

● We apply some filtering process (which we will describe on the next slide). 
After filtering, we end up with 9,192 empirical and 4,991 simulated MSAs.

● All simulated data are single-partitoned DNA datasets
● Out of the 9,192 (final) empirical MSAs.

○ 7,769 are single-partitioned DNA
○ 614 are multi-partitioned DNA
○ 801 are single-partitioned AA
○ 8 are multi-partitioned AA
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Pipeline + Filtering

● We ran both standard and adaptive RAxML-NG on each one of the 
datasets (sequentially, 24 hours threshold)

● We filtered out those MSAs in which either:
○ The execution of standard/adaptive RAxML-NG took longer than 24 

hours OR
○ At least one of the RAxML-NG executions failed for whatever reason

● We ran IQ-TREE 2 significance tests (Tree Topology Tests) on all pairs 
of standard/adaptive output trees. Those datasets in which the 
execution of IQ-TREE 2 failed were also filtered out

● We end up with 9,192 empirical and 4,991 simulated MSAs
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Standard/Adaptive RAxML-NG comparison

● We compare the two versions of RAxML-NG based on:
○ The likelihood score of the output tree
○ The result IQ-TREE 2 significance tests (We consider the two 

output trees to be statistically indistinguishable if the pair 
passes all significance tests)

○ The relative RF-distance between the output trees
○ The execution times (Speedups)

90



Likelihood score comparison
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Likelihood score comparison
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Speedups
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