CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Fzper. 2003; 00:1-7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

RAxML-II: A Program for
Sequential, Parallel &
Distributed Inference of
Large Phylogenetic Trees

Alexandros Stamatakis'**>* | Thomas Ludwig?, Harald Meier!

L Technische Universitit Minchen, Lehrstuhl fir Rechnertechnik und Rechnerorganisation/I10,
Boltzmannstr. 8 D-85748 Garching b. Minchen, Germany

2 Ruprecht-Karls- Universitit Heidelberg, Institut fir Informatik, Im Neuenheimer Feld 348,
D-69120 Heidelberg, Germany

SUMMARY

Inference of phylogenetic trees comprising hundreds or even thousands of organisms
based on the maximum likelihood method is computationally intensive. We present
simple heuristics which yield accurate trees for synthetic as well as real data and
significantly reduce execution time. Those heuristics have been implemented in a
sequential, parallel, and distributed program called RAxML-II which is freely available as
open source code. We compare performance of the sequential program with PHYML and
MrBayes which -to the best of our knowledge- are currently the fastest and most accurate
programs for phylogenetic tree inference based on statistical methods. Experiments are
conducted using 50 synthetic 100 taxon alignments as well as 9 real-world alignments
comprising 101 up to 1.000 sequences. RAXML-II outperforms MrBayes for real-world
data both in terms of speed and final likelihood values. Furthermore, for real data
RAXxML-II requires less time (factor 2-8) than PHYML to reach PHYML’s final
likelihood values and yields better final trees due to its more exhaustive search strategy.
For synthetic data MrBayes is slightly more accurate than RAxML-II and PHYML but
significantly slower. The non-deterministic parallel program shows good speedup values
and has been used to infer a 10.000-taxon tree comprising organisms from the domains:
Eukarya, Bacteria, and Archaea

KEY WORDS: Phylogenetic trees; maximum likelihood; parallel and distributed computing

*Correspondence to: Technische Universitdt Miinchen, Lehrstuhl fiir Rechnertechnik und Rechnerorganisa-
tion/I10, Boltzmannstr. 3 D-85748 Garching b. Miinchen, Germany

*E-mail: stamatak@cs.tum.edu

Contract/grant sponsor: This work is sponsored under the project ID ParBaum, within the framework of the
“Competence Network for Technical, Scientific High Performance Computing in Bavaria”: Kompetenznetzwerk
fiir Technisch-Wissenschaftliches Hoch- und Hochstleistungsrechnen in Bayern (KONWIHR). KONWIHR is
funded by means of “High-Tech-Offensive Bayern”. All major parallel tests have been carried out on the Linux
Cluster System of the Regionales RechenZentrum Erlangen (RRZE).

Received 31 January 2000
Copyright © 2003 John Wiley & Sons, Ltd. Revised 19 September 2002

2 A. STAMATAKIS, T. LUDWIG, H. MEIER @

1. INTRODUCTION

Within the ParBaum (Parallel Tree) project at the Technical University of Munich (TUM),
work is conducted on phylogenetic tree inference based on the maximum likelihood method by
J. Felsenstein [2]. The overall aim of the project is to develop novel systems and algorithms
for the computation of huge phylogenetic trees based on sequence data from the ARB [13]
small subunit ribosomal RiboNucleic Acid (ssu rRNA) database in distributed and parallel
environments. In previous work [25] we have introduced Subtree Equality Vectors (SEVs) as a
means to significantly reduce topology evaluation time. Topology evaluation represents the by
far most cost-intensive part of every phylogenetic tree inference process based on the maximum
likelihood method irrespective of the tree building algorithm deployed. We implemented the
SEV-concept in parallel fastDNAml [14, 26] and named the resulting program PAxML (Parallel
Axelerated Maximum Likelihood). In tests with alignments of 150 up to 500 sequences, we
achieved global run time improvements of 26% up to 65% compared to parallel fastDNAml.

In this paper we present simple new heuristics which significantly accelerate the tree
optimization process and yield accurate results. The heuristics have been implemented in
a sequential program called RAXML-II (Randomized Axelerated Maximum Likelihood). In
addition, we present a parallel and distributed seti@home-like implementation of RAxML-II.
The parallel and distributed versions allow for inference of huge trees on inexpensive hardware
architectures.

The remainder of this paper is organized as follows: In Section 1.1 we briefly describe related
work with a focus on current state-of-the-art programs for maximum likelihood-based and
bayesian phylogenetic inference, which we deploy to assess performance of RAXML-II. In the
following Sections 2.1, 2.2, and 2.3 we describe the new heuristics as well as the design of
the parallel and distributed algorithm. Experimental results for the sequential and parallel
program are summarized in Section 3. We conclude in Section 4 and briefly address current
and future issues of research.

1.1. Related work

We limit our survey of related work to statistical methods since they have shown to be the
most accurate methods currently available. On the one hand there exist “traditional” maximum
likelihood methods and a large variety of programs implementing maximum likelihood searches.
The site [19] maintained by J. Felsenstein lists most available programs. On the other hand
bayesian methods have emerged which are relatively new compared to maximum likelihood and
have experienced great impact, especially through the release of a program called MrBayes [8].

A thorough comparison of popular phylogeny programs using statistical approaches such
as fastDNAmI, MrBayes, PAUP [18], and treepuzzle [27] based on synthetic data has been
conducted by T.L. Williams et al. [30]. The most important result of this paper is that MrBayes
outperforms all other phylogeny programs in terms of speed and tree quality.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

@ RAXML-II: INFERENCE OF LARGE TREES 3

MrBayes carries out bayesian inference of phylogenetic trees using the Metropolis-Coupled
Markov Chain Monte Carlo (MC?) technique.

Recently, Guidon and Gascuel published an interesting paper about their new program
PHYML [4], which is very fast and seems to be able to compete with MrBayes. PHYML
is a “traditional” maximum likelihood program which seeks to find the tree topology which
maximizes the likelihood value. Like MrBayes, PHYML is also capable to optimize evolutionary
model parameters.

Thus, -to the best of our knowledge- MrBayes and PHYML are currently the fastest and most
accurate representatives of bayesian and maximum likelihood approaches to phylogenetic tree
inference. Therefore, we focus on those two programs for assessing performance of RAxML-
II. A plethora of genetic maximum likelihood search algorithms has been devised as well.
For example the program MetaPIGA [12] represents a very efficient implementation of a
genetic algorithm for maximum likelihood-based tree inference. However, genetic algorithms
are generally slower than PHYML or RAxML-II.

An important point regarding performance analysis of these programs is that one should be
careful when comparing bayesian with maximum likelihood methods due to subtle differences
in the statistical models. This is due to the fact that bayesian methods optimize the integrated
likelihood values over a broad range of topologies and model parameters, whereas maximum
likelihood methods seek to find the topology with the peak likelihood value. Thus, a bayesian
analysis might not yield the peak likelihood values as obtained from a maximum likelihood
search. A useful comparison of traditional and bayesian phylogenetic inference methods can
be found in [7].

In what concerns parallel computing, the parallel implementations of bayesian methods are
relatively closely coupled such that high performance computers with expensive communication
infrastructure are required [3]. In fact, similar parallelization techniques as for numerical
simulations are deployed. For PHYML there exists no parallel implementation yet. The parallel
implementation of fastDNAml [26] is still widely used, despite the fact that it is based on the
old sequential fastDNAml algorithm dating from 1994. Finally, genetic search algorithms have
also been parallelized to compute relatively small trees comprising up to 228 sequences [1].

2. NEW HEURISTICS

2.1. Sequential algorithm

The heuristics of RAXML-IT belong to the class of algorithms, that optimize the likelihood of
a starting tree which already comprises all sequences. In contrast to other programs RAxML-
II starts by building an initial parsimony tree with dnapars from Felsenstein’s PHYLIP
package [19] for two reasons:

Firstly, parsimony is related to maximum likelihood under simple evolutionary models [29],
such that one can expect to obtain a starting tree with a relatively good likelihood value
compared to random or neighbor joining starting trees. For example, the 500_ZILLA parsimony
starting tree showed a better likelihood than the final tree of PHYML (see Table I).

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

4 A. STAMATAKIS, T. LUDWIG, H. MEIER @

Secondly, dnapars uses stepwise addition [2] for tree building and is relatively fast. The
stepwise addition algorithm enables the construction of distinct starting trees by using a
randomized input sequence order. Thus, RAxML-II can be executed several times with different
starting trees and thereby compute a set of distinct final trees. The set of final trees can be
used to build a consensus tree and augment confidence into the final result since RAxML-
IT explores the search space from different starting points. To speed up computations, some
optimization steps have been removed from dnapars.

The tree optimization process represents the second and most important part of the
heuristics. RAXxML-II performs standard subtree rearrangements by subsequently removing
all possible subtrees from the currently best tree tj.5; and re-inserting them into neighboring
branches up to a specified distance of nodes. RAxML-II inherited this optimization strategy
from fastDNAml. One rearrangement step in fastDNAml consists of moving all subtrees within
the currently best tree by the minimum up to the maximum distance of nodes specified
(lower /upper rearrangement setting). This process is outlined for a single subtree (ST5) and a
distance of 1 in Figure 1 and for a distance of 2 in Figure 2 (not all possible moves are shown).
In fastDNAml the likelihood of each thereby generated topology is evaluated by exhaustive
branch length optimizations. If one of those alternative topologies improves the likelihood #pes¢
is updated accordingly and once again all possible subtrees are rearranged within tpes¢. This
process of rearrangement steps is repeated until no better topology is found.

The rearrangement process of RAXML-II differs in two major points: In fastDNAml after
each insertion of a subtree into an alternative branch the branch lengths of the entire tree are
optimized. As depicted in Figures 1 and 2 with bold lines RAxML-II only optimizes the three
local branches adjacent to the insertion point of the subtree either analytically (fast) or by the
Newton-Raphson method (slower) before computing its likelihood value. Since the likelihood of
the tree strongly depends on the topology per se this fast pre-scoring can be used to establish
a small list of potential alternative trees which are very likely to improve the score of tpes-
RAxML-IT uses a list of size 20 to store the best 20 trees obtained during one rearrangement
step. This list size proves to be a practical value in terms of speed and thoroughness of the
search. After completion of one rearrangement step the algorithm performs global branch
length optimizations on those 20 best topologies only. The capability to analyze significantly
more alternative and diverse topologies due to a computationally feasible higher rearrangement
setting (e.g. 5 or 10) leads to significantly improved final trees.

Another important change especially for the initial optimization phase, i.e. the first 3-4
rearrangement steps, consists in the subsequent application of topological improvements during
one rearrangement step. If during the insertion of one specific subtree into an alternative
branch a topology with a better likelihood is encountered this tree is kept immediately and all
subsequent subtree rearrangements of the current step are performed on the improved topology.
The mechanism is outlined in Figure 3 for a subsequent application of topological improvements
via subtree rearrangements of ST5 and ST3 on the same initial tree. This enables rapid initial
optimization of random starting trees as depicted e.g. for two alignments containing 150 taxa
in Figures 9 and 10.

The exact implementation of the RAxML-II algorithm is indicated in the C-like pseudocode
below. The algorithm is passed the user/parsimony starting tree t, the initial rearrangement
setting rStart (default: 5) and the maximum rearrangement setting rMax (default: 21).

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

RAXML-II: INFERENCE OF LARGE TREES 5

STl: iST3 ST1 ST3
ST2 ST5 Y\\\ ST4 ST’>j<ST4

STL ’ ST3

Rearranging Subtree ST5
with arearrangement setting
of 1

/

(y
gﬂ ST3 ST X« ST5 ST3
ST ST4 ST; :ST4
Figure 1. Rearrangements traversing one node for subtree ST5, branches which are optimized are
indicated by bold lines

STL ST6 STL ST6

ST4 ST4

Rearranging Subtree ST5
with arearrangement setting
of 2

ST4

ST2 ST3

Figure 2. Example rearrangements traversing two nodes for subtree ST5, branches which are optimized
are indicated by bold lines

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

6 A. STAMATAKIS, T. LUDWIG, H. MEIER @

Initially, the rearrangement stepwidth ranges from rL = 1 to rU = rStart. Fast analytical
local branch length optimization a is turned off when functions rearr(...), which actually
performs the rearrangements, and optimizeList20() fail to yield an improved tree for the
first time. As long as the tree does not improve the lower and upper rearrangement parameters
rL, rU are incremented by rStart. The program terminates when the upper rearrangement
setting is greater or equal to the maximum rearrangement setting, i.e. rU >= rMax.

RAXML-II(tree t, int rStart, int rMax)
{

int rL, rU;

boolean a = TRUE;

boolean impr = TRUE;

while(TRUE)
{
if (impr)
{
rL 1;
rU rStart;
rearr(t, rL, rU, a);

rL += rStart;
rU += rStart;
}
if (rU < rMax)
rearr(t, rL, rU, a);
else
goto end;
}
impr = optimizeList20();

end:

X

2.2. Parallel algorithm

The parallel implementation is based on a simple master-worker architecture and consists of
two phases. In phase I the master distributes the alignment file to all worker processes if
no common file system is available, otherwise it is read directly from the file. Thereafter,
each worker independently computes a randomized parsimony starting tree and sends it
to the master process. Alternatively, it is possible to start the program directly in phase
IT by specifying a tree file name in the command line. In phase II the master initiates
the optimization process for the best parsimony or specified starting tree. Due to the high

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

RAXML-II: INFERENCE OF LARGE TREES 7

ST1: LH_1 ST6 ST1: LH 2 ST6
>
ST4 ST4
ST5
ST2 ST3 rearrange subtree 5 ST2 ST3
: LH_2>LH_1
I
I
STL, v ST6
subsequent application
ST4
LH_3>LH_2
sT2 - - ST2

rearrange subtree 3in
modified tree

Figure 3. Example for subsequent application of topological improvements during one rearrangement
step

speed of a single topology evaluation as well as the requirement for atomicity of a specific
subtree rearrangement by function rearrangeSubtree() and the high communication cost,
it is not feasible to distribute work by single topologies as e.g. in parallel fastDNAml.
Therefore, we distribute work by sending the subtree ID (of the subtree to be rearranged)
along with the currently best topology t_best, to each worker. The sequential and
parallel implementation of RAXML-II on the master-side is outlined in the pseudocode
of function rearr() which actually executes subtree rearrangements. Each worker simply
executes function rearrangeSubtree().

void rearr(tree t_best, int rL, int rU, boolean a)
{
boolean impr;
worker w;
for(i = 2; i < #species * 2 - 1; i++){
if (sequential){
impr = rearrangeSubtree(t_best, i, rL, rU, a);
if (impr) applySubsequent(t_best, 1i);

}
if (parallel)q{
if(w = workerAvailable) sendJob(w, t_best, i);
else putInWorkQueue(i);
}
T
if(parallel){
while(notAllTreesReceived)q{
w = receiveTree(w_tree);
if(likelihood(w_tree) > likelihood(t_best)) t_best = w_tree;
if(notAllTreesSent) sendJob(w, t_best, nextInWorkQueue());
T
}
}

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

8 A. STAMATAKIS, T. LUDWIG, H. MEIER @

In the sequential case rearrangements are applied to each individual subtree i. If the tree
improves through this subtree rearrangement t_best is updated accordingly, i.e. subsequent
topological improvements are applied. In the parallel case subtree IDs are stored in a
work queue. Obviously, the subsequent application of topological improvements during 1
rearrangement step (1 invocation of rearr()) is closely coupled. Therefore, we slightly modify
the algorithm to break up this dependency according to the following observation: Subsequent
improved topologies occur only during the first 3—4 rearrangement steps (initial optimization
phase). Thereafter, the likelihood is improved only by function optimizeList20(). This phase
requires the largest amount of computation time, especially with big alignments (x 80% of
execution time). Thus, during the initial optimization phase we send only one single subtree
ID i=2,...,#species * 2 - 1 along with the currently best tree t_best to each worker for
rearrangements. Each worker returns the best tree w_tree obtained by rearranging subtree i
within t_best to the master. If w_tree has a better likelihood than t_best at the master,
we set t_best = w_tree and distribute the updated best tree to each worker along with
the following work request. The program assumes that the initial optimization phase IIa
is terminated if no subsequent improved topology has been detected during the last three
rearrangement steps. In the final optimization phase IIb, we reduce communication costs
and increase granularity by generating only 5 x #workers jobs (subtree ID spans). Finally,
irrespective of the current optimization phase the best 20 topologies (or #workers topologies
if #workers > 20) computed by each worker during one rearrangement step are stored in a
local worker tree list. When all #species * 2 - 3 subtree rearrangements of rearr() have
been completed, each worker sends its tree list to the master. The master process merges
the lists and redistributes the 20 (#workers) best tree topologies to the workers for branch
length optimization. When all topologies have been globally optimized the master starts the
next iteration of function optimize(). Due to the required changes to the algorithm the
parallel program is non-deterministic, since final output depends on the number of workers
and on the arrival sequence of results for runs with equal numbers of workers, during the
initial optimization phase IIa. This is due to the altered implementation of the subsequent
application of topological improvements during the initial rearrangement steps which leads to
a traversal of search space on different paths. The program flow of the parallel algorithm is
outlined in Figure 4.

2.3. Distributed algorithm

The motivation to build a distributed seti@home-like [24] code is driven by the computation
time requirements for trees containing more than 1.000 organisms and by the desire to provide
inexpensive solutions for this problem which do not require supercomputers. The main design
principle of the distributed code is to reduce communication costs as far as possible and accept
potentially bad speedup values. The algorithm of the http-based implementation is similar to
the parallel program.

Initially, a gzipped alignment file is transfered to all workers which start with the
computation of a local parsimony starting tree. The parsimony tree is then returned to the
master as in the parallel program. However, the parallel and distributed algorithms differ in
two important aspects which reduce communication costs.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

RAXML-II: INFERENCE OF LARGE TREES 9

Master
Worker
‘ Caramony allJi rment & } lonmen® pasnony e [Generate random ‘
parsimony jobs .
] parsimony tree permutation
) Build tree with
arsimon
of permutations p: Y
computed ? |
Evaluate tree with

maximum likelihood

— : Subtree ID & T_best ;
Distribute single Rearrange specified
btree ID/T_best ‘ subtree within T_best
update T_best work request & W_tree
Distribute T_best or ‘ Receive T_best ‘
— subtree |IDs —
Distribute subtree| Rearrang specified
1D spans subtrees within T_best
work request

All Subtrees

LY list(20;
get treelist(20) from request tree 1ist(20) pack list ‘
each worker treelist (20) ‘
merge lists & distribute tree topology —
20 best trees for branch imized I }Optl mize branches ‘
length optimization optimized tree topology
Tree improved?
Maximum
rearrangement setting Terminate Master &
reached Workers
Increase rearrangement
setting
Figure 4. Parallel program flow of RAxML-II
Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7

Prepared using cpeauth.cls

10 A. STAMATAKIS, T. LUDWIG, H. MEIER @

Firstly, RAxXML@home does not implement phase ITa but only phase IIb of the parallel
algorithm, to avoid frequent communication and frequent exchange of tree topologies between
master and workers.

Secondly, the lists containing the 20 best trees, irrespective of the number of workers,
are optimized locally at the workers after completion of subtree rearrangements. The branch
lengths of the trees in the list are optimized less exhaustively than in the sequential and parallel
program. After this initial optimization only the best local tree is thoroughly optimized and
returned to the master.

This induces some computational overhead and a slower improvement rate of the likelihood
during the initial optimization phase (phase IIa of the parallel program) but remains within
acceptable limits.

2.3.1. Technical issues

Some technical issues concerning the implementation of the http-based version of
RAxML@home regarding communication, redundancy, and security will briefly be outlined
at this point.

The communication infrastructure is provided by a http communication library. The most
expensive part in terms of communication costs is the distribution of the alignment file which
is compressed using gzip. The gzip shows sufficient compression rates for multiple alignments,
e.g. a compression factor of 31 for a 1.000-taxon alignment.

To provide redundancy a queue with timeouts is used to ensure that every subtree
rearrangement job is computed. Furthermore, failure procedures have been devised which are
able to handle temporary master and worker failures.

An important security scenario is that some workers deliberately return phony trees. If
the tree is not in the correct format, this can easily be detected by the routine which reads
the respective tree string. The only serious security problem arises when a worker returns a
tree that is in the correct format and has a “fake” likelihood, i.e. a likelihood value which is
significantly better than the actual likelihood of the topology contained in the message and
t_best at the master. In this case the likelihood of that topology is “quickly” verified by
the master process. This quick verification only performs a superficial and fast branch length
optimization of the tree in order to avoid excessive load of the master component. If the
differences to the claimed likelihood in the tree string is < 1% the tree is accepted, otherwise
it is rejected. Finally, the MD5 (Message Digest number 5) checksum is used to provide
some basic authentification of messages. A detailed technical description of RAxML@home
is provided in [15].

3. RESULTS

3.1. Test data, platforms & experimental setup

For our experiments we extracted alignments comprising 150, 200, 250, 500, 1.000, and
10.000 taxa (150_ARB,...,10000.ARB) from ARB containing organisms from the domains

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

@ RAXML-II: INFERENCE OF LARGE TREES 11

Eukarya, Bacteria and Archaea. In addition, we used the 101 and 150 sequence data sets
(101_SC, 150_SC [26]) which can be downloaded at www.indiana.edu/"rac/hpc/fastDNAm1.
Those two alignments have proved to be very hard to compute, especially for MrBayes.
Furthermore, we used two well-known real data sets of 218 and 500 sequences (218 RDPII,
500_ZILLA). Finally, we used 50 synthetic 100-taxon alignments with 500bp each and the
respective true reference trees which are available at www.lirmm.fr/w3ifa/MAAS. Details on
the generation of those data sets which use e.g. varying sequence divergence rates can be
found in [4]. To facilitate and accelerate testing we used the HKYS85 [5]. model of sequence
evolution and a fixed transition/transversion (tr/tv) ratio of 2.0 except for 150_.SC (1.24)
and 101_SC (1.45). All alignments including the best topologies are available for download at
wwwbode.cs.tum.edu/~stamatak. Since the tr/tv ratio is defined differently in PHYML we
scaled it accordingly for the test runs. The manual for PAML [16] contains a nice description
of differences in tr/tv ratio definitions among various implementations.

The likelihood values for the final tree topologies of PHYML and RAxML-IT have been
computed with fastDNAml since the likelihood values for the same topology vary among
programs due to numerical differences in implementations.

For real data MrBayes was executed for 2.000.000 generations using 4 MC? chains and the
recommended random starting trees. Furthermore, we set the sample and print frequency to
5.000. To enable a fair comparison we evaluated all 400 MrBayes output trees with fastDNAml
and we report the value of the topology with the best likelihood and the execution time at
that point. This comparison is not necessarily fair. We use it to demonstrate that the MC3
chains do not reach stable values (convergence) within reasonable times, i.e. less than 24
hours, for alignments comprising more than 200 sequences. For synthetic data we executed
MrBayes for 100.000 generations using 4 MC? chains and random starting trees. We used a
sample and print frequency of 500 and built a majority-rule consensus tree from the last 50
trees. Those significantly faster settings proved to be sufficient since trees for synthetic data
generally converge much faster to stable values than in real data analyses.

We decided to assess performance only for those three programs since results in [30] indicate
that MrBayes is the fastest and most accurate method for phylogenetic tree reconstruction,
i.e. the method to beat. Furthermore, the more recently published program PHYML is -to
the best of our knowledge- the fastest available sequential code for “traditional” maximum
likelihood-based tree inference.

Sequential tests were conducted on a small cluster of Intel Xeon 2.4 GHz processor with
4GB of main memory. All programs were compiled using icc -03 (native Intel compiler).

For parallel performance analysis RAxML-II was executed on the 2.66GHz Intel Xeon cluster
at Regionales Rechenzentrum Erlangen (RRZE [20]) on 1, 4, 8, 16, and 32 processors.

In all cases RAXML-IT was executed with the standard rearrangement parameter setting,
i.e. rStart = 5 and rMax = 21.

3.2. Sequential tests
In Table I we summarize the final likelihood values and execution times in seconds obtained

with PHYML, MrBayes, and RAxXxML-II for real data sets. The results listed for RAxML-
IT correspond to the best of 10 runs with distinct randomized parsimony starting trees. In

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

12 A. STAMATAKIS, T. LUDWIG, H. MEIER @

Table I. PHYML, MrBayes, RAxML-II execution times and likelihood values for real data sets

| data || PHYML | secs || MrBayes | secs || RAxML | secs || R>PHY | secs |
101_SC -74097.6 153 -77191.5 40527 -73919.3 617 -74046.9 31
150_SC -44298.1 158 -52028.4 49427 -44142.6 390 -44262.9 33
150_ARB -77219.7 313 -77196.7 29383 -77189.7 178 -77197.6 67

200_ARB -104826.5 477 -104856.4 | 156419 || -104742.6 272 -104809.0 99
250_ARB -131560.3 787 -133238.3 | 158418 || -131468.0 | 1067 -131549.4 | 249
500_ARB -253354.2 | 2235 -263217.8 | 366496 || -252499.4 | 26124 || -252986.4 | 493
1000_ARB | -402215.0 | 16594 || -459392.4 | 509148 || -400925.3 | 50729 || -401571.9 | 1893
218_RDPII || -157923.1 403 -158911.6 | 138453 || -157526.0 | 6774 -157807.9 | 244
500_ZILLA || -22186.8 2400 -22259.0 96557 -21033.9 | 29916 -22036.9 67

addition, since execution times of RAxML-II might appear long compared to PHYML in
column R > PHY we indicate the likelihood and the time at which RAXML-II detects a
topology with a better likelihood value than the final PHYML tree.

For sake of completeness we also indicate the number of base pairs (bp), worst results and
worst execution times obtained with RAxML-II for each data set in a separate Table II. In
the last two columns of this Table we list the final likelihood values and execution times in
hours (!) obtained for the same data sets with PAxML. As already mentioned, PAxML is
exactly equivalent to parallel fastDNAml, but faster by approximately 50%. The results were
obtained from parallel runs on the HeLiCs [6] PC cluster and the highest feasible rearrangement
setting, in terms of acceptable computation times. The enormous improvement of execution
times illustrates the algorithmic progress in the field over the last two years.

The long overall execution times of RAxXxML-II compared to PHYML are due to the
asymptotic convergence of likelihood over time which is typical for the tree optimization
process. A particularly extreme example for this type of convergence behavior is illustrated
in Figure 5 for 500_ZILLA. Therefore, the comparatively small differences in final likelihood
values which are usually below 1% should not be underestimated, in terms of the computational
effort required to obtain those values. In addition, the application of the Kishino-Hasegawa,
likelihood ratio test [11] shows that the topologies obtained by RAXxML-II are significantly
better than those of PHYML.

Finally, in Figure 6 we plot the relative topological accuracy (Robinson Foulds-rate [21])
of PHYML, RAxXxML-II, and MrBayes for 50 100-taxon trees which are enumerated on the x-
axis. The average RF-rate for PHYML is 0.0796, 0.0808 for RAxML-II, 0.0818 for RAxML-II
with a less exhaustive rearrangement parameter setting, and 0.0741 for MrBayes. The average
execution time of RAXML-II was 131.05 seconds and 29.27 seconds for the less exhaustive
search. PHYML required an average of 35.21 seconds and MrBayes 945.32 seconds. The
experiments suggest that there is no significant difference between PHYML and RAxML-II
for synthetic data in contrast to the results obtained with real data.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

%

RAXML-II: INFERENCE OF LARGE TREES

13

Table II. Alignment lengths, worst performance data from 10 RAxML-II runs, and PAxML
performance data

| data | bp || RAXML-II | secs || PAXxML | hrs |
101_.SC 1858 -73982.42 1021 -73975.9 47
150_SC 1269 -44159.89 467 -44146.9 164
150_ARB 3188 -77198.98 305 -77189.8 300
200-ARB 3270 || -104743.32 1236 -104743.3 775
250_ARB 3638 || -131513.04 1758 -131469.0 | 1947
500_ARB | 4030 || -252631.93 | 26124 | -252588.1 | 7372
1000_ARB | 5547 || -401006.52 | 66902 || -402282.1 | 9898
218 RDPII | 4182 || -157580.21 7432 n/a n/a
500_ZILLA | 759 -21087.46 29916 n/a n/a
T T T T T T
"500_ zilla"
-21000
-21200
-21400
e)
o
2
2
T 21600 |
-21800
-22000 -
1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
time (secs)

Figure 5. Likelihood improvement over time of RAxML-II for 500_ZILLA

Copyright © 2003 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls

Concurrency Computat.: Pract. Ezper. 2003; 00:1-7

14 A. STAMATAKIS, T. LUDWIG, H. MEIER @

0.2

"RAXML.sim" ———
"PHYML Sim" -------
0.18 - "MrBayes.sim" -------- i

0.16 i 'g'.‘ |
014 B i g

0.12 -

topological accuracy
o
P
T

0.06 |-

0.04 |

0.02 ' ‘ y

0 5 10 15 20 25 30 35 40 45 50
tree number

Figure 6. Topological accuracy of PHYML, RAxML-IT and MrBayes for 50 100-taxon trees

In Figures 7 (101.SC) and 8 (500-ARB) we plot MrBayes likelihood values over generation
numbers for runs with RAXML-IT and random starting trees. These figures illustrate how
starting trees obtained by RAXxML-II can be deployed to accelerate convergence of MC3?
analyses. In order to demonstrate the rapid tree optimization capabilities of RAXML-II in
Figures 9 and 10 we plot the likelihood improvement over time of RAXxML-IT and MrBayes
for the same 150_SC and 150_ARB random starting trees. The final likelihood values obtained
by RAXML-II for those runs were -44149.18 (150_SC) and -77189.78 (150-ARB) respectively.
Figure 7 also underlines one of the main problems of MC?® analysis. The same problem is also
pointed out by Huelsenbeck in [10]: When to stop the chain? In this examples the bayesian
inference with a random starting tree seems to have reached apparent stationarity. However,
the likelihood is significantly inferior to the likelihood of the chain with the RAxML-II starting
tree. The same behavior has also been observed for the 150_.SC data set. Thus, “good” user
trees are a useful reference and can significantly accelerate bayesian analysis. This justifies the
work on fast “traditional” maximum likelihood methods after the emergence and great impact
of bayesian methods [9]. Thus, we do not consider RAXML-II as concurrence to MrBayes, but
rather as useful tool to improve bayesian inference and vice versa.

3.3. Parallel tests
We conducted parallel speedup tests with a fixed starting tree for 1000_ARB. The program was

executed on 1, 4, 8, 16, and 32 processors. To calculate the speedup values we only take into
account the number of workers, since the master process hardly produces any load. In Figure 11

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

RAXML-II: INFERENCE OF LARGE TREES 15

-70000

'101_ RANDOM.p' ——
101_USERp’

-75000

-80000

-85000 |-

-90000 |-

Ln Lh

-95000 |-

-100000

-105000

2.5e+06

3e+06

-110000
0 1e+06

500000

1.5e+06 2e+06

Generations

Figure 7. Convergence behavior of MrBayes for 101_SC with user and random starting trees over
3.000.000 generations

-250000 r

-300000 |- Y

-350000 -/

-400000 - |

-450000 -/

likelihood

-500000

-550000

T

-600000

-650000

"500_ ARB_USER" —
"500_ARB_RANDOM"

2e+06

-700000
0 200000 400

Figure 8. Convergence behavior of MrBayes for 500_ARB with user and random starting trees over

! ! !
000 600000 800000 le

+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

number of generations

2.000.000 generations

Copyright © 2003 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls

Concurrency Computat.: Pract. Ezper. 2003; 00:1-7

16 A. STAMATAKIS, T. LUDWIG, H. MEIER

-40000

“150_SC_RAXML" ——
"150_5C_MrBayes" -

-45000

-50000

55000 | T

likelihood

-60000

-65000

-70000

L L L L L
500 1000 1500 2000 2500 3000 3500
time (secs)

-75000

Figure 9. 150_SC likelihood improvement over time of RAxML-II and MrBayes for the same random
starting tree

-60000

"150_ARB_ RAXML" ——
"150_ARB_MrBayes" -

-80000

-100000

-120000

likelihood

-140000

-160000

-180000

L L L L
1000 2000 3000 4000 5000
time (secs)

-200000 4
0

Figure 10. 150_ARB likelihood improvement over time of RAxML-IT and MrBayes for the same random
starting tree

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

@ RAXML-II: INFERENCE OF LARGE TREES 17

40

"OPTIMAL_SPEEDUP" —

"NORMAL_SPEEDUP" -------
"FAIR_SPEEDUP" -------

35| _

30

20 |+

speedup

15 |+

10 |+

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

number of worker processes

Figure 11. Normal, fair, and optimal speedup values for 1000_ARB with 3,7,15, and 31 worker processes
on the RRZE PC Cluster

we plot “fair” and “normal” speedup values obtained for the experiments with the 1000_ARB
data set to account for the non-determinism of the program. “Fair” speedup values indicate
the first point of time at which the parallel code encounters a tree with a better likelihood
than the final tree of the sequential run or vice versa. These “fair” values better correspond
to real program performance. Furthermore, we also indicate “normal” speedup values which
are based on the entire execution time of the parallel program, irrespective of final likelihood
values. Since we intend to explore the effect of non-determinism on program performance we
executed the parallel code 4 times for each job-size and calculated average “normal” /“fair”
execution times and likelihood values. The experiments demonstrate that the non-determinism
of the parallel algorithm does not have a negative impact on program performance.

3.4. Inference of a 10.000-taxon tree

The computation of the 10.000-taxon tree was conducted using the sequential, as well as the
parallel version of RAXML. One of the advantages of RAXML-II consists in the randomized
generation of starting trees. Thus, we computed 5 distinct randomized parsimony starting
trees sequentially along with the first 3—4 rearrangement steps on a small cluster of Intel Xeon
2.4GHz processors at our institute. This phase required an average of 112.31 CPU hours per
tree. Thereafter, we executed several subsequent parallel runs (due to job run-time limitations
of 24 hrs) with the respective starting trees on either 32 or 64 processors at the RRZE 2.66GHz
Xeon-cluster. The parallel computation required an average of 1689.6 accumulated CPU hours

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

18 A. STAMATAKIS, T. LUDWIG, H. MEIER @

per tree. The best likelihood for 10000_ARB was -949570.16 the worst -950047.78 and the
average -949867.27. PHYML reached a likelihood value of -959514.50 after 117.25 hrs on the
Ttanium2. Note, that the parsimony starting trees computed with RAxML-IT had likelihood
values ranging between -954579.75 and -955308.00. The average time required for computing
those starting trees was 10.99 hrs.

4. DISCUSSION

We have presented simple heuristics and efficient implementations for sequential, parallel, and
distributed maximum likelihood-based phylogenetic tree inference. The sequential algorithm
outperforms the currently -to the best of our knowledge- fastest and most accurate programs
for phylogenetic tree inference on real-world data. Tree inference for synthetic data sets using
RAxML-II is equally accurate as with PHYML. MrBayes has shown to be slightly more
accurate for synthetic data than RAxML-IT and PHYML but is significantly slower. Moreover,
we have shown that for some real data sets MrBayes does not converge in reasonable times or
has reached apparent stationarity while the likelihood values of the chain are significantly
inferior to those obtained by “traditional” maximum likelihood searches. The sequential,
parallel, and distributed source code of RAXML-II including all test data sets and final tree
topologies is freely available at: wwwbode.cs.tum.edu/~stamatak.

Another important performance criterion regarding inference of huge trees consists in the
memory consumption of the three analyzed programs. For example RAxML-II consumed
199MB, PHYML 880MB, and MrBayes 1.195MB of main memory for 1000_ARB. Furthermore,
both MrBayes and PHYML exited with error messages due to excessive memory requirements
for the 10.000 taxon alignment on the Xeon 2.4GHz processors. Therefore, we made an effort
to port MrBayes and PHYML to a 64-bit Intel Itanium2 1.3GHz processor with 8 GB of main
memory. While MrBayes exited for unknown reasons,PHYML finally required 8.8GB of main
memory. Note, that RAXML-IT used only 800MB for the 10.000 taxon alignment.

The parallel inference of a 10.000-taxon tree has revealed some well-known problems and
challenges concerning inference of huge trees [23]. In particular, visualization and quality
assessment, of large trees are problematic since there exist no appropriate visualization tools
and bootstrapping techniques are not applicable due to the high computational cost.

Current work on RAxML-IT focuses on implementation of more elaborate models of
nucleotide substitution and model parameter estimation, as well as on an implementation
for protein sequence data. In addition, we currently work on RAxML-TreeDivisor, a tree-
based alignment subdivision tool for divide-and-conquer maximum likelihood supertree
approaches [22].

Future work will cover the implementation of a hybrid algorithm which will be based on
the RAXML-II tree optimization heuristics for the initial optimization phase and simulated
annealing and related sampling techniques for the final optimization phase.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

RAXML-II: INFERENCE OF LARGE TREES 19

REFERENCES

10.

11.

12.

13.

14.

23.

24.
25.

26.

. Brauer MJ, Holder MT, Dries LA, Zwickl DJ, Lewis PO, Hillis DM. Genetic algorithms and parallel

processing in maximum-likelihood phylogeny inference. Molecular Biology and Evolution 2002; (19): 1717—
1726.

. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of

Molecular Evolution 1981; (17): 368-376.

. Feng X, Buell DA, Rose JR, Waddell PJ. Parallel algorithms for Bayesian phylogenetic inference. Journal

of Parallel and Distributed Computing: Special Issue on High-Performance Computational Biology 2003;
(63): 707-718.

. Guindon S, Gascuel O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by

Maximum Likelihood. Systematc Biology 2003; 52(5): 696-704.

. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial

DNA. Journal of Molecular Evolutio 1985; (22): 160-174.

. HEidelberg LInux Cluster System homepage: helics.uni-hd.de [15 March 2003]
. Holder MT, Lewis PO. Phylogeny Estimation: Traditional and Bayesian Approaches. Nature Reviews

Genetics 2003; (4): 275-284.

. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;

17(8): 754-5.

. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference and its impact on evolutionary

biology. Science 2001; (294): 2310-2314.

Huelsenbeck JP, Larget B, Miller RE, Ronquist F. Potential Applications and Pitfalls of Bayesian Inference
of Phylogeny. Systematic Biology 2002; 51(5): 673-688.

Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies
from DNA sequence data and the branching order in Homonoidae. Journal of Molecular Evolution 1989;
(29): 170-179.

Lemmon A, Milinkovitch M. The metapopulation genetic algorithm: An efficient solution for the problem
of large phylogeny estimation. Proceedings of the National Academy of Sciences USA 2002; (99): 10516—
10521.

Ludwig W et al. ARB: a software environment for sequence data. Nucleic Acids Research 2004; 32(4):
1363-1371.

Olsen GJ, Matsuda H, Hagstrom R, Overbeek R. fast DNAml: A tool for construction of phylogenetic
trees of DNA sequences using maximum likelihood. Computer Applications in the Biosciences 1994; (10):
41-48.

. Ott M. PAxML@home: Speceification and development of a globally distributed software architecture for

computation of phylogenetic trees. Technische Universitat Minchen, Master’s thesis 2004;

. PAML Manual (Information on tr/tv definitions: page 20): bcr.musc.edu/manuals/pamlDOC.pdf [11

November 2003]

. parallel fastDNAm] downlaod site: www.indiana.edu/"rac/hpc/fastDNAmI [12 February 2003]

. PAUP project site: paup.csit.fsu.edu [30 May 2003]

. PHYLIP homepage. evolution.genetics.washington.edu/phylip.html [14 April 2003]

. Regionales Rechenzentrum Erlangen: HPC services. www.rrze.uni-erlangen.de [12 October 2004]

. Robinson D, Foulds L. Comparison of weighted labeled trees. Lecture Notes in Mathematics 1979; (748):

119-126, Springer, Berlin.

. Roshan U, Moret BME, Williams TL, Warnow T. Performance of supertree methods on various

data set decompositions. Bininda-Edmonds ORP (editor) Phylogenetic Supertrees: Combining
Information to Reveal the Tree of Life to be published; 301-328. Preprint available at
www.cs.unm.edu/~tlw/publications.html.

Sanderson MJ, Driskell AC. The challenge of constructing large phylogenetic trees. Trends in Plant Science
2003; 8(8): 374-378.

Seti@home project site: setiathome.ssl.berkeley.edu [20 July 2003]

Stamatakis AP, Ludwig T, Meier H, Wolf MJ. November 2002. Accelerating Parallel Maximum Likelihood-
based Phylogenetic Tree Computations using Subtree Equality Vectors. Proceedings of 15th IEEE/ACM
Supercomputing Conference (SC2002) 2002; CD proceedings.

Stewart CA, Hart D, Berry DK, Olsen GJ, Wernert E, Fischer W. Parallel implementation and
performance of fastDNAml - a program for maximum likelihood phylogenetic inference. Proceedings of
14th IEEE/ACMSupercomputing Conference (SC2001) 2001; CD proceedings.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

20

A. STAMATAKIS, T. LUDWIG, H. MEIER

27.

28.

29.

30.

Strimmer K, Haeseler Av. Quartet Puzzling: A Maximum-Likelihood Method for Reconstructing Tree
Topologies. Molecular Biology and Evolution 1996; (13): 964-969.

Schmidt HA et al. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel
computing. Bioinformatics 2002; (18): 502-504.

Tuffley C, Steel M. Links between maximum likelihood and maximum parsimony under a simple model
of site substitution. Bulletin of Mathematical Biology 1997; (3): 581-607.

Williams TL, Moret BME. An Investigation of Phylogenetic Likelihood Methods. Proceedings of 3rd IEEE
Symposium on Bioinformatics and Bioengineering (BIBE’08) 2003; CD proceedings.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezper. 2003; 00:1-7
Prepared using cpeauth.cls

