Technische Universitat
Munchen

Fakultat fur Informatik

Lehrstuhl fiir Rechnertechnik und
Rechnerorganisation

Diplomarbeit

Evaluation of Interoperable Tool
Deployment for the Late Development

Phases of Distributed Object-Oriented
Programs

Alexandros Stamatakis






Technische Universitat
Munchen

Fakultat fur Informatik

Lehrstuhl fiir Rechnertechnik und
Rechnerorganisation

Diplomarbeit

Evaluation of Interoperable Tool
Deployment for the Late Development

Phases of Distributed Object-Oriented
Programs

Alexandros Stamatakis

Themensteller: PD. Dr. Thomas Ludwig

Betreuer: Dipl.-Inform. Markus Lindermeier
Dipl.-Inform. Giinther Rackl

Abgabetermin: 15. Februar 2001






Erklarung

Ich versichere, dafi ich diese Diplomarbeit selbstandig verfafit und nur
die angegebenen Quellen und Hilfsmittel verwendet habe.

Miinchen, den 15. Februar 2001

(Unterschrift des Kandidaten)



ii



Acknowledgments

Several people have contributed to this diploma thesis.

I would like to thank PD. Dr. Thomas Ludwig for his help concerning
this thesis and especially for supporting my studies at the Ecole Nor-
male Superieure de Lyon, as well as an internship with the Eurocontrol
Experimental Center near Paris in earlier years.

Furthermore, I want to thank Dipl.-Inform. Markus Lindermeier and
Dipl.-Inform. Giinther Rackl for the excellent help and guidance they
provided me, as well as for the pleasant and relaxed atmosphere during
our meetings.

Finally, I am thankful to Dipl.-Inform. Marcel May, who implemented
the C++ version of the realignment application and explained to me
the details and the structure of his program.

I would also like to thank Jorn Eichler, who implemented parts of the
automatic load balancer within the framework of his diploma thesis
and helped me with the integration of the load balancer.

iii



v



Contents

Introduction
1.1 Motivation and Goals . . . . . . . . . . ... ...
1.2 Structure of the Thesis . . . . . . . . . . . . . .. ... ...

The Java-based Realignment Application

2.1 Application Background: Medical Image Processing . . . . . . ..

2.2 Structure of the Sequential C++ Program . . .. ... ... ...
2.2.1 Input Parameter Format . . . . . ... ... ... ... ..
2.2.2 Realignment Algorithm . . . . . .. .. ... ... ... ..

2.3 Technical Background: Java Native Interface (JNI) . . . ... ..

2.4 Encapsulating the Original Program in Java Code using JNI . . .

2.5 Verification and Performance Evaluation . . . ... ... ... ..
2.5.1 Verification . . . . .. ... Lo o0
2.5.2  Performance Test: C++ versus Java/JNI/C++ . .. . ..

The CORBA-based Client/Server Realignment Application
3.1 Technical Background: CORBA . . . .. ... ... ... .....
3.1.1 Object Management Architecture . . . . . ... ... ...
3.1.2 CORBA Object Model . . . . . ... ... ... ......
3.1.3 Portable Object Adapter . . . . . .. ... ... ......
3.1.4 The Interface Definition Language (IDL) . . . . . ... ..
3.2 Design of the Client/Server Architecture . . . . .. ... ... ..
3.2.1 Splitting the Java Program into Client and Server Compo-
nents . . ... ...
3.2.2 Definition of the IDL Interface . . . . . . . ... ... ...
3.3 Verification and Performance Evaluation . . . .. ... ... ...

Integration of the Load Balancer

4.1 Technical Background: Load Management . . . . ... ... ...
4.1.1 The Automatic Load Balancer . . . . . .. ... ... ...

4.2 Integration of the Load Balancer into the CORBA Program
4.2.1 Basic Version . . . .. ... . 00000
4.2.2  Single and Multiple Object Mode . . . . . .. .. ... ..

v

15
15
16
17
18
18
19

19
24
25



4.2.3 Multi-Threaded Client . . . . . . . . . .. .. .. .. ... 33

4.2.4 Cache Architectures . . . .. ... .. ... ... ..... 36
4.2.5 Persistent Migration/Replication . . . .. ... ... ... 37
4.3 Verification and Performance Evaluation . . . .. ... ... ... 38
4.3.1 Manual versus Automatic Replication . . . . . . . ... .. 38
4.3.2 Multi-Threaded Clients . . . . . . ... ... .. ...... 39
4.3.3 Migration and Replication . . . . .. ... ... ... ... 40
5 MIMO and MiVis 45
5.1 Technical Background: Middleware Monitoring Systems . . . . . . 45
5.1.1 General Aspects . . . . . . ... Lo 45
5.1.2 Existing Technologies . . . . . . . ... ... ... ..... 46
5.2 Introduction to MIMO . . . . ... ... ... .. ... ...... 46
5.2.1 Multi-Layer-Monitoring (MLM) . . . . .. ... ... ... 48
5.2.2 Instrumentation Techniques . . . ... ... ... ..... 48
5.2.3 GenericEvents . . ... ... ... ... ... ... .. 50
52.4 ActiveTools . . . . . . . . ... ... . 52
5.3 Introduction to MiVis . . . .. .. ... ... ... ... ... .. 52
6 Interoperability of MiVis and the Load Balancer 55
6.1 Specification of the Degree of Interoperability and of the Tool
Functionality . . . . . .. ... ... Lo 95
6.2 Instrumenting the Load Balancer and the Application . . . . . . . 56
6.2.1 Initial Approach and Associated Problems . . . ... . .. 57
6.2.2 Multi Layer Monitoring Mapping . . . . . ... . ... .. 59
6.2.3 Visualization Interface Definition . . . .. ... ... ... 59
6.2.4 Command Interface Definition . . . . . .. ... ... ... 62
6.2.5 Extension of the Manual Adapter . . . . . ... ... ... 62
6.2.6 Instrumentation and Command Implementation . . . . . . 63
6.3 The new MiVis Java Bean . . . . . . . ... ... ... ...... 64
6.3.1 Display Design . . . . . ... ... ... L. 64
6.3.2 Java Bean Implementation and Improved MiVis Design
Proposal . . . . . . .. . ... 66
6.4 Instrumentation of Load-Balanced Applications . . .. ... ... 68
6.5 Evaluation of Tool Functionality and Interoperability . . . . . . . 69
7 Conclusion 73
Abbreviations 75

vi



List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
2.2
9.3
0.4

6.1
6.2
6.3
6.4
6.5
6.6

Outline of the Development Process . . . . . . .. ... ... ...

Realignment Algorithm . . . . . . .. ... ... oL,
Java/JNI Program Structure . . . . . . . ... ... ... ... ..
Performance: C++ versus Java per Image . . .. ... ......
Performance: C++ versus Java per Sequence . . . . . . . .. ...

Object Management Architecture . . . . . ... ... ... ....
CORBA Client/Server Development Process . . . . .. ... ...
Server Structure and Control Flow (reference data in cache)

Server Structure and Control Flow (reference data not in cache) .
CORBA Overhead per Image . . . . ... .. ... .. ......
CORBA Overhead per Sequence . . . . . .. ... ... ......

Basic Components of a Load Management System . . . . . . . ..
Two Models for a Multi-Threaded Client . . . . . . ... ... ..
Dynamic Thread Model . . . . . . ... ... ... ... .....
Multiple versus Single Object Mode . . . . . . . . ... ... ...
Load Balancement of a Multi-Threaded Client . . . . . . ... ..
Object Replication for a Multi-Threaded Client . . . . . ... ..
Migration of Client Objects . . . . . . . ... .. .. ... ....
Stateful versus Stateless Replication . . . . . . ... ... ... ..
Stateful Migration for a Cache-less Client . . . . . . . .. ... ..

MIMO Architecture . . . . . . . . . . .. ... ... .. ... ..
MLM Model . . . . . . . . . e
Instrumentation Alternatives . . . . . . . . .. .. ... ... ...
MiVis Architecture . . . . . . . . . ... .

Virtual and Real IORs . . . . . . .. ... ... ... ...
Alternative MiVis Design Proposal . . . . . ... ... ... ...
Migration Command Execution . . . .. .. ... ... ... ...
Handling of Dynamic IOR Changes . . . . . ... .. ... ....
Screen-shot: New Display Layout . . . . .. ... ... ... ...
Screen-shot: Representation of Replications . . . .. .. ... ..

vii



6.7 Screen-shot: Execution of a Migration Command . . . . ... ..

6.8 Screen-shot: Complex Replications

viii



Chapter 1

Introduction

1.1 Motivation and Goals

The introduction of the distributed object-oriented programming paradigm, as
implemented for example by the Common Object Request Broker Architecture
(CORBA), provides a finer distribution granularity paired with an increase of
complexity.

Therefore, a set of powerful tools is required for handling the increased com-
plexity of distributed object-oriented systems and applications.

Firstly, there is a need for tools supporting the development process of dis-
tributed object-oriented applications, for monitoring and visualizing interactions,
object creations, events etc. This motivates the development of middleware mon-
itoring systems.

Secondly, the parallelization potential offered by the finer distribution gran-
ularity should be exploited in an advantageous manner. As a consequence, au-
tomatic load balancing mechanisms are required, permitting to handle the com-
plexity induced and to take advantage of the degree of granularity provided.

Thirdly, the monitoring and steering of an automatic load balancer and the
associated load-balanced application(s) using a powerful monitoring tool, is im-
portant for the improvement of the load balancer and the development of load-
balanced applications. In addition to this the possibility to steer the load balancer
using a visualization tool, enables for example the system administration to per-
form maintenance work and to keep track of actions performed. Furthermore, the
interoperability of a middleware monitoring system with such a complex system
has to be investigated.

Within this context, an automatic load balancer and a middleware monitoring
system for distributed object-oriented systems are currently under development
at the Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR).

The goal of this thesis was to test and evaluate those tools with a real world



application. As indicated by the title, the final phase consisted of analyzing in-
teroperability issues concerning those tools and of developing concepts for moni-
toring and steering the load-balanced system!. This was achieved by designing a
new graphical display based on the MIddleware MOnitoring System (MIMO) and
the closely related visualization tool Middleware Visualization System (MiVis).
A medical application, which had been parallelized in an earlier diploma the-
sis using C++/PVM and C++/CORBA respectively, was chosen as real world
application.

1.2 Structure of the Thesis

The first part of this thesis (chapters 2, 3, and 4) describes a series of program
transformations, necessary for the integration of the load balancer, leading to an
increase of system complexity each time.

With the original sequential C++ program as a starting point at each step a
new concept or technology is integrated. The motivation and task of the specific
step will be stated in each chapter. Furthermore, a brief description of the new
technology introduced and of the evolved program structure will be given. Finally,
the results of the program verification and evaluation process will be presented
at the end of each chapter.

The second part (chapters 5 and 6) introduces the monitoring system MIMO
and the visualization tool MiVis. A new visualization tool (including several new
components and interfaces) for load-balanced systems (see footnote), based on
MIMO and MiVis, will be presented.

As outlined in figure 1.1 the chapters cover the following subjects:

Chapter 2 describes the medical application , the original sequential C++ pro-
gram, and its transformation into a sequential Java program using the Java Native
Interface (JNI).

Chapter 3 gives an introduction to CORBA and describes the transition from
the sequential Java code to a sequential Java/CORBA program based on a
Client /Server architecture.

Chapter 4 introduces the load balancer and its basic mechanisms and covers the
modifications necessary to adapt the initial CORBA program to the restrictions
and requirements imposed by the load balancer. It presents results for the degree
of parallelization obtained by the application of the load balancer.

Chapter 5 explains the concepts of the MIddleware MOnitoring system (MIMO)
and the associated MiVis visualization tool.

Chapter 6 describes the integration of the above tools with the load balancer and
the application. It presents the resulting extended MIMO interface and the new
MiVis Java Bean, a display which visualizes the actions performed by the load
balancer and the interactions of the load-balanced application. An additional

LA system consisting of the load balancer and the load-balanced application(s).



C++

CHAPTER 2
JNI

Java

CHAPTER 3
CORBA

Java/CORBA

CHAPTER 4
Load Balancer

load—balanced

Java/CORBA extended MIMO
CHAPTER § T interface
MIMO/MiVis

new MIMO CHAPTER.G.
Interoperability &
Adapter Visualization

new MiVis

monitored monitored & steered Dlsplay

application load balancer

Figure 1.1: Outline of the development process.

feature is a drag and drop function for the execution of user-initiated migrations.
Furthermore, it presents a guideline for instrumenting load-balanced applications
and proposes an alternative architecture for the MiVis system.

Chapter 7 forms the conclusion of the work conducted.






Chapter 2

The Java-based Realignment
Application

The load balancer, which will be integrated into the program later on, only
provides services for Java/CORBA programs. Therefore, it was necessary to
transform the original C++ realignment code into an equivalent Java program.
Since the C++ source code contained well over 5000 lines of code, porting the
entire program to Java was not possible due to lack of time and the complexity
of the code. An alternative approach was chosen using the Java Native Interface
(JNI), in order to encapsulate the C++ source code in Java.

The strategy consisted of transforming the sequential C++ Code into a sequential
Java program, always keeping in mind however, that the resulting program had
to be split into a client and a server component at the next step. Thus, Java
methods had to be provided especially at those points where a remote method
invocation would be performed later on.

2.1 Application Background: Medical Image Pro-
cessing

The realignment process, that has been chosen for this thesis as real world appli-
cation, comes from the field of medical image processing.

Realignment forms part of the Statistical Parametric Mapping (SPM) application
developed by the Wellcome Department of Cognitive Neurology in London (see
[4]). SPM is used for processing sequences of images, as obtained for example by
functional Magnetic Resonance Imaging (fMRI) or by Positron Emission Tomog-
raphy (PET). Sequences of such images, spaced at close time intervals are used
in the field of neuroscience, for analyzing the activity of different regions of the
human brain during cognitive and motoric exercises.

Realignment forms part of the preparatory computations SPM conducts, in order
to be able to perform statistical operations on the obtained image data. For the

5



preparation of a series of functional medical images SPM performs the following
4 computational steps on the raw image data:

1. Registration and Realignment
2. Normalization

3. Coregistration

4. Smoothing

Realigning the images means, that the effect of small movements, caused for
example by the breath of the patient, are filtered out of the sequence by calculat-
ing a 4 x 4 transformation matrix. This process has previously been selected for
parallelization, in order to conduct a performance comparison between its Parallel
Virtual Machine (PVM) and CORBA versions (see [3]). The realignment process
is one of the most cost expensive computations SPM performs and contains few
dependencies, i.e. is easy to parallelize.

A sequential C++ version had also been developed, since it was necessary to ex-
tract the realignment part from the SPM program which is written in MATLAB
(see [5]). This program version was the starting point of this thesis.

2.2 Structure of the Sequential C++ Program

As mentioned in the above section the sequential C++ program only performs
the realignment computation, which forms part of the preparatory computations
conducted by SPM.

The realignment process was selected mainly due to its cost expensive com-
putations. Medical as well as mathematical details are only secondary for this
thesis. Therefore, only a brief overview over the program’s structure will be
given, neglecting unimportant details, since the program was considered as a set
of black boxes, for which several JNT interfaces had to be constructed.

The description is split into two parts, the format of the parameter string passed
to the program is specified and an abstract description of the realignment algo-
rithm is given.



2.2.1 Input Parameter Format

The input parameter string consists mainly of one or more sequences of image
filenames and some numerical parameters. For the exact semantics of the nu-
meric parameters see [3]. The format of the parameter string is specified by the
following BNF like grammar:

PARAMETERLIST ::= HEAD SEP {SEQUENCELIST}

HEAD ::= Quality SEP SmoothingCoefficient SEP
GridSpacing SEP RTM SEP [ImageWeight]
SEP Hold SEP NumOfSequences

SEQUENCELIST = SEQUENCE [SEP SEQUENCELIST]
SEQUENCE ::= NumOfImages {SEP ImageName}
RTM ::= 0|1
SEP LRI

Example parameter string for one single image sequence with 10 images:

0.51614.5|011-8]1110|data/01.img]|...|data/10.img

2.2.2 Realignment Algorithm

There exist two different realignment algorithms depending on the input data,
i.e. whether the images are obtained by Positron Emission Tomography or func-
tional Magnetic Resonance Imaging.
The C++ code however implements the algorithm for the realignment of fMRI
data only. The input data may consist either of a sequence of images or of
a sequence of sequences of images. For each image of the input sequence(s) a
real-valued 4 x 4 transformation matrix is calculated.

The algorithm is presented in plain text, in a C-like pseudo-code, and graph-
ically (see figure 2.1).

1. Case: Realignment of one sequence of images.

The algorithm consists of three basic steps. Preparatory computations are
performed on the first image of the sequence, in order to calculate the ref-
erence data set.
Thereafter the remaining images of the sequence (2...n) are realigned rel-
atively to the first image of the sequence, using the previously calculated
reference data.

Finally, the obtained transformation matrices of images 1...n are saved to
disk.



void realignSingle(Image images[])

{
load(images[1]);
referenceData = preparatoryComputations(image[1]);
//Step 1 in figure 2.1
for(int i = 2; i <= images.length; i++)
{
load(images[il);
compute(images[i], referenceData);
}
//Step 2 in figure 2.1
saveTransformationMatrices (images[]) ;
}

2. Case: Realignment of multiple sequences of images.

Let m be the number of sequences. During the initial step the first image of
sequences 2...m (i.e. 2,1...m, 1) is realigned relatively to the first sequence’s
image (1,1) and its reference data.

Afterwards each sequence (1...m) is realigned independently by applying
the single sequence algorithm.

void realignMultiple(Image images[][], int numOfSequences)

{
load(images[1]1[11);
referenceData = preparatoryComputations(images[1][1]);
//Step 1 in figure 2.1

for(int i = 2; i <= numOfSequences; i++)
{
load(images[i] [1]);
compute (images[i] [1], referenceData);

}
//Step 2 in figure 2.1

for(int i = 1; i <= numOfSequences; i++)
{
realignSingle(images[i]) ;

}
//Steps 3 and 4 in figure 2.1



Realignment of one sequence:

S[ep 1: 3ep 20 TTTTTTTTTTTTo =

Preparator
Computations

Step 2
ol 2| e n
| *r
|
Step 3: |
Preparaotory |
Computations |
L
| 3 -
S n
Stepd:, - =
P for al rows

Realignment of a sequence of sequences

____________ = . Apply realignment function

Figure 2.1: A graphical representation of the algorithm for both cases, a simple
sequence of images and a sequence of sequences of images.

2.3 Technical Background: Java Native Inter-
face (JINI)

The reason for the utilization of JNI (see [1]) has already been given in the in-
troduction of this chapter. JNI provides a means for integrating native code,
usually C or C++ functions into a Java program, by defining native methods.
This however leads to a loss of one of Java’s key features: machine independence.
Furthermore, the extensive usage of native methods, as well as passing large
amounts of data from Java to the native code and vice versa, leads to perfor-
mance penalties.

Thus, the overall number of native method calls should be reduced to a mini-
mum, as well as the amount of data passed through the interface. For a thorough

9



analysis of JNI performance issues see [2].

When one wishes to integrate native code into his Java program the steps are
as follows:

1. Declare the native method and its signature using the native modifier in
the Java code.

2. Generate automatically the JNI/C++ header-file, by compiling the Java
code with javah -jni.

3. Implement the C+4 methods defined in the generated .h file.

4. Compile the native method implementation and store it as shared library
file (e.g. 1ibName.so for Solaris).

5. Load the shared library using the Java method System.loadLibrary().

Example:
A classical example for the utilization of JNI is the acquisition of the Process
Identification Number (PID). The Java definition would be as follows:

public static native int getPIDQ);

The following C++ function implements Java_JNITest_getPID() which is de-
fined in the automatically generated header file:

JNIEXPORT jint JNICALL Java_JNITest_getPID(JNIEnv *, jclass)
{

int pid = (int)getpid();

return (jint)pid;
}

2.4 Encapsulating the Original Program in Java
Code using JNI

The most important point of this part was to select the appropriate C++ function
or set of functions which have to be executed by one single native method call.
This selection and grouping was done using two criteria.

1. Major criterion: Provide Java native methods at those points, such that
an easy and efficient transition two a Client/Server architecture is possible
later on.

10



2. Minor criterion: Reduce the number of Java native method calls and the
amount of data exchanged to a minimum for better performance (perfor-
mance considerations are however only secondary at this point).

Since the program has previously been parallelized (see [3]), it is relatively

easy to identify the pieces of C++ code that have to be executed by one single
Java method call. In this case it is mainly the compute() function which is
situated at the inner for loop.
The sole dependency is, that a call to compute() can only be performed when
the respective reference data set is available. Once available, the realignment
matrices of all images of the sequence can be computed independently. Thus, the
compute () method will be the service provided by the server later on and was
therefore defined in a separate Java class (Compute).

A second Java class (Realign) was designed, representing the future client,
providing additional native methods for parsing, calculating the reference data
set etc. The structure and control flow of the Java/JNI/C++ program for the
realignment of a single sequence of images is depicted in an abstract manner in
figure 2.2.

The encapsulation was performed as follows:

e Define an appropriate native method parse() for calling the already exist-
ing C++ function which parses the parameter string (see 2.2.1).

e Rewrite the main control loop of the program (see pseudo-code) in Java.
e Define the pseudo-code methods as Java native methods.

e Implement corresponding C++ functions, which transform the JNI param-
eters and call the original C++ functions.

A difficulty that arises when working with JNI in combination with C++
is the constant switch between two completely different memory management
models. Especially with the realignment application, where great amounts of
data are passed back and forth through JNI and a lot of memory is allocated
dynamically, this lead to difficulties associated with memory allocation in the
C++ code.

Furthermore, there was no documentation available clearly describing how the
heap and stack of the native code are managed. The conclusion was drawn, that
memory issues have to be handled with extreme care when writing this type of
program.

11



Realignment Class Compute Class \ JNI/C++ Functions Origina C++ Functions
read . |
parameters parameter string !

transform parser

parsed parameter parameters function
load first
image
o ucions ]
| preparatory |
reference data, ! . '
matrix of first image | computations
I
create compute| |
object |
I
)
I
compute \
object }
I
|
fori=2..n |
load image i image data of image i |
ar%ference daiaag ' |
I
image data of imagei,
cal NI N ererence dats
C++ function !
I
! transform compute
! parameters function
I
pass transf. ah
matrix |
I
transf. matrix }
save transf. :
matrix |
)
I
i>n !
I
I
write transf. |
matricesto disk |

Figure 2.2: The calls and data traversing the Java Native Interface as well as the
control flow of the program for a single sequence of images are shown.

12



2.5 Verification and Performance Evaluation

2.5.1 Verification

Program verification, i.e. showing that both programs are equivalent was partic-
ularly easy and straight-forward in the specific case. Since the C++ program
produces a set of 4 x 4 matrices as output (one matrix per image), it was easy to
automatically compare this set with the results obtained by the Java version.
The C++ native code of the Java program had however to be modified, in order
to write the output data to a different directory.

A small C function verify() was implemented for comparing the matrices.
verify() expects a sequence of image file names in the same format as spec-
ified for the realignment application (see variable SEQUENCE in 2.2.1) as input
and returns true if all files in the Java and C++ result directory are equal,
otherwise it indicates which files are erroneous.

2.5.2 Performance Test: C++ versus Java/JNI/C++

Another interesting aspect of the first part of this thesis was the possibility to
compare the performance of the pure C++ implementation with the performance
of the Java/JNI/C++ version of the program and some rather surprising results
were obtained. The interesting aspect was, that a particularly large amount of
data is being passed via JNI (about 0.8 Mb per image), and therefore a serious
performance penalty had to be expected.

The initial tests confirmed what had been expected, a performance 20 to 30 %
worse than that of the C++ code. Later on in the project it became evident,
that the shared library file had not been compiled using optimization flags, in
contrary to the original C++4 code. The shared library was recompiled with the
same optimization flags and the Java code now ran slightly faster than the pure
C++ code, still providing correct results (see figure 2.3 and figure 2.4).

13



JavalINI: 455 C++: 4.627

Figure 2.3: C++ and Java average computation times per image.

500 T T T T T T

450 1 .
400
350
300
250
200
150

100

secs 50

images of the test sequence

Figure 2.4: C++ and Java average computation times for the realignment of
sequences of images.

14



Chapter 3

The CORBA-based Client/Server
Realignment Application

The last step, before the integration of the load balancer, was to transform the
Java realignment implementation into a Client/Server application using CORBA,
since the load balancer, as well as the monitoring tool, are based on this dis-
tributed object-oriented system.

Therefore, CORBA will be presented in this chapter. As mentioned in chapter 2
the first steps for the division into client and server components have already been
made, by means of identifying the service, the server will offer and by providing
autonomous classes for the two basic components.

The server architecture, some interesting design aspects, and the definition of
the IDL interface will be discussed in this chapter. At the end of the chapter the
performance of the CORBA-based program will be evaluated and compared with
the C++ and Java versions.

3.1 Technical Background: CORBA

The Common Object Request Broker Architecture (CORBA, see also [6] and [7])
is a standard developed and specified by the Object Management Group (OMG),
a group which has been founded by a number of leading companies, such as
Hewlett Packard, Sun Microsystems, and American Airlines. CORBA is the
effort to establish a common view of the distributed object-oriented programming
paradigm, which combines two important concepts of computer science:

e Object-orientation has proved to be a solid concept for developing large
applications in a well-structured and efficient manner.

e Distributed computing is a trend that grows stronger in an ever more con-
nected world. Object distribution provides fine granularity for distributing
program components among the nodes of a network, i.e. to balance load and

15



obtain maximum performance out of the existing computing power. Other
important features of distributed computing environments are transparency
(location transparency, concurrency transparency etc.) and interoperability
(interoperability of different platforms and languages).

The CORBA standard is a specification of the services such a system should
provide. Implementations are available by various vendors. Two different CORBA
implementations were used for this thesis.

1. The JacORB implementation (see [8]) for the application and the load
balancer, since the load balancer is based on a modified JacORB version.

2. The ORBacus implementation (see [9]), because the monitoring system and
the associated tools are based on it.

The fact that there existed two different CORBA implementations, that finally
had to work together, offered the opportunity to investigate interoperability issues
concerning CORBA as well.

3.1.1 Object Management Architecture

The Object Management Architecture describes the basic components of the dis-
tributed object world, as well as the basic services it should provide. A more
detailed description of some of its main components will be given in the following
sections.

The distributed world, as specified by the OMG, is made up by the following
components:

e The actual application, represented by a set of application objects.

e The Object Request Broker (ORB). It is the most important component,
since all CORBA method calls are channeled transparently through the
ORB. Thus, the ORB provides the basic communication mechanisms, has
to ensure interoperability between heterogeneous platforms, and hides those
aspects from the application programmer.

e The object service provides basic low level functions for distributed object-
oriented systems, such as methods that allow the client to detect objects
of a certain type and a life cycle management, which provides services for
moving, copying, creating, and deleting objects within a distributed system.
Furthermore, there exists an CORBA event service and a naming service
for publishing and subscribing to objects.

e The common facilities offer high level services, such as document manage-
ment, electronic mail etc.

Those components interact as depicted in figure 3.1.

16



Application

Objects

Object Request Broker

[ Object } [ Common }

Services Facilities

Figure 3.1: The Object Management Architecture, as defined by the OMG. All
components of the distributed object world communicate through the Object
Request Broker.

3.1.2 CORBA Object Model

Objects in CORBA are defined as identifiable entities with a state and a set of
operations, which can be applied on them. What is special about distributed
objects is, that they have to use communication mechanisms (the Internet Inter-
ORB Protocol IIOP defined by the OMG), in order to perform (remote) method
invocations on distant objects. When an object invokes a method offered by
a remote object (an object, which is not located on the same host and/or not
in the same memory space) it has to be able to detect and identify the remote
object and to send and receive data. This explains the need for unique object
identifiers called Interoperable Object References (IORs), which are generated
for each CORBA object.

Furthermore, the intervention of communication mechanisms has to be hid-
den, i.e. a remote method invocation should look like a local method invocation
(location transparency). Therefore, a proxy object, which is the local representa-
tive of the remote object and performs the communication duties, is automatically
generated by the IDL compiler (see 3.1.4). Thus, an object call in CORBA con-
sists of a method invocation on the proxy object, which is also called stub. On
the server-side the incoming request for a method invocation is handled by the
automatically generated server skeleton and the POA (see next section).

17



3.1.3 Portable Object Adapter

The Portable Object Adapter (POA) is an important component of the ORB,
especially within the context of the automatic load balancer (see 4.1.1). The
object adapter is the layer between CORBA objects and programming language
objects on the server-side of the program. It is responsible for servant object
creation/deletion and for forwarding method invocation requests to the servant
object.

It performs the following tasks:

e Generation of object references.

e Activation/Deactivation of objects.
e Location/Start of servants.

e Dispatch operations.

The desired server policies, such as the threading policy or the request pro-
cessing policy, can be specified in the POA.

3.1.4 The Interface Definition Language (IDL)

As already mentioned, another key feature of CORBA is, that it provides a
framework for assuring interoperability in heterogeneous environments. That
means, that for example a Java object running on a PC is able to request a service
from a C++ object running on a Sun work station. This type of interoperability is
offered by the Interface Definition Language (IDL), which provides the framework
for platform- and language-independent remote method invocations based on
ITOP.

IDL has a C-like syntax for specifying CORBA methods, events, and complex
data types. Each CORBA implementation provides an IDL compiler, which
compiles the .id1 file and automatically generates a series of files, which provide
the client stubs and server skeletons for the actual implementation of the specified
methods.

An inconvenient when working with two different CORBA versions, such as
JacORB and ORBacus, is that there are no standard names for the generated
stub and skeleton files, which can lead to confusion. Most providers offer an
idI2C++ and/or an idl2Java compiler. Thus, if a Java programmer wants to
use a service provided by an C++4 object on a server he just has to compile the
IDL file specifying the service provided by the C++ object, using an idl2Java
compiler and implement the client side of the code. The overall design process of
a CORBA application is outlined in figure 3.2.

18



JavaClientonaPC

C++ Server on aWorkstation

] Client ‘, Server
! Object ' \

\\\ C| ient |-~ a3 Server /)
N loglcal connectlon ‘

. Servant
e o real connection .. Object /,/

Ob] ect Request Broker

Figure 3.2: The development process of a CORBA Client/Server application for
a heterogeneous environment.

3.2 Design of the Client /Server Architecture

This section describes the division of the sequential Java program into its client

and server counterparts, the basic server design, and the definition of the IDL
interface for the realignment application.

3.2.1 Splitting the Java Program into Client and Server
Components

At first it has to be specified, which service should be provided by the server. The
service provided by the server in our case should be the most cost expensive part
of the application in terms of execution time, since that is the part which will be
automatically parallelized by the integration of the automatic load balancer later
on.

It has already been stated, that the compute () method, which actually cal-
culates the realignment matrix of an image, is the service to be provided by the
server, since it is situated within the inner loop of the program and can easily
be parallelized. The only precondition for its execution is the availability of the
reference data.

The Java program has already been structured with respect to the forthcoming
division into client and server components during the previous step. Therefore,
the transition to a Client/Server program is relatively easy, because only minor

19

, \ Implement. i



changes are necessary, in order to build a client and a server out of the Realign
and the Compute classes respectively.

Before defining the IDL interface and encapsulating the compute () method
into a CORBA method, some basic considerations have to be made concerning
the particular design aspects of a server.

The requests for computation jobs a server receives can come from more than
one client. The problem with the particular application is that for each calculation
of the transformation matrix the reference data for the present image must be
available. A straight forward approach would be to pass the correct reference
data to the compute function at each call. This is simple, but not very efficient,
since the same data would have to be sent along with every compute request.
The size of the reference data set is big enough to cause a significant performance
decrease.

Furthermore, image sequences are relatively long in practice (usually more
than 100 images per sequence). Thus, the overhead for sending the reference
data at each request becomes significant. Therefore, the server initially main-
tained a simple cache (for a thorough discussion of different cache architectures
see 4.2.4) for storing the reference data of the client’s sequence.

This approach leads to a modified compute () function for the CORBA appli-
cation, which is represented by the following pseudo-code:

void corbaCompute(Image image, String clientID, int sequencelD)

{

if ('ReferenceDataAvailable(clientID, sequenceID))

{
org.omg.CORBA.object client = getClientIOR(clientID);
ReferenceData referenceData =
client.corbaGetReferenceData(sequencelD);
}

compute (image, referenceData);

The problem was, that the server has to know, which client is requesting
the service and for which sequence, in order to be able to issue the request for
the specific reference data to the correct client or to look it up in the cache,
i.e. a mechanism is needed to uniquely identify clients. Therefore, a unique
client identifier was constructed, which is built out of the client’s host name
concatenated with its Process Identification Number (PID). Alternatively the
client’s IOR address could be used.

This identifier becomes an additional parameter of the corbaCompute() call,
in order to enable the server to know to whom he is providing the service. The
method corbaGetReferenceData() for the acquisition of the reference data is

20



implemented and provided on the client-side of the system.

The unique client identifier is used for the registration of the client’s reference
data service at the CORBA naming service. This offers a dual view of the system,
because the client may also be considered as reference data server.

Another aspect that imposes modifications on the server-side is, that the

server handles requests sequentially. Therefore a ping-pong effect, which might
occur, when more than one client attaches to the server, has to be avoided. Let
there be two clients, which issue alternating requests for the compute service. In
this case the correct reference data has to be resent each time. To solve this a
reference data buffer was added to the server using a FIFO strategy for assigning
new slots.
In more detail the introduction of the cache and the caching strategy (FIFO) lead
to some additional administrative components, such as a lookup function for the
reference data and a function implementing the FIFO strategy. At this stage
these functionalities were implemented on the C++ side of the program, and
provided to the Java object, handling the compute request, as native methods.

For the case, that multiple clients are attached to the server the C++ im-
plementation offers a performance advantage. When the reference data buffer is
handled and maintained in the C++ code, it has only to be passed once through
JNI to the native code. Whereas, if the buffer is handled by the Java object,
the reference data has to be passed at each invocation of the compute () method.
According to criterion 2 established in 2.4 this should be avoided.

The server has three layers:

1. The CORBA Portable Object Adapter (POA), which unpacks the data and
forwards the request, using single-thread mode, to the Java object providing
the realignment service.

2. The Java object calls the respective native methods for cache handling and
computing the realignment matrix.

3. Cache handling as well as the actual computation are performed in the
C++ component of the server.

The control flow and structure of the server are depicted in figure 3.3 for the
case, where reference data is already available and in figure 3.4 for the case of a
cache miss, i.e. the server has to fetch the data from the client before completion
of the compute call.

An alternative to the Client/Server model would be to add a third component
to the system, a so-called pool that registers the compute requests and stores the
reference data of all clients. Furthermore, the pool would assign identifiers for
each computation job and reference data set.

21



C++ implementation

Cache
compute

ref data
availablg V&

Java object iﬁ]plementaition

CORBA object adapt

return transformation
Matrix

realignment
request

Figure 3.3: Outline of the layers a compute request traverses within the server
for the case that the required reference data is already cached.

22



C++ implementation

Cache
compute

Java obje:ct impllemerltatioriw

(";ORBAL obj ec1,l adapter :

realignment eturn transformation
reguest Matrix

ref data
request

Figure 3.4: Outline of the layers a compute request traverses within the server
for the case of a cache miss. An additional inner call is made for obtaining the
reference data from the client, before completion of the compute call.

For means of simplicity the pure Client/Server approach was chosen. A pool
would be an additional centralized component and would therefore lead to a de-
crease of reliability and an increase of complexity. An implementation of the pool
model based on CORBA and the C++ implementation can be found in [3].

23



3.2.2 Definition of the IDL Interface

Now one can define the IDL interface for the realignment application. As men-
tioned above two methods have to be defined in the interface, one for the com-
putation of the realignment matrix, which is invoked by the client and one for
the acquisition of the reference data of the present image, which is called by the
server when in the case of a cache miss.

Definition of the module name:

module Realign

{
Definition of a data-type for a sequence of doubles.
typedef sequence<double> SeqDouble;

Specification of the service provided by the client. It reads (in) the client identifier
for verification purposes, i.e. to check if the reference data is requested from the
correct client and the sequence number to identify the reference data, since one
client may wish to realign multiple sequences of images. It writes (out) the
reference data and the numerical parameters, which can be differing for each
client.

The parameters fwhm and hold are parameters specified in the parameter
string of the realignment program (see 2.2.1 and [3]), the remaining variables
form the reference data set.

interface C_Realign
{
void corbaGetReferenceData(in string clientID,

in long sequencelD,
out double fwhm,
out long hold,
out SeqDouble mat_O0,
out SeqDouble AO,
out SeqDouble x1,
out SeqDouble x2,
out SeqDouble x3,
out SeqDouble b);

24



Specification of the service provided by the server. It reads (in) the image
name, the client identifier, the sequence number, the image data, three image-
specific parameters, and it reads and writes (inout) the transformation matrix
which has been initialized with 0.

interface C_Compute

{
void corbaCompute(in string name, in string clientID,
in long sequencelID, in SeqDouble img_data,
in long dim_x, in long dim_y,
in long dim_z, inout SegqDouble img_mat) ;
¥
s

3.3 Verification and Performance Evaluation

The verification procedure remains the same as described in the previous chapter.

An interesting performance issue at this stage, is the evaluation of the over-
head produced by CORBA and the introduction of the Client/Server architecture
(i.e. the communication overhead). Depending on whether the server runs on the
local node, i.e. the client’s node, or on a remote one, the overhead produced by
the CORBA version lies between 25% to 45%. The additional communication
overhead for a remote server is between 15% to 20% (see figure 3.5 and figure 3.6).
The performance of a server with cache and without cache is also depicted, in or-
der to justify the introduction of the server cache. The results show, that a cache-
less server leads to a 10% increase of the average realignment time per image. This
is the time needed for transferring the reference data at each corbaCompute ()
method invocation.

Three different CORBA configurations were considered (see figure 3.5):
1. Configuration: A server with cache running on the same node as the client.
2. Configuration: A server with cache running on a different node.

3. Configuration: A server without cache running on a different node. In this
case the communication overhead, caused by the reference data transfer at
each call, becomes more evident.

25



Secs 3.Config

7.40
| 2.Config 10%

I 6.74

ol I.Config

s

4.55 4.63

—_

N

o

—

JavalINI C++ CORBA CORBA CORBA

Local Server Remote Server Remote Server
with Cache with Cache without Cache

Figure 3.5: Average computation times per image for the Java, C++ implemen-
tations, and different CORBA configurations.

26



500 T T T T T T

450

400

350

300

250

200

150

100

number of images

Figure 3.6: Average computation times for sequences of different length. The
running time of the realignment algorithm is O(n), where n is the number of
images.

27



28



Chapter 4

Integration of the Load Balancer

This chapter gives an introduction to load management, presents the automatic
load balancer, and describes its integration into the existing CORBA program.
Furthermore, the different versions of the realignment application, which have
been designed to test specific properties of the load balancer are described. Fi-
nally, the results of these test are presented and the load balancer’s performance
is evaluated.

4.1 Technical Background: Load Management

The high complexity, as induced by distributed object-oriented environments,
such as CORBA, leads to performance penalties due to load imbalance. On the
other side CORBA offers a high distribution potential, because the object has
now become the smallest distributable unit. The increase of complexity paired
with a finer distribution granularity motivates the need to concentrate efforts on
the design and improvement of load management in such systems.

Load management mechanisms can be classified, according to the layer at
which they are implemented. They can be integrated directly into the applica-
tion, they can be handled by the runtime system or a separate load management
service can be offered.

Integrating load management into the application is time and cost intensive and
does not provide a general solution for the load distribution problem. It only
provides load balancement for the specific application and does not take into
account CORBA objects from other applications, which might also produce sig-
nificant load.

Integrating load management mechanisms into the runtime system, such as the
operating system or the middleware, hides the distribution mechanism from the
application programmer.

The third possibility, a separate service, combines both approaches, since the ap-

29



Load Managment System

Load Monitoring Load Evaluation Load Distribution

IR B objctload /AC“O" L
loaddata |  TN~_  ________

Computing .

Environment . .~ application objects

Figure 4.1: Basic Components of a Load Management System.

plication programmer is aware that he is using a load management mechanism,
but does not have to bother with details.

In general a load distribution system has to provide three different services:

1. Initial Placement: Selection of the most suitable host, in terms of load and
efficiency, on which a new servant object should be started.

2. Migration: Moving an object from the present host to a less-loaded one for
accelerating its execution.

3. Replication: Creating a copy of an object on a remote host (a copy of an
object on a remote host is called replica) for accelerating the execution time
by redirecting a part of the requests to the new replica.

4.1.1 The Automatic Load Balancer

The automatic load balancer (see [13]) can be considered as an extension of
the CORBA standard and provides a load distribution service, as described in
the above section. CORBA objects interact with the middleware through the
POA and the ORB (see 3.1). Therefore, the load management infrastructure is
integrated into those two basic CORBA components.

The following three basic components of a load management service system
have to be integrated into the CORBA middleware (see figure 4.1):

1. Load Monitoring
Data about the load levels in the distributed system has to be collected
by the load balancer. This includes load information on the distributed
objects, as well as on the typical resources of a distributed environment

30



such as CPU load or network load. The necessary resource information is
collected via the Simple Network Management Protocol (SNMP, see [19]),
which is an adequate and flexible means for gathering the required data
within a heterogeneous system. The object-related information has to be
acquired by the middleware itself. The ORB and POA have been modified
for extracting relevant data, such as the object request rate, the request
waiting time, the data volume of requests etc.

. Load Distribution

The CORBA standard is extended in several ways, mainly concerning ob-
ject creation, initial placement, and request forwarding (when target ob-
jects have been migrated or replicated and received a new IOR address).
This led to the introduction of a ServantFactory for creation and dele-
tion of servant objects, which has to be provided by the programmer.
Furthermore, initial placement and starting of servant processes has to
be handled by an additional component, the GenericFactory which pro-
vides the create_object() and delete_object() services to the applica-
tion programmer. Initial placement and other associated actions are per-
formed transparently by this component. The last component of interest
to the application programmer is an extension of the ServantFactory, the
PersistentServantFactory in which the methods for servant state extrac-
tion and insertion have to be implemented.

. Load Evaluation

The load evaluator consumes the information provided by the load moni-
toring component and makes decisions about initial placement, migrations,
and replications. Furthermore, it is responsible for redirecting requests in
case of migration or replication.

This work is performed using the mechanisms provided by the load distri-
bution component. Different load balancing strategies can be implemented
in this component.

4.2 Integration of the Load Balancer into the

CORBA Program

This section deals with the integration of the load balancer into the realignment
application and the different execution modes it offers. The rationale for the
introduction of each execution modus as well as important implementation issues
will be presented and discussed in the corresponding sections.

In order to give an overview of the different configurations and also to provide
a small user’s manual the command options for the client and server are explained.

31



Client Command Options:

J_Realign [ -tc | -t1 ] [ -so | -do ] [ -NoClientCache ]
[-help] ImageParams

where ImageParams is the parameter string of the realignment application as de-
scribed in 2.2.1.

The meaning of the command options is given in the following tables:

-tc  Multi-threaded client: Thread model with
parallel access to redundant data.

-t1 Multi-threaded client: Thread model with
synchronized access to single data.

If neither —tc¢ nor —t1 is specified, multi-threading is disabled.

-so New client attaches to an already existing servant object,
if available.
-do New client creates its own, private servant object.

If neither —so nor —-do is specified, the client runs in —so mode.

-NoClientCache The client does not use a cache
to store its actual reference data.
-help Displays a help message similar to this tables.

Server Properties:
The server properties are specified in a file called Realign.imr. Apart from the
standard load balancer properties, the cache model the server uses can be specified
by setting the variable CacheStrategy either to C++Cache, to JavaCache or
NoCache. The default setting is C++Cache. The setting is overridden when the
standard variable Stateful is set to true and CacheStrategy is automatically
set to JavaCache (for details see section 4.2.4).

4.2.1 Basic Version

The basic adaptation of the CORBA realignment application to the requirements
imposed by the load balancer was straight forward. Thus, a basic version of the
load-balanced realignment application was soon available.

The server had to be slightly redesigned and the client had to use the methods
provided by the GenericFactory implementation in order to create a new ser-
vant object. Furthermore, the PersistantServantFactory had to be adapted
to the application, initially handling stateless ! replications and migrations only.

Stateless denotes an object replication or migration where the object state is not transferred

32



The reference data service corbaGetReferenceData(), provided by the client, is
still handled via the CORBA naming service and is not load-balanced, since only
few such requests are expected when using a server with cache. A reference data
request might occur at the first image of a new image sequence, after a stateless
replication or migration, or at intervals depending on the size of the reference
data buffer, if the number of clients is greater than the buffer size in single object
mode, or the C++ cache is used in multiple object mode. Furthermore, a ref-
erence data request consists mainly of transferring large data amounts and not
of computations (Except when a cache-less client is used, but this option is only
available for demonstrating the usefulness of the persistency mechanism).

4.2.2 Single and Multiple Object Mode

There are two alternatives for a client to detect and access a servant object at
start-up. It can either check if such an object is already available and attach to it
or create it, if it is not available (single mode). On the other hand each client can
create its own, new object irrespectively of what other clients are doing (multiple
mode).

Rationale:

Those two configurations are of interest for the scenario where many single-
threaded clients issue compute requests. With a sufficient number of nodes avail-
able, each client in single object mode should at the end of an initial distribution
phase be attached to a distinct replica running on a distinct host. In multiple
object mode the replication has already been performed manually at client start
up and the objects have to be distributed among the machines using migrations
(only if initial placement put several objects on the same host). Therefore, it was
important to test and compare the behavior of the load balancer for both modes
under equivalent circumstances, i.e. automatic and manual replication.

Implementation:
The implementation of multiple object mode is straight forward since every client
simply creates a new servant object by calling the appropriate GenericFactory
method. In single object mode the client reads the IOR of the existing object
from a file (for the sake of generality in a file on a www-server) or writes the IOR
of the newly created object to the file, if it previously did not exist.

4.2.3 Multi-Threaded Client

Among the application scenarios considered was the case, that there might be
only one single heavy client performing computation requests. At present there
would be no means of taking advantage of the features the load balancer provides,

33



without introducing an additional mechanism on the client side, that somehow
simulates multiple clients.

Rationale:
The option to start a multi-threaded client was introduced in order to permit
the parallelization of a single client. The key feature of this extension is that the
distribution granularity offered by the client is improved dramatically, because
the different threads might get forwarded their realignment requests to distinct
replicas by the load balancer. This can only be achieved however, if each thread
maintains its private proxy object.

This offers the possibility to take full advantage of the available computation
power on the one hand, and to test the automatic parallelization the load bal-
ancer provides in this specific configuration on the other hand.

synchronized client concurrent client
4 7 4 7
Java Threads Java Threads
Thread 1 Thread 2 Thread 1 Thread 2
synchronl zed java get(), set() ‘ get(), set() ‘ conpurrent java
native method native method
Ct+ data data2)|  Ct*

Figure 4.2: Data access structure of the synchronized and concurrent multi-
threaded client.

Implementation:
Thread synchronization concerning simultaneous read/write data access had to
be considered, because in the sequential model only one image at a time is loaded
into memory. Two thread models were implemented:

1. A concurrent model with private memory space for each thread.

2. A synchronized model where threads obtain exclusive data access through
a lock.

34



In the synchronized version the client threads read and write the image and
reference data via a Java synchronized method, which ensures that only one
thread at a time can use these methods. The concurrent version maintains an
array of private data segments for each thread in the C++ part of the client code
(see figure 4.2). This is a tradeoff between time and memory. The methods to
get () and set() image and reference data have however a neglectible impact
on the overall computation time, such that the synchronized model does not in-
duce any measurable performance penalties. Therefore, the synchronized version
should be preferred for the sake of reduced complexity and memory consumption.

The images due for realignment are split equally among the threads, i.e. each
thread is initially assigned a constant number of images for realignment. One
could think of a dynamic image distribution strategy, because during the initial
phase of load balancement, when replicas are created and distributed among the
hosts, significant differences in execution speed occur. This option was not im-
plemented due to lack of time and because multi-threading has been added for
proof-of-concept reasons only. Different image assignment policies would be of
interest within the context of work associated with application scenarios for the
load-balanced realignment application. In this case absolute performance and
speed become important, in contrary to relative speed which is being considered
here.

A solution is however proposed at this point. The aim of a dynamic image
distribution strategy is to keep all threads and associated replicas busy until the
end of the computation, i.e. to assign more realignment jobs to a fast thread.

The client maintains an array of image numbers for the actual image sequence
and an index to the next image due for realignment. When a client has finished
its computation it requests a new image number via a synchronized method
getNext () which returns the next image number and increments the index (see
figure 4.3). One might argue that the getNext () method might become a bottle-
neck of a system with a great number of threads. The time however for reading
an array entry and incrementing an index is neglectible and furthermore it is
an asynchronous system, i.e. the probability is low that many threads will be
requesting a new image number at the same time and therefore be blocked.

Another interesting aspect is the number of threads to be created, i.e. if
this should be done statically, i.e. by creating a fix number of threads at ini-
tialization depending on the number of images, or dynamically by observing the
present threads behavior, i.e. if the computation time per image is below a certain
threshold for all existing threads. Due to lack of time only the first approach was
implemented.

35



[\ 7|1/ \|14|5|6|7|8|9|10|11 Image Number Array

Synchronized Request for Next Image

Synchronized Method
/ 1 \
/ I \ \
/ ) | ' Asynchronous Requests for Next Image
/ ! \ \
Client Threads

Figure 4.3: Outline of the possible design for a dynamic thread model.

4.2.4 Cache Architectures

As already mentioned the server provides three different cache models.

1. A C++ cache which is controlled by the server and handled by native
method calls.

2. A Java cache which is integrated into the servant object, i.e. each object
maintains its own private cache.

3. The server provides no caching at all.

Rationale:

Apart from the performance considerations which have already been discussed
a cache architecture is of interest at this stage, in order to test the persistent
replication and migration mechanism the load balancer provides. Thus, the state
associated with each object due for stateful? replication or migration has to be
available. An appropriate interface for extracting and setting the state is re-
quired. In the case of the realignment application the state of the object is its
reference data buffer at the time the migration/replication is initiated.

2Stateful denotes an object replication or migration where the object state is also transferred
and reestablished

36



Implementation:
For the above reasons a Java cache version was introduced since cache handling
has now to be conducted independently by each servant object. A separate class
J_ReferenceImageCache was introduced which manages the cache.

4.2.5 Persistent Migration/Replication

The automatic load balancer offers the infrastructure to migrate and replicate
persistent objects. In cache-based systems such as the realignment application
this approach offers some advantages.

Rationale:

The ability to maintain and transfer the state of an object, when migrating
or replicating it, saves additional CORBA calls for the restoration of its cache.
Thus, if persistent migration/replication is implemented efficiently, i.e. the over-
head produced by transferring the state is small, compared to the overhead for
cache restoration, this leads to an performance advantage over the cache-less sys-
tem.

The interesting case within this context is a cache-less client, i.e. the client does
not hold the reference data of the current image sequence in a buffer and therefore
has to recalculate it each time a cache miss occurs on the server-side. The average
time for the computation of the reference data is 4 to 5 times higher than that
for an image realignment. Therefore, a stateless migration or replication obliges
the clients attached to the new servant object to recalculate their reference data
and may lead to serious performance penalties, i.e. cache restoration is expensive.

Implementation:
An interface for obtaining and setting the state of a servant object has to be pro-
vided and integrated into the PersistantServantFactory class handling per-
sistent migration and replication. This class is an integral component of each
load-balanced application wanting to make use of the persistency mechanism.

The state for the realignment application is defined as the contents of the
J_ReferenceImageCache class which is an attribute of the Compute class and
can therefore be easily obtained. The state of a replicated or migrated object
is set by the introduction of a second constructor in Compute which takes an
J_ReferenceImageCache object as argument.
It has to be mentioned that all classes belonging to the hierarchy forming the
state have to include implements java.io.Serializable in their class defini-
tion since the object data has to be serialized in order to be packed and sent via
CORBA.

Unfortunately the size of the servant object’s state is relatively great (2 Mb)
and this lead to serious performance problems. Therefore, three different methods
for handling the size have been considered:

37



1. The standard method provided by the persistent factory implementation.

2. Additional data compression within the PersistantServantFactory class
using java.util.zip was performed.

3. Writing and reading data into and from a file of the distributed file system
avoiding the usage of CORBA for state transfer.

The standard method caused an unexpected and unacceptable overhead and

delay in the computation, probably due to non-linear behavior of the Java garbage
collection and memory allocation mechanisms at high load and memory require-
ments. Thus, initially an attempt was made to compress and decompress the
serialized object data, which lead to a slight improvement, the performance re-
mained still prohibitive however.
As a final solution and in order to obtain results, showing that persistent objects
are advantageous in certain cases, the state was not transferred using CORBA
communication including packing, unpacking data etc., but using the Network
File System (NFS).

The generic persistency mechanism proved to be flexible enough to permit an
efficient implementation and evaluation of different methods for transferring the
object state.

4.3 Verification and Performance Evaluation

The verification procedure remains the same as in chapters 2 and 3, since the
output matrices calculated by the load-balanced realignment application have to
be compared with those of the original program.

The performance evaluation sections deal with the load balancers performance
for different Client/Server configurations.

4.3.1 Manual versus Automatic Replication

Two test runs in stateless mode for the same image sequence and with a low
network and host load level have been run. A pair of clients has been started in
single object mode (Client 1S, Client 2S) and a second pair in multiple object
mode (Client 1M, Client 2M).

The requests of Client 1S and Client 2S are assigned to the same object
initially, which becomes overloaded. The load balancer reacts to the high object
load by replicating the servant object at about the 9th image of the test sequence.

The servant objects created by Client 1M and Client 2M are initially placed
on the same host, since they do not start to produce load immediately. Once
again the load balancer responds correctly to the high host load and initiates a
migration at about the 11th image of the test sequence.

38



T T T T 1
Client 1M

Client2M - - - - - -
. . Client1S - ----
18 replication Client 28 - - - -
161 T
.‘l'l
14 1 .
. y migration
12 - =% ¢ / i

10- i

0 5 10 15 20 25 30 35 A
image numbers of the sequence

Figure 4.4: Computation times per image for two clients in double object mode
and two clients in single object mode.

The comparison shows that manual and automatic replication (see 4.2.2) ren-
der nearly identical results. The requests of one client are reassigned to a migrated
or replicated servant object on a new host. The only notable difference, which
has been confirmed by a series of tests, is that migration is faster than replication,
probably due to the augmented overhead associated with object replication.

4.3.2 Multi-Threaded Clients

A client with four threads (Thread 1,..., Thread 4) has been started in stateless
mode within an unloaded network of four equivalent nodes controlled by the load
balancer. As shown in figure 4.5 the load balancer correctly distributes the load
created by each of the four threads, i.e. towards the end of the computation each
thread issues computation requests to a servant object located on a separate
machine. At the first load balancing action the requests of one pair of threads
are redirected to a a new replica on a separate machine. At the second and third
step the remaining pairs of threads obtain a proper server on a new machine each.
Thus, the speedup of the average realignment time per image improves from 1
through 0.5, 0.33 to 0.25. The distribution and speedup obtained at the end is
optimal for a four-node network. The jags which occur before each reduction of
the computation time per image, i.e. at the replication, represent the overhead
caused by the replication.

39



Secs T T T T T T T
Thread 1

20

H 1st replication Thread2 1
30+ A /\' Thread 4 |
o5l ’.',"\ 2nd replication B

At 3rd replication

15+

10+

0 5 10 15 20 25 30 35 A
image numbers of the sequence

Figure 4.5: Computation times per image for each of the client’s four threads.

The way the load balancer assigns the threads to the newly created replica at
each step in the given example is depicted in figure 4.6.

4.3.3 Migration and Replication

Two single-threaded clients (Client 1, Client 2) have been started in single object
mode in the same network as above. Diagram 4.7 shows the effect of a state-
less replication (~ 9th image of sequence) conducted by the load balancer on
the computation time per image. Initially a new replica is created on another
machine, as expected.

After completion of this replication, load is created on the new machine in
order to force a migration. This explains the sudden increase of the average
computation time per image around the 12th image of the test sequence (Client
2). The load balancer reacts correctly to this increase in load and performs a
stateless migration away from the heavily loaded machine.

Figure 4.8 shows that the persistency mechanism is ineffective for the realign-
ment application if CORBA communication is used for transferring the state.
Two test sequences, with a pair of clients each, have been run. The first (Client
1C, Client 2C) uses stateless migration/replication in a configuration without
client cache. The second sequence (Client 1S, Client 2S) uses stateful migra-
tion/replication via CORBA. It becomes evident, that although the client once

40



Client Threads
1. T1 T4 T2 T3 2. T1

3535

First Replication %

AR
Sl
[Pl

Server Machines and Servant Objects

Third Replication %
/

Second Replication

O O

I
I
]

Figure 4.6: At each step a new replica is created and one or two client threads

are attached to it.

%S T T T T T
18

16

additional load

14

128

10

T
Client 1
Client 2

0 5 10 15 20 25

image numbers of the sequence

Figure 4.7: Computation times per image for each of the two clients.

41



m T T T T T T T Client 1SI
> stateful replication ~ giemas -

100+ H Client 2C- - - - _
80+ s _
60 ! / recalculation of reference data |
40+ v J
20 ¥ -

0 : L I L I ! | | | ~
0 2 4 6 8 10 12 14 16 18 2

image numbers of the sequence

Figure 4.8: Computation times per image for a pair of clients with stateful and
stateless replications/migrations.

again has to perform the heavy reference data computation, the stateful migra-
tion takes about 3 times longer to be performed.

Diagram 4.9 consists once again of the comparison of two series of tests, one
with 2 cache-less clients (Client 1C, Client 2C using stateless migration and
replication) and one with 2 cached clients (ClientlS, Client 2S using stateful
migration/replication via NFS). The initial computation times for Client 1C and
Client 2C are high because both clients have to calculate the reference data set.
When a replication for Client 1S and Client 2S is performed the state is transferred
to the new replica and an additional call of corbaGetReferenceData() is avoided,
since the cache is reestablished. The replication performed for the cache-less
clients takes significantly longer since Client 2C has to recalculate the reference
data, because the cache of the new replica is empty.

This demonstrates the advantages in terms of computation time persistent
objects offer. Furthermore, it shows that the load balancer is disturbed by the
long migration/replication times, since it they are in the order of its load balanc-
ing interval. This explains the second migration performed around the twentieth
image of the sequence (Client 2C) , although there was no additional load at that
time on the host.

42



| | I I CI%ent 1S

Client2S ------

Client 1C-- - - -
o Glem -~

recalculation of reference data
50+ |
40 |
or / stateful migration - -
20~ . o |
10+ - |
O | | | | |

0 5 10 15 20 P 3

image numbers of the sequence

Figure 4.9: Computation times per image for a pair of clients using the persistency
mechanism and a pair not using the persistency mechanism.

43



44



Chapter 5

MIMO and MiVis

This chapter gives an overview over the two new components added to the sys-
tem, the MIddleware MOnitoring System (MIMO) and the closely related MiVis
system, which is a CORBA visualization tool based on MIMO.

Initially a list of criteria for evaluating and classifying middleware monitoring
tools, as well as a brief description of some existing systems is given.

5.1 Technical Background: Middleware Moni-
toring Systems

5.1.1 General Aspects

Some general aspects of middleware monitoring systems and tools are initially
presented:

e On-line and off-line tools: Off-line tools collect and store data, e.g. in a
data-base, during program execution and evaluate them after the test run.
On-line tools collect and display the acquired data in real time during the
test run, thus offering the possibility for manipulating the application.

e Active and passive on-line tools: Active on-line tools do not only visualize
the application, but allow to steer it. Passive tools can not influence the
application in any way.

o Instrumentation techniques: In order to visualize a program, it might be
necessary to insert code into the application source. On the other hand in-
strumentation can be achieved by inserting wrapper functions into the mid-
dleware libraries, which remain transparent for the application (see 5.2.2).

o Flexribility: Middleware monitoring systems should be easily adaptable to
a great variety of distributed object-oriented systems and applications.

45



e Scalability: A general model for describing distributed object-oriented sys-
tems should be available, such that large systems can conveniently be mon-
itored.

e QOverhead: A monitoring system, especially providing on-line services, should
produce the least overhead possible, in order not to influence the execution
of the application.

5.1.2 Existing Technologies

The approach of DePauw et al.

In this approach the visualization of the behavior of object-oriented systems has
been explored. One of the main concerns of this work was scalability, i.e. the
possibility to monitor big applications. The model consists of classes, objects,
methods, and messages.

Various display types are proposed for visualizing the relations between those
basic components, like for example the inter-class call cluster, which displays the
message exchange between classes, the frequency of such inter-class calls and the
send /receive ratio of a class. This display allows the detection of closely coupled
classes. Several other interesting display types have been proposed (for details
see [20]), which can be transferred and adapted to distributed object-oriented
environments.

The different levels of granularity provided by this approach permit a fine-
tuned program analysis.

The CORBA-Assistant
The CORBA-Assistant (see [21]) is a management tool for CORBA applica-
tions. It is based on the managed objects approach. A managed object provides
additional services for delivering information about its state, events, method in-
vocations etc. This kind of information is sent to a database via a CORBA event
channel and is available for static evaluation. The CORBA-Assistant is an of-
line tool and the stored data can be used by several visualization tools, to display
performance graphs, invocation frequencies etc.

CORBA-Assistant requires extensive instrumentation of the application code
and is furthermore limited to usage with the Orbix CORBA implementation,
because it makes use of some Orbix-specific functions, which are not part of the
CORBA standard.

5.2 Introduction to MIMO

MIMO is an on-line monitoring system for monitoring distributed applications
during run time, mainly for debugging and performance analysis purposes (for

46



Tool

Tool-Monitor Commands
Interface
_ memmm BYES
Tool List
) MIMO
Request List

System State

Intruder—Monitor Commands
Interface Events

Intruder/Adapter

Figure 5.1: MIMO Architecture.

a more detailed description see [15] and [17]). MIMO provides a common on-
line monitoring interface based on the CORBA event service (using ORBacus),
in order to allow tools to gather and manipulate the required information from
the monitored application. An important aspect of the MIMO architecture is
the clear separation between tools, monitoring system, and the monitored ap-
plication. A MIMO-based tool implementation is an independent component,
i.e. MIMO only provides the infrastructure for gathering information (see fig-
ure 5.1). This approach is advantageous, since it permits the development of
various tools based on the same interface.

Distributed applications are often based on the Client/Server paradigm. Thus,
there is a need for dealing with heterogeneous platforms and multi-language sys-
tems. This type of heterogeneous environments is handled by using CORBA
to define the interface and services provided by MIMO. Normally several tools
need to observe an application, in order to analyze different aspects at various
abstraction levels. Therefore, another important feature of MIMO is tool inter-
operability, since the application can be monitored by several MIMO tools at
the same time without interferences (2nd degree system, see 6.1). Furthermore,
MIMO provides an infrastructure for designing active tools, i.e. tools manipu-
lating an application, like for example forcing the load balancer to execute a
migration of an application object.

47



5.2.1 Multi-Layer-Monitoring (MLM)

The MIMO system is based on the Multi-Layer-Monitoring Model (see [16]),
which describes the distributed object environment in a sufficiently detailed man-
ner for a large class of on-line tools. The model consists of six abstraction layers,
from which relevant data can be collected (see figure 5.2). Interactions between
elements of the same or of different abstraction layers can be monitored. The fol-

lowing table explains the meaning of each abstraction layer and gives the general
CORBA-mapping.

Application layer ~— The entire application
CORBA mapping — Application name

Interface layer — Interfaces exported by the components
CORBA mapping — IDL interfaces

Distr. object layer — Distributed objects, providing services
CORBA mapping — CORBA objects

Impl. layer — Implementation of the distributed objects
CORBA mapping — Implementation objects (e.g. in Java or C++)

Run-time layer — Object execution environment
CORBA mapping — PIDs or Thread IDs
Hardware layer — The underlying hardware

CORBA mapping — Host names

For each distributed application and specific middleware environment to be
monitored, those abstract layers have to be mapped to concrete entity types.
In the case of CORBA, application objects, which can be uniquely identified by
their IOR, are the most important entity.

5.2.2 Instrumentation Techniques

There exist two basic concepts for instrumenting an application, which has to be
monitored (see [12]): intruders and adapters. The main difference is that intrud-
ers are transparently integrated into the application, while the adapter model
requires insertion of usually small pieces of code into the application program
(see figure 5.3).

Intruders:
When the application can not be rebuilt or the instrumentation has to be trans-
parent the construction of an intruder is the appropriate method. For example
the CORBA library can be instrumented by inserting wrapper functions into the
library code. The original functions have to be renamed and called from within
the wrapper functions, which handle the communication with MIMO. This is

48



Tools

Monitoring System

Applications

Interface Layer

Distributed Object Layer

A Implementation Layer

| [ e Ervronme ]
[ et ]

Figure 5.2: Multi-Layer-Monitoring Model.

performed by applying symbol replacement within the CORBA library. The
CORBA methods of interest have to be identified and selected carefully, such
as e.g. ORB.1init () for attaching to MIMO. For this thesis however the adapter
approach was used, which is described in more depth. For a detailed description
of the intruder concept see [15].

Adapters:
When using the adapter model, and in order to reduce the code that has to
be integrated into the original application to a minimum, it is useful to group
the code for attaching/detaching to/from MIMO, as well as for sending MIMO
events via the CORBA event channel in a separate adapter class. For the CORBA
middleware there already exists a Java adapter class providing these services. The
following three standard MIMO events are available as adapter methods.

1. Object creation (new)
2. Object interaction (interaction)
3. Object deletion (del)

For instrumenting an application, only a few adapter method calls have to be in-
serted into the application and the rest (establishing connection with MIMO, gen-
erating, packing/unpacking events etc.) is handled by the adapter class. Those

49



Tool

MIMO
Monitoring
system

Intruder

Figure 5.3: Adapter and intruder instrumentation technique for a MIMO-based
system.

three basic methods should be sufficient for instrumenting a normal CORBA ap-
plication. Additional methods can be added if necessary, for handling generic
events, which are described in the following section.

5.2.3 Generic Events

Generic events are user-defined MIMO events, that can be specified if the stan-
dard events (e.g. new, del, interaction) are insufficient for the instrumentation
of an application, as in the case of the load balancer. The additional user-defined
CORBA events have to be specified in the MIMO IntruderEvent.idl file. When
an adapter class is used, supplementary methods have to be added to handle the
generic events.

Events are packed into a general event type called genericEvent. If a tool
requires the information provided by these special events, it has to start an addi-
tional MIMO request, using start_request() with the respective service name
as parameter. The generic events are gathered and channeled through MIMO
and then provided to the tools interested.

Ezample:
The definition of a generic event for replications and the implementation of the
corresponding adapter method are presented.

1. Step: Define the generic event data structure in the IntruderEvent.idl
file.

20



struct repEvent {
string source0ld; //old IOR of object to be replicated
string sourceNew; //new IOR of object to be replicated
string destNew; //IOR of the replica
string destHost; //Name of the replicas host
};

2. Step: Add a corresponding Java adapter class method (fragmentary, only
important passages).

public void replication(String _sourceOld, String _sourceNew,
String _dest, String destHost)

{

. //initialize an IntruderEvent object: ievt
ievt.etype = "replication"; //specify the service-name
...//initialize an entity list object: ell
genericEvent ge = new genericEvent();

//initialize a generic event object: ge

ge.elist = ell; //set its entity list to ell

repEvent mivt = new repEvent(source0ld, sourceNew,
dest, destHost);

//initialize a replication event object: mivt

ge.genDesc = orb.create_any();

repEventHelper.insert(ge.genDesc, mivt);

//insert the replication event into the generic event

ievt.description = orb.create_any();

genericEventHelper.insert(ievt.description,ge);

//insert the generic event into the intruder event

Any aevt = orb.create_any();

IntruderEventHelper.insert (aevt,ievt) ;

//insert the intruder event data into a CORBA any

pushEvent (aevt); //push the any event to MIMO

}

o1



5.2.4 Active Tools

As already mentioned, MIMO provides the possibility to design active tools,
i.e. tools, that not only monitor, but also steer the application (see figure 5.1).
Commands are also issued as CORBA events, only that the communication flow
is now being reversed from the tool (via MIMO) to the application.

This mechanism was firstly used in this thesis, so that some general considera-
tions for the design of adapter-based steered applications and active tools will be
made at this point. The intruder approach is inconvenient within this context,
since an active tool imposes the introduction of an additional interface within
the application that receives tool instructions. Since code has to be added to
the application program the adapter approach should be used for building active
tools.

Application and Adapter Requirements:
The adapter has to poll the incoming event queue regularly for incoming com-
mands and store them in a command list. An additional thread has to be added
to the application, which regularly checks the command list maintained by the
adapter and executes the tool commands.

The effect of additional computations within the application has to be care-
fully analyzed, in order to avoid interferences like for example synchronization
problems.

Tool Requirements:
The tool sends the command to the respective entity by using

MIMO.ToolMonitor.send_command(String requestName,
Entity[] elist,
Any params);

where requestName specifies the command name, elist the MLM components it
is sent to, and params the command data. A CORBA event type for a tool com-
mand has to be specified in the MonitorCommand.idl file. The implementation
of a migration command is presented in 6.2.6.

5.3 Introduction to MiVis

MiVis is a visualization framework based on MIMO for monitoring CORBA ap-
plications. A detailed description can be found in [10]. The display consists of
a main window, which provides an entity selection frame for adding/removing
monitored MLM-entities to/from the various display types. It offers three basic
display types, implemented as Java Beans (see [11]):

52



1. The TextDisplay Java Bean, is a simple text window which tracks every
event received by MIMO and every entity added or deleted by the user in
the main window.

2. The ScrollDisplay Java Bean, which displays communications between
entities (usually CORBA objects) in a graph. The time is displayed on the
x-axis and the monitored entities are displayed on the y-axis as horizontal
lines parallel to the x-axis. Interactions are depicted as vertical arrows
between entities.

3. The CallFrequency Java Bean displays the call frequency of selected enti-
ties and distinguishes between caller and callee (different colors). Entities
are once again displayed on the y-axis and the call frequency is represented
as horizontal bar parallel to the x-axis.

Additionally, each of the three displays has an options window for selecting
display-specific properties like colors, delay times etc. One of the key features of
MiVis is, that it can easily be extended by adding further Java Beans to the Bean
path (i.e. new display types), without modifying the MiVis core, i.e. it provides
an infrastructure for developing new CORBA visualization tools. The Java Beans
have to fulfill certain requirements specified in [10].

At start-up the tool starts an asynchronous request for interactions. When
an entity-type button is pressed by the user in the selection frame of the main
window, a synchronous request is issued to MIMO, in order to detect if new
entities of the specific type have been created since the last request. When a
display Java Bean has been opened by clicking on the respective icon, entities to
be monitored can be added or removed by clicking on the add or delete buttons.
The MiVis architecture consists of four components (see figure 5.4):

1. The gatherer, the lowest layer of MiVis, collects events received from MIMO,
unpacks them, and propagates them to the processors as Java events.

2. The processors filter the data and propagate it to the interested Java Beans.
3. The Java Beans consume the data obtained by the processor and display
it.

4. The main window forms part of the MiVis GUI, in which the Java Beans
are started and the options menu is displayed. The selection frame issues
requests directly to MIMO for detecting newly added entities.

Thus, MiVis and MIMO provide an appropriate infrastructure for the design
of an active on-line visualization tool for monitoring the load balancer and the
realignment application. The specification and implementation of this new tool
will be presented in the following chapter.

93



MiVis GUI

Main Option Selection
Window Frame Frame
start be7/ confi gure bean

Extension by a .
Addition of new AN -
Bean il N __—/——"

Java Event Start request

Processor Processor Processor

Java Event

Gatherer

MIMO Event

MIMO

Figure 5.4: MiVis Architecture, new Java Beans can be inserted into the existing
infrastructure.

o4



Chapter 6

Interoperability of MiVis and the
Load Balancer

This chapter presents the specification, design, and implementation of the new
MiVis Java Bean, which monitors the load balancer and the application and fur-
thermore allows to issue migration commands. The new JacORB MIMO adapter,
the new IDL interface for the load balancer with generic events and the instru-
mentation of the load-balanced system are also described. The tool development
methodology proposed in [14] was used for the design of the new tool.

6.1 Specification of the Degree of Interoperabil-
ity and of the Tool Functionality

A classification for the degree of interoperability of tools could be as follows (for
a more detailed analysis see [18]):

1. The tools run on the same system and do not perturb each others work.

2. The tools are used for the same application without perturbing each others
work.

3. The tools are used for the same application without perturbing each oth-
ers work and in addition one tool provides information to the other (sup-
plier /consumer model).

4. The tools are used for the same application without perturbing each others
work and exchange information (highest degree of interoperability).

The goal is to design a 4th degree system for the load balancer and MiVis, by
implementing a new MiVis Java Bean. This new Java Bean should visualize the
following information:

95



e The nodes, the load balancer considers for load distribution and the servant
objects located on them.

e Nodes on which the clients are located and the respective client objects.
e Host load value for each host controlled by the load balancer.
e Object load value for each servant object.

e Application object interactions, i.e. method invocations of corbaCompute ()
and corbaGetReferenceData(), in a differentiated manner.

e Count and display the interactions between client and servant objects.
e Actions performed by the load balancer (migrations/replications).

A menu for setting properties, such as the time an interaction is displayed and if
migrations or replications leave a trace on the screen, should also be available.

Furthermore, a tool command and an auxiliary generic event have to be added
for testing and evaluating the active tool infrastructure.

e Provide a drag and drop functionality for issuing migration commands to
the load balancer.

e The load balancer has to return a migration status event, indicating if the
migration has been conducted successfully or delivering an appropriate error
message.

6.2 Instrumenting the Load Balancer and the
Application

The first step was to define the MLM mapping, an appropriate generic event
interface, and extend the adapter class accordingly, using the methodology de-
scribed in [14]. Thereafter the load balancer and the realignment application had
to be instrumented, using the new adapter class methods, in order to obtain the
required data.

Problems had to be resolved concerning the identification of client and ser-
vant objects, since the load balancer hides and changes dynamically servant ob-
ject IORs. Furthermore, interoperability problems concerning JacORB/ORBacus
had to be resolved. Finally, the load balancer had to be modified, in order to be
able to execute external migration commands.

o6



virtua IOR

Figure 6.1: Client objects access one single IOR, the requests are then being
forwarded and distributed by the load balancer to the actual real IORs of the
replicas.

A new command option and a new property (see section 4.2) have been added
to the client and the load balancer respectively, for enabling and disabling mon-
itoring.

The option [-MIMO], enabling monitoring, has been added to the client com-
mand options and the property WithMIMO can be set to true or false in the
applications Realign. imr file for the server.

The new property of the load balancer: MIMO can be set to on or off in the
imr.properties file.

6.2.1 Initial Approach and Associated Problems

The first idea for approaching the problem was to instrument initially only the
realignment application and visualize it with the existing MiVis Java Beans. It
soon became evident, that this approach was a dead end due to the way the
load balancer changes and hides servant IORs, which are used for unique object
identification. Therefore, an integral approach, instrumenting the realignment
application and the load balancer, was necessary to handle the particularities
of the system. The client objects have access to a wirtual IOR only and the
distribution to the real IORs of the replicas is performed by the load balancer
(see figure 6.1).

Therefore, there exists no possibility for the client object to obtain the real
IOR of the servant object it is actually requesting the compute service from.
Thus, corbaCompute() and corbaGetReferenceData() could only be instru-
mented on the servant-side of the code. Once again, to fulfill the specification
requirements, the servant has to know which client it is providing the service to,
which is usually not the case. Clients normally are anonymous. For the spe-
cific application however, the clients are not anonymous. The instrumentation
problem can generally be solved by adding the client’s IOR as supplementary
parameter to the CORBA methods which have to be monitored.

o7



A basic problem was that the servant object itself does not know its actual real
IOR, since it is hidden by the load balancer and it is not aware that it changes
dynamically during program execution, due to the invalidation ! mechanism. The
following solution is proposed for handling this fundamental problem:

Obtaining the real IOR at servant creation time:

The initial real IOR of a servant object is available in the modified JacORB.POA
class, in the protected create_object() and protected recreate_object()
methods. A new empty method setRealIOR(org.omg.CORBA.Object obj) has
been added to the org.omg.PortableServer.Servant class, which must be over-
written and implemented by the application’s servant class, extending Servant, in
order to set its initial real IOR. This method is invoked before the two JacORB.POA
methods mentioned above return the CORBA object created e.g. :

protected org.omg.CORBA.Object create_object(...)
{

servant.setRealIOR(replica);

return replica;

The implementation of setRealIOR (org.omg.CORBA.Object obj) in the ser-
vant class of the application consists of just setting an attribute, for example
org.omg.CORBA.Object reallOR, to obj.

Tracking dynamic IOR changes (invalidations):

Real object IORs are reassigned by the load balancer at each replication. Further-
more, they are once more reassigned shortly after each migration and replication
by the invalidation mechanism. The idea consists of maintaining the initial real
IOR, which was assigned at object creation as father address and maintain the
actual real IOR, the son object, in a suitable data structure. The load balancer
creates a generic invalidation event when IORs change. The new IOR addresses
assigned after a replication event become additional parameters of the generic
replication event. The details of the data structure for maintaining the father-
son relation will be discussed in the presentation of the new MiVis Java Bean
(see 6.3.2), since it is handled by the Bean.

!Invalidation is a load balancer action which reassigns IORs to servant objects after repli-
cations and migrations.

o8



6.2.2 Multi Layer Monitoring Mapping

The MLM mapping for the client, the server, and the load balancer was straight-
forward:

Mapping for the client:

Application layer — Realignment

Interface layer — corbaGetComputeData() interface
Distributed object-oriented layer — CORBA IOR

Implementation layer — Java Realign class

Run-time environment layer — PID

Hardware layer — Host name

Mapping for the server:

Application layer — Realignment

Interface layer — corbaCompute () interface
Distributed object-oriented layer — CORBA IOR (initial real IOR)
Implementation layer — Java Compute class

Run-time environment layer — PID

Hardware layer — Host name

Mapping for the load balancer:

Application layer — Load Balancer

Interface layer — Load Balancer IDL interfaces
Distributed object-oriented layer — CORBA IOR (virtual IOR)
Implementation layer — Load balancer Java classes
Run-time environment layer — PID

Hardware layer — Host name

6.2.3 Visualization Interface Definition

The data interface consists of a definition of generic events, for extracting the
required visualization data from the load balancer and the realignment applica-
tion, according to the specification.

Data Interface:

Specified in IntruderEvent.idl. Object IORs are converted and passed as
strings.

99



Definition of generic events for replications (stateful and stateless). The new
initial IOR of the replica, the old and new IOR of the original object, and the
host of the replica are passed.

struct repEvent { //stateless replication
string source0ld; //actual real IOR of object
string sourceNew; //newly assigned real IOR of object
string destNew; //initial real IOR of replica
string destHost; //host of the replica

I

struct repEventStateful { //stateful replication
string source0ld; //actual real IOR of object
string sourcelNew; //newly assigned real IOR of object
string destNew; //initial real IOR of replica
string destHost; //host of the replica
long stateSize; //size of the data

//transferred (not used)

};

Definition of generic events for migrations (stateful and stateless). The new initial
IOR of the migrated object, the IOR of the object on the original host, and the
host of the migrated object are passed.

struct migEvent { //stateless migration
string source; //actual real IOR of object
string dest; //new initial real IOR of object
string destHost; //name of new host

s

struct migEventStateful { //stateful migration
string source; //actual real IOR of object
string dest; //new initial real IOR of object
string destHost; //name of new host
long stateSize; //size of the data

//transferred (not used)

};

Definition of a generic event for client object creations. The IOR of the client
object and the host name are passed.

struct newClientObject{ //client object creation
string name; //I0R
string hostName; //host name

s

60



Definition of a generic event for servant object creations performed by the generic
factory. The IOR of the servant object and the host name are passed.

struct newServantObject{ //servant object creation
//by generic factory
string name; //initial real IOR
string hostName; //host name

};

Definition of a string sequence and a generic event for transferring the host names
of the nodes controlled by the load balancer.

typedef sequence<string> SeqString; //list of strings

struct nodeList{ //hosts available to

//the load balancer

SeqString List; //1list of host names
};

Definition of generic events for the host load and servant object load values. The
load value and the host name or actual real IOR of the servant object respectively
are passed.

struct hostLoad{ //load of a host controlled
//by the load balancer

double load; //load value
string hostName; //host name

};

struct objectLoad{ //load of a servant object
double load; //load value
string objName; //actual real IOR

};

Definition of a generic events for invalidations. The old and new actual IORs are
passed as parameters.

struct invalidationEvent{ //invalidation, reassignment
//of servant object IORs
string oldName; //0ld real IOR
string newName; //new real IOR

};

61



6.2.4 Command Interface Definition

The command interface definition consists of the translation of the tool command
specification into IDL code.

Command Interface:
Specified in MonitorCommand.idl.

struct MigrationCommandEvent { //migration command
string destHost; //destination host
string Object; //actual real IOR
I

Specified in IntruderEvent.idl.

struct migrationStatus{ //migration status indicating
//if migration was succesful
long status; //integer value for status

};
The migration status values have been defined as follows:

0: object not found
1: migration OK
2: host not found

6.2.5 Extension of the Manual Adapter

In order to instrument the application and the load balancer, adequate methods
for issuing the generic events, defined in section 6.2.3 and section 6.2.4, had to
be implemented. Therefore, the existing Java adapter class had to be extended,
by one adapter method for each event defined. The adapter methods were im-
plemented as in the example of section 5.2.3. Furthermore, an adapter method
getCommand (), that enables the application to check for incoming events, had to
be provided. It returns an MigrationInfo object containing the command data
of a tool migration command.

A fact that led to some problems was, that the Java adapter class had to be
implemented using the JacORB since the load balancer and the application are
based on it. Thus, this JacORB adapter had to communicate with MIMO, which
uses ORBacus, via the CORBA event channel. Initially the adapter could attach
itself to MIMO, but sending events did not work at all. After time-consuming
investigation it was found, that an if-clause within the automatically generated
ORBacus event helper classes had to be removed.

This example demonstrates that there are still some deficiencies concerning
interoperability of different CORBA implementations.

62



6.2.6 Instrumentation and Command Implementation

The instrumentation of the application and the load balancer for provision of the
specified visualization data, using the adapter methods, was straight forward.
The points at which instrumentation code had to be inserted into the realignment
code could easily be identified, taking into account the results and considerations
of the initial approach. Only adapter methods handling client object creation
and application object interactions were inserted.

The remaining events are generated by the instrumentation of the load bal-
ancer. The instrumentation points and classes have been determined in coop-
eration with the developer of the automatic load balancer. Since multiple Java
classes were affected by the instrumentation and thus required access to the
adapter, an additional Java class was introduced holding a globally available
adapter object, which is instantiated at start-up. The load balancer creates the
remaining visualization interface events like e.g. servant object creation, replica-
tion, migration, object load etc.

Load balancer instrumentation example (stateless migration):
AdapterConstant.Adapter is the globally available adapter object.

if (AdapterConstant.WithMIMO) //check if monitoring is enabled
{
String NewHost =
corbaView.servers.find(adapterElementTarget.orbControl) .host;
//get the name of the new host, load balancer internal method

AdapterConstant.Adapter.migration(replicaElement.replica,
replicaNew, NewHost);

//send a stateless migration event to MIMO by

//using the respective adapter function

The adaptation of the load balancer, for receiving tool commands, was more
complicated, because this could not be implemented by insertion of simple adapter
method calls.

Firstly, as already mentioned in section 5.2.4, a special thread has to be added
to the load balancer, that regularly checks if a tool command has been issued,
by calling the adapter’s getCommand () method. An additional class MimoThread,
extending Thread, has been added for this purpose. The detached MimoThread
is started before the load balancer enters the evaluation loop.

Secondly, for executing external migration commands a supplementary method
userMigration() had to be offered to the MimoThread by the load balancer. A
migration outside the load balancer’s evaluation cycle led to some problems,

63



mainly concerning synchronization issues, which could however be resolved in a
joint effort with the developer of the load balancer.

This experience shows that building active tools is a much more complex and
error-prone process, since it induces important modifications of the application
program, if an infrastructure for receiving external commands is not available.

6.3 The new MiVis Java Bean

The design of the new MiVis Java Bean consisted of two major phases, the
specification of the display and its implementation.

6.3.1 Display Design

The following arrangement for displaying the obtained data is proposed (see also
screen-shots at the end of this section):

All information is displayed in one window. The upper two thirds of the
window display the servant hosts as rectangles. They are arranged in a grid
(minimum size 2 x 2). On top of the rectangle, the host-name is displayed and
on the right hand side of it, the load is represented as bar and as numerical value.

Client hosts are depicted as rounded rectangles and listed in the lower third
of the window. Again the host name is displayed on top.

Client and servant objects are represented by ovals, situated within the re-
spective host rectangles. The numerical value of the servant object load is printed
to the screen as numerical value in the servant’s oval. A call to corbaCompute ()
is indicated by a blue straight arrow between the oval’s centers. The method
corbaGetReferenceData() is visualized by an offset parallel turquoise arrow,
for not overwriting the compute arrow.

Migrations and Replications are depicted by red and yellow straight arrows
respectively, between the original and the migrated or replicated object.

The time in ms for which those arrows are depicted can be set within the
options menu, for adapting it to different applications. Furthermore, if Trace
is set to true in this menu, replication and migration arrows, as well as source
objects leave a trace on the screen and are not erased.

Finally, an object migration command can be issued by clicking on a servant
object and dragging it to the desired host. No other migration command can be
kicked off, until the receipt of the return status. Until then a rectangular text
window is opened in the center, informing the user about that fact. It also prints
out a message about the migration status when received.

64



MiVis GUI

Main Option Selection
Window Frame Frame
startw configure

bean event request
Java Events
processor
Java Events \[ event request
Gatherer L event queue

asynchronous MIMO events

MIMO

Figure 6.2: Proposal for a new and more flexible MiVis design.

65



6.3.2 Java Bean Implementation and Improved MiVis De-
sign Proposal

MiVis Insufficiencies:

The implementation of the Java Bean was more complex than expected, since the
MiVis system showed not to be as flexible as required. The particularity of the
specific visualization tool is, that all events have to be received in asynchronous
mode. This has not been foreseen in MiVis and therefore extensive changes to
the MiVis core program, i.e. the MiVis GUI, the processors, and the gatherer,
unfortunately became necessary.

The acquisition and selection of new entities for monitoring in MiVis is user-
initiated. In contrast all events and entities created have to be propagated directly
to the new Java Bean. to it. The insufficiency in the MiVis design philosophy is,
that e.g. checking for object creations circumvents the gatherer-processor struc-
ture and directly communicates with MIMO (see section 5.3 and figure 5.4). A
more appropriate approach would be to collect all events asynchronously within
the gatherer and then design different processor types, that either propagate
those events directly or deliver them when requested by the MiVis GUI selection
frame (see figure 6.2).

The redisgn of MiVis was however not the subject of this thesis. The gatherer
and processor were modified in such a way, to deliver all events asynchronously to
the MiVis GUI. The selection frame thus becomes obsolete for the new Java Bean.

Command Implementation:

For reasons of simplicity and in order not to perturb the load balancer too much
in its work, the choice was made to allow issuing only one migration command
at a time. This means, that the mouse has to be blocked until the migration has
been executed by the load balancer. In addition to this, the introduction of the
return status event was necessary, because the desired object might already have
been migrated by the load balancer. Furthermore, it was considered helpful for
debugging purposes.

When the object to be moved and the new hosts have been selected with
the mouse, the graphic objects have to be mapped to their internal represen-
tations (IOR and host name) and then passed as parameters to the function
userMigration(), which sends the command to the load balancer via MIMO
and blocks the mouse. Figure 6.3 depicts the control flow and components such
an command execution traverses.

Handling changing IORs:
As already mentioned, a data structure for handling the dynamically changing
IOR addresses was also implemented in the Java Bean. It would however be more
appropriate to handle this in the adapter class for a clearer separation between
the graphical interface and the specific aspects of the load balancer. This and

66



issue command and blockfurther

command commands until receipt of return status
/\//—\
Adapter MIMO MiVis Bean

\/

display return status
and deblock commands

check regularly
for command

return status

MIMO-Thread

return status

execute
command

Migration—

Load
Balancer

Figure 6.3: Structure of a migration command execution.

the improvement of MiVis, according to the proposal, could be subject of future
work.

The idea, as stated earlier in section 6.2.1, is to maintain a father-son relation
between the initial real IOR, which was assigned at object creation time and the
actual real IOR, which is changed by replications, and shortly after replications or
migrations by the invalidation mechanism. When one of those two events occurs,
the old actual IOR is looked up in a list of father-son relations and replaced by
the new one. In this step the initial real IOR (father) becomes also available,
which is needed to identify the graphical objects affected by the IOR change, since
all objects are referred to by their initial real IOR. If it is the first dynamically
changed IOR the father IOR is assigned its first son, which previously was marked
empty.

On the other hand when a migration command is issued the actual real IOR
has to be looked up, for the father TIOR selected.

67



Fathers, initial real IOR

? %
Father—Son List 3\
P, 0,0,0, 0,

Sons, present real IOR \ /

change actual change actual\\\ /// add new father with empty
real IOR | real IOR 7/ son for the new replica
invalidation() replication()

Figure 6.4: Dynamic IOR changes are handled by the above data-structure.

6.4 Instrumentation of Load-Balanced Applica-
tions

At this point the necessary steps and modifications for instrumenting a load-
balanced application will be described.

Client:
e Define and instantiate a new adapter object.

e Register the new client object IOR and its host, by using the adapter
method newClient0Object ().

Servant:
e Define and instantiate a new adapter object.

e Define an attribute for the initial real IOR of the servant object, for example
org.omg.CORBA.Object reallOR;.

e Implement the setRealIOR(org.omg.CORBA.Object obj) method, by as-
signing realIOR = obj;.

e Instrument all CORBA method calls or implementations, using the adapter
method interaction().

Application IDL interface:

e Add the client IOR as supplementary parameter to all CORBA methods
that need to be instrumented.

68



MiVis Java Bean:

e If desired, implement additional arrow types for displaying CORBA method
invocations. The methods drawArrow() (straight arrow between objects)
and drawMyArrow() (offset arrow between objects) are already available
(see section 6.3.1 and screen-shot 6.5).

e Modify the if-clause in method handleEvents (), to include the CORBA
method names of the application.

e Modify the if-clauses in method drawInteraction(), to display the ap-
propriate arrow type for the CORBA method name.

This guideline permits a straight forward instrumentation of the the client and
servant components. Attention has to be drawn to the fact, that all interactions
of the application have to be instrumented on the servant-side of the system
and that the IDL interface of the application may need to be slightly modified.
Furthermore, the minor modifications in the Java Bean allow a flexible, fast
and differentiated visualization of a load-balanced application. The arrow types
provided should be sufficient for most applications.

6.5 Evaluation of Tool Functionality and Inter-
operability

The work conducted concerning interoperability of the load balancer, MIMO,
and MiVis showed, that the highest level of interoperability for the system could
be achieved, without influencing the correct execution of the application. Fur-
thermore, the concept of MIMO generic events and MIMO commands could be
proved. Although problems with the MiVis architecture were encountered, a Java
Bean complying totally with the tool specification could be designed. Since the
evaluation of a graphical display is always a matter of subjective judgment, it
has to be stated, that it was positively received by the people involved, i.e. the
developer of the load balancer and the developer of MIMO.

The display is presented by a series of screen-shots, demonstrating all key
features of the visualization tool.

Screen-shot 6.5 presents the basic layout in a simple configuration. A client
with two threads has just been started (bottom left) and issues the first compute ()
request. Thus, the servant object issues a request for the reference data, which
is displayed as offset parallel turquoise arrow. The 4 nodes controlled by the
load balancer are arranged in a grid. N/A indicates, that load values for servant
objects and hosts are not available yet, since they are acquired periodically.

69



Figure 6.5: Screen-shot: New Display Layout

Screen-shot 6.6 was taken during the same test run as screen-shot 6.5. It
presents the visualization of a replication conducted by the load balancer (yel-
low arrow). The requests of the two client threads are being distributed among
the two replicas, i.e. compute () requests can be issued in parallel now. Load val-
ues for hosts and the initial servant object have become available in the meantime.

Screen-shot 6.7 presents the execution of a user-initiated migration. The mi-
gration command has already been issued by the tool and executed by the load
balancer (red migration arrow). The return status event generated by the load
balancer has not arrived yet. Thus, the migration text window is still visible and
informs the user, that it is waiting for the return status event and will block the
mouse until then.

70



Figure 6.6: Screen-shot: Representation of Replications

User Migration Status Window
Migration to: sunbede10.infermatik tu-muenchen de
Mouse will be blocked until receipt of return status, waiting ...

Figure 6.7: Screen-shot: Execution of a Migration Command

71



SiatelessHap(icatan

Figure 6.8: Screen-shot: Complex Replications

Screen-shot 6.8 presents a complex situation for a client with 4 threads sim-
ilar to the test run presented in 4.3.2. The third replication has just been per-
formed by the load balancer. The 4th replica on machine sunbode5 receives its
first compute () request (blue arrow) and issues a request for the reference data
(turquoise arrow). The other replicas handle requests number 15, 33 and 46 re-
spectively (see request counters in the middle of the blue arrows). The trace
option was chosen, in order to display the replication tree rooted at sunbode10
(yellow arrows), where the initial object was placed. Node sunbode3 did not host
a replica, since it was heavily loaded by another application during the test run..

72



Chapter 7

Conclusion

During this thesis two tools for distributed middleware environments have been
tested and evaluated with a medical real world application.

The C++ realignment application has been transformed into a Java program
using JNI and showed that the utilization of this interface does not lead to major
performance penalties.

It then was transformed into a Java/CORBA program and adapted to the
requirements imposed by the load balancer. Furthermore, these program mod-
ifications provided adequate mechanisms for an efficient parallelization of the
application (multi-threading) and various program configurations. The results of
this stage showed, that the load balancer performs as expected when applied to
a large application. In addition to this, the test-phase helped discover some bugs
in the load balancer.

The final phase consisted of getting two tools (load balancer, MiVis), the
monitoring system (MIMO), and the realignment application to work together,
by monitoring and steering the load balancement of the application, achieving the
highest possible degree of interoperability. Within this context, MIMO generic
events and MIMO commands were firstly used for the design of a new MiVis
Java Bean, visualizing the load balancement process. The new Java Bean with
its migration service was the first active tool based on MIMO and the graphical
display was broadly accepted. Concepts for implementing generic events and tool
commands have been presented, as well as a proposal for a revised MiVis archi-
tecture. A guideline for adapting other load-balanced applications to the new
monitoring tool has been provided, together with a suitable Java adapter class.
During the final phase, a new version of the load balancer, providing a method
for the execution of external migrations could be tested and improved, in a joint
effort with its developer.

Future work could cover the analysis of application scenarios for the load-
balanced realignment application, e.g. a realignment computing center using a

large cluster of nodes or a service by the university, provided during night-time,

73



when most nodes are running idle (interesting for the analysis of the load bal-
ancer’s scalability). This would also include absolute performance tuning, like
for example the implementation of a more sophisticated multi-threading concept,
similar to the one proposed, or a more efficient JNI interface.

Another aspect, future work could cover, is the improvement of the MiVis
architecture following the proposal given in section 6.3.2, figure 6.2 and the in-
tegration of the dynamic IOR handler into the adapter component. Additional
tool-commands for shutting down servers (move all objects away and remove host
from load balancer) or performing replications could also be of interest. Exten-
sions of the display e.g for displaying client threads can be thought of.

74



Abbreviations

CORBA Common Object Request Broker Architecture
FIFO First In First Out
fMRI functional Magnetic Resonance Imaging

IDL Interface definition Language

IOR Interoperable Object Reference

JNI Java Native Interface

LRR Lehrstuhl fiir Rechnertechnik und Rechnerorganisation

NFS Network File System

MIMO  Mlddleware MOnitoring System
MiVis Middleware Visualization System
MLM Multi-Layer-Monitoring

OMA Object Management Architecture
OMG Object Management Group

ORB Object Request Broker

PET Positron Emission Tomography
PID Process Identification Number
POA Portable Object Adapter

PVM Parallel Virtual Machine

SNMP  Simple Network Management Protocol
SPM Statistical Parametric Mapping

75



76



Bibliography

[1] Beth Sterns: Java Native Interface.
http://java.sun.com/docs/books/tutorial /nativel.l/index.html/

[2] Jack Andrews: Interfacing Java with Native Code, Performance Limits.
http://www.str.com.au/jnibench/index.html/

[3] Marcel May: Diplomarbeit: Vergleich von PVM und CORBA bei der verteil-
ten Berechnung medizinischer Bilddaten, LRR-TUM April 2000.

[4] Karl Friston: Spm, The Wellcome Department of Cognitive Neurology, Uni-
versity College London.
http://www fil.ion.ac.uk /spm/

[6] The Math Works Inc.: Matlab.
http://www.mathworks.com/

[6] Robert Orfali, Dan Harkey: Client/Server Programming with Java and
CORBA (second edition), John Wiley & Sons, INC. 1998.

[7] Andreas Sayegh: CORBA Standard, Spezifikation, Entwicklung, O’Reilly
1997.

[8] JacORB.
http://jacorb.inf.fu-berlin.de/

[9] ORBacus|tm] for C++ and Java.
http://www.ooc.com/ob/

[10] Michael Rudorfer: Diplomarbeit: Visualisierung des dynamischen Verhal-
tens verteilter objektorientierter Anwendungen, LRR-TUM August 1999.

[11] Java Beans.
http://java.sun.com/products/javabeans/

[12] Giinther Rackl: Monitoring Globus Components with MIMO, TUM-10006
SEFB-Bericht Nr. 342/06/00 A March 2000.

77



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Markus Lindermeier: Load Management for Distributed Object-Oriented
Environments. In International Symposium on Distributed Objects and Ap-
plications (DOA’00), pages 59-68, Antwerp, Belgium, 2000. IEEE Computer
Society.

Giinther Rackl and Thomas Ludwig: A Methodology for Efficiently Devel-
oping On-Line Tools for Heterogeneous Middleware. In Ralph H. Sprague
Jr., editor, Proceedings of the 34th Annual Hawaii International Conference
on System Sciences — HICSS-34. IEEE Computer Society, January 2001.

Giinther Rackl, Markus Lindermeier, Michael Rudorfer and Bernd Siiss:
MIMO - An Infrastructure for Monitoring and Managing Distributed Mid-
dleware Environments. In Joseph Sventek and Geoffrey Coulson, editors,
Middleware 2000 — IFIP/ACM International Conference on Distributed
Systems Platforms, volume 1795 of Lecture Notes in Computer Science,
pages 71-87. Springer, April 2000.

Giinther Rackl: Multi-Layer Monitoring In Distributed Object-
Environments. In Lea Kutvonen, Hartmut Konig, and Martti Tienari,
editors, Distributed Applications and Interoperable Systems II — IFIP
TC 6 WG 6.1 Second International Working Conference on Distributed
Applications and Interoperable Systems (DAIS’99), pages 265-270, Helsinki,
June 1999. Kluwer Academic Publishers.

Giinther Rackl: Monitoring and Managing Heterogeneous Middleware, Dis-
sertation, TU Miinchen, 2001. To appear.

Jorg Trinitis: Interoperability of Distributed Checkpointing and Debugging
Tools, Dissertation, TU Minchen, 1999.

W.Stallings: Snmp, Snmpv2, Snmpv3, and Rmon 1 and 2, Addison Wesley
1998.

W. DePauw, Richard Helm, Doug Kimmelmann, John Vlissides: Visual-
izing the Behavior of Object-Oriented systems, Proceedings of the ACM
OOPSALA 1993 conference, Washington D.C., October 1993.

Fraunhofer Institut fiir Informations- und Datenverarbeitung: The CORBA-
Assistant - Monitoring of CORBA-based Applications, White Paper, Release
1.2, June 1997.

78



