RogueNaRok: an Efficient and Exact Algorithm
for Rogue Taxon Identification

Andre J. Aberer*!, Denis Krompaf! and Alexandros Stamatakis'

Heidelberg Institute for Theoretical Studies (HITS gGmbH),
Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg
{Andre.Aberer,Denis.Krompass,Alexandros.Stamatakis}@h-its.org
WWW home page: http://exelixis-1lab.org

Abstract. The presence of rogue taza (rogues) in a tree set can have
detrimental effects on the quality of consensus trees constructed from
such a set. We introduce a graph-based algorithm for rogue taxa identifi-
cation that can accurately assess the improvement induced by removing
subsets of taxa from the set of trees. The new algorithm is up to four
orders of magnitude faster than our previous algorithm while returning
exactly identical results. Our approach is capable of identifying rogues in
tree sets with more than 110,000 taxa. On a large collection of real-world
datasets, we show that, identifying and pruning rogues with our new al-
gorithm yields more informative results than a competing approach.

Keywords: phylogenetic post-analysis, rogue taxa, consensus tree

1 Introduction

1.1 Phylogenetic Analysis And Rogue Taxa

The goal of phylogenetic analyses is to infer the evolutionary relationships be-
tween a set of species (also called taxa) which are usually represented by a tree.
As input, genetic data (i.e., protein or DNA sequences) in form of a multiple
sequence alignment (MSA) are used. Popular approaches for MSA-based phylo-
genetic inference are Maximum Parsimony (MP), Maximum Likelihood (ML),
and Bayesian methods (reviewed in [6]).

For MP and ML, we can assess the support for taxonomic relationships by
randomly re-sampling MSA sites to generate bootstrap replicates [5]. Then, so-
called bootstrap trees are computed on those replicates. When the tree space is
sampled using Bayesian methods one also obtains a tree collection. Usually, a
consensus tree is built to summarize the information contained in those tree sets.
However, the resolution in a consensus tree can be substantially decreased by
rogues (the term rogue/rogue taxa was introduced in [19, 20, 18]), that assume
varying and often contradictory positions in a tree set. The rogue phenomenon
is usually attributed to ambiguous or insufficient phylogenetic signal [10].

* topic suggestion: molecular evolution

Fig.1: a) four trees with seven taxa including two rogue taxa R and S. Bipartitions
recoverable in an MRC tree are indicated in gray. b)) MRC tree after pruning R. ¢) The
two connected components x[{R, S}] for the dropset {R, S} of the four initial trees.

Determining the “correct” position of a rogue in a phylogenetic tree is te-
dious [11] and therefore rogues, once identified, are mostly just excluded (pruned)
from studies. Criteria based on triple frequencies [17] or node distances [8] are
often applied [16, 15, 4, 13] to identify rogues. Recently, Pattengale et al. in-
troduced a fast method that approximates the potential increase of resolution
in the consensus tree when rogues are pruned [9]. We refer to this algorithm as
bipartition merging algorithm (BMA). Our exact, but significantly slower, single-
tazon algorithm (STA) [2] assesses the inherent support improvement induced
by pruning one taxon at a time. We showed that, the STA and BMA consistently
identify rogues with a more harmful effect on the consensus tree support than
rogues identified by triple frequency or node distance methods.

Here, we present RogueNaRok, an exact and efficient algorithm to determine
the effects (on consensus support) of pruning rogues that is available at https:
//github.com/aberer/RogueNaRok. The remainder of this paper is organized
as follows. Initially, we formalize the rogue problem as optimization problem
(Section 1.2). Then, we introduce a generalized graph-based algorithm and an
approximation (Section 2) for rogue identification. We discuss algorithmic and
technical optimizations of the implementation in Section 3. We compare runtimes
and result quality to competing methods in Section 4 and explore the scalability
(in terms of tree size) of our implementation. Finally, we conclude and address
directions of future work (Section 5).

1.2 Problem Description

Let T = {T1,...,T,n} be a collection of m unrooted phylogenetic trees, that
is, binary trees which are labeled at degree-1 nodes with labels L = {i,...,1,}
(see Fig. 1). Each inner branch B; of each tree splits L into b; and b; (with
|bi| > 1 and |b;] > 1) yielding a set of bipartitions B = {Bx,..., B;}, where
B; = (b]b;). The function o : B — 27 maps a bipartition B; € B to the set

https://github.com/aberer/RogueNaRok
https://github.com/aberer/RogueNaRok

of trees in which B; occurs. For the purpose of constructing a consensus tree,
the bipartition profile (B, o) is equivalent to and contains the same information
as T.

The consensus tree for a given bipartition profile (B,0) can be defined as
Ci(B) = {B € B, s.t. |o(B)| > t}, where t is a threshold between % (majority
rule consensus (MRC)) and m-1 (strict consensus (SC)). As optimality criterion
for consensus trees in the rogue identification context, we can use the resolution
of a consensus tree |Cy(B)| (e.g., the relative information content (RIC) [9])
or the sum over bipartition support (bipartition frequencies) in a consensus
tree 3 pec, (g (lo(B)]) (e.g., the relative bipartition information content (RBIC)
measure [2]).

Fig. 1 provides an example of the negative impact of rogues on the RIC or
RBIC score of a consensus tree. For a MRC threshold, the consensus tree of
the four bootstrap trees does not contain a single bipartition, thus resolution
and cumulative support are 0. Pruning rogue R from the bootstrap trees yields
(resp. recovers) 2 out of 3 possible consensus bipartitions for a resolution-based
criterion. An algorithm optimizing a support-based criterion, will also prune
taxon S, which yields two bipartitions with a support of 100% each, instead of
75%. Both basic optimality criteria (RIC and RBIC) can be modified to penalize
the loss of taxa, since in Fig. 1 the partially resolved position of S also contains
information. While this influences the number of rogues pruned by an algorithm,
it does not have further implications for algorithm design or complexity. Note
that, for an SC tree of Fig. 1, we only obtain an improvement, if we prune R
and S simultaneously.

If we prune a set of taxa d (referred to as dropset) from a set of bipartitions
B (resp. the underlying trees), we obtain pruned bipartitions B_4. The task of
rogue identification is to compute an optimal dropset dopt, that maximizes the
optimality criterion used (such as RBIC or RIC) for the given input tree collec-
tion. A consensus tree that is optimal with respect to the optimality criterion is
called Mazimum-Information Subtree Consensus (MISC) [9].

2 Algorithm

2.1 Motivation

BMA and STA are greedy algorithms, that is, as long as improvement is possible,
they search for a dropset inducing the best improvement of resolution/support.
They prune this dropset, recompute the bipartition profile, and then search for
the next best dropset again. BMA searches for dropsets of arbitrary size to in-
crease resolution. While it is particularly fast, this approximation occasionally
chooses dropsets that are sub-optimal or even decrease resolution. As an alterna-
tive, we introduced STA, that determines the exact optimality change of pruning
only one taxon at a time (dropsets of size 1) and thereby greedily optimizes the
accumulated support of a consensus tree. While this strategy performed well for
rogue detection, runtimes become prohibitive on large datasets with more than

Algorithm 1 maps all minimal dropsets to induced optimality change

Input: a set of bipartitions B
Output: optimality change sq for each minimal dropset d
1: function CREATECOMBINESCOREDROPSETS(B)

2: D < {d | 3(B;, B;) € B2, (b; Ab; = d) V (b;Ab; = d)} > 1. compute dropsets
3: for alld € D do

4: S[d] — {(Bi7Bj) e B? | (bLAb] = d) Vv (bLAb_] = d)}

5: end for

6: for all d € D do > II. compute partial graphs
T: e*[d] «+ {(B:, B;) € B? | (B;,B;) € e[d| Ad' C d}

8: x[d] + CONNECTEDCOMPONENTS(e*[d])

9: end for

10: for alld € D do > III. evaluate dropsets
11: Sd ¢ CALCULATEOPTIMALITYCHANGE(d, X, B)

12: end for
13: end function

1,000 taxa. STA repeatedly hashes bipartitions to implicitly determine merg-
ers between them. Thus, a large amount of time is spent to (re-)calculate hash
values of bipartitions that do not change, if a taxon is pruned. Moreover, we
observed that, the optimality change for many dropsets remains constant over
several iterations of the algorithm, that is, over several pruning steps.

2.2 General Algorithm

We introduce a graph-based formulation of the rogue problem and design an
algorithm, that exactly determines how the bipartition profile changes, when
dropsets are pruned from the underlying trees. Bipartitions stored in a bipar-
tition profile can change in two ways when taxa are pruned: (i) a bipartition
vanishes, because it degenerates into a trivial (non-informative) bipartition (i.e.,
(|bs] < 2) v (|b:]) < 2); (ii) a set of bipartitions {B;, ..., B;} merges into a new
bipartition B’ with support o(B’) = o(B;) U...Uo(B,). If a consensus bipar-
tition vanishes, this is detrimental for the optimality of the resulting consensus
tree. Case (ii) can either increase or decrease the optimality, depending on the
support of B and B;, ..., B;.

For each pair of bipartitions (B;, B;) there exist two dropsets d = b; Ab; and
d= b_iAbj that induce a merger between the pair, where aAb is the symmetric
difference (aUb)\ (aNb) (for details see [9]). Dropsets d and d are called minimal
when the following property holds: If we remove any taxon from d or d, then
bipartitions B; and B; do not merge. Bipartitions B and the minimal dropset
d and d for each pair in B? can be represented as merging graph G of possible
mergers. Each bipartition represents a node and each pair of nodes is connected

by two directed edges (labeled with d and d). The edge indicates that this pair
of bipartitions merges, if d (resp. d) is pruned.
Based the merging graph G, we can now formulate Alg. 1) that iterates over

all possible minimal dropsets and determines the consensus tree optimality score

)

for pruning the dropset from the underlying trees. The algorithm consists of three
phases: In phase I, we determine all minimal dropsets and create a mapping ¢,
that maps each dropset d to edges in the merging graph G labeled with d. In
phase II, for each dropset d, we gather all edges of G that are labeled with either
d or a subset of d, thus creating £*. Each non-singleton connected component
in the graph G4 induced by the node set B and the edge list £*[d] describes a
set of bipartitions {B;,...,B;} that merge into a new bipartition B’, when d
is pruned. Fig. 1 c¢) illustrates the connected components of a merging graph
GR,s) for the two bipartitions that can be recovered in the trees of Fig. 1 a).

Finally, in phase III, we calculate the optimality change s4 induced by each
minimal dropset d (CALCULATEOPTIMALITYCHANGE in Alg. 1). Here, we use
support-based optimality (RBIC). Using resolution-based optimality (RBIC) in-
stead is straight-forward. The bipartitions of each connected component ¢ =
{Bi,...,B;} € x[d] merge into a bipartition B’, if d is pruned. Let d(a,t) =
a, if a > t and 0 otherwise, where ¢ is the consensus threshold. Then the opti-
mality change sq4 of d is

Sgain(c) S10ss(C) Svan (d)
—N—
sa= Y |[(e(B).H— > dleBILO |- D el (1)
cex|d] Bre{B;,...,B;} B,€Beons’

where in Equation 1 $gqin(c) is the support attained by the new bipartition
B’ and sjs5(c) the support lost by the merging bipartitions. The term 8,4, (d)
accounts for consensus bipartitions (B®"*") that degenerate into trivial biparti-
tions and do not occur in any connected component.

CREATECOMBINESCOREDROPSETS computes the exact optimality score change
for each minimal dropset. We can use this algorithm to repeatedly determine the
best dropset (most support recovered per taxon pruned) and then transform the
bipartition profile accordingly, until no further optimality score improvement is
possible. The algorithm is polynomial in the number of bipartitions |B|, since
all phases are polynomial (including the search for connected components [7]).
Note that, this algorithm is still a greedy approximation to the globally optimal
MISC. This is because of the term s,4, in the dropset evaluation. For the terms
Sloss and Sgqin, the merger graph implies that two dropsets d; and dy will either
not influence each other’s difference 5445, — 1055 OF, that there exists a dropset
dy Uds that will be evaluated at some point. The term s,4, however, needs to be
evaluated for all possible combinations of minimal dropsets 2. Thus, we suspect
that the MISC-problem may be A'P-hard.

Phase III of the algorithm can be modified to optimize the bootstrap support
of bipartitions that are drawn on a best-known ML reference tree. Note that, if
bipartitions {B;, ..., B;} merge into B’, then B’ forms part of the ML reference
tree, if at least one bipartition in {B;, ..., B;} occurred in the ML tree. We can
also use the merger information in x[d] for the optimization of support in an
extended majority rule (MRE) tree. This is computationally expensive, since
we have to compute a MRE tree for each possible minimal dropset d from a
bipartition profile that has been transformed according to x[d].

2.3 Approximation

There are 2 - |B|? edges in the merger graph G and the subsequent search for
sub-dropsets also has quadratic time requirements. Thus, the general algorithm
described in Section 2.2 quickly becomes prohibitive on real-world datasets. For
example, consider that 1,000 trees with 1,000 taxa can contain almost 1, 000, 000
different bipartitions in the worst case. Problematic real-world datasets of this
size usually yield between 50,000 and 100,000 distinct bipartitions. Many edges
in the merger graph are labeled by excessively large dropsets. For instance, if for
two bipartitions B; and B; their dropset d = b; Ab; is of size |d| = 1, then the
complementary dropset d has size |d| = n — 1 (n := number of taxa). This in
fact means, that it is impossible for this dropset d to recover a bipartition.

In previous experiments on real datasets [2], we observed that, the BMA
only prunes dropsets of size 1 in 90% of its iterations. Thus, we approximate
and parametrize Alg. 1 by only computing the exact optimality score change
for minimal dropsets of size < [. To implement this we need to modify line 2 in
Alg. 1 as follows:

D« {d | 3(B;, B;) € B?,((b; Ab; = d) V (b;Ab; = d)) A|d| < 1} 2)

If we only compute dropsets of size [:= 1, not more than two bipartitions will
merge into new bipartition at a time. This follows from the triangle inequality
that holds for the lower-cardinality dropsets of a set of bipartitions {B;, ..., B;}
(which define a metric in the space of bipartitions [9]). As a consequence, for
1 :=1, we can omit the expensive phase IT of Alg. 1 and Vd € D : x[d] = ¢[d].

3 Optimization and Implementation

3.1 Updating Instead of Recreating the Graph

Every iteration of Alg. 1 starts with the computation of minimal dropsets that
define the edges in the merger graph. Thus, after we have selected dropset d
in the previous iteration and transformed the bipartition profile as indicated
by x[d], we essentially recompute the edges of the merger graph from scratch.
However, many of the recomputed edges will be identical to the edges of the
merger graph in the preceding iteration. Let d = b; Ab;: if both bipartitions B;
and B; did not merge with any other bipartition in the previous iteration and
no taxa of the respective partitions b; and b; have been pruned, then the edge
(Bi, Bj) € ¢[d] remains unchanged. This means that in phase I of Alg. 1, we
only need to exhaustively compute all edges of the merger graph for the first
iteration. In subsequent iterations, we can simply update/modify the merger
graph as required. Also, if an edge has not changed between iterations, we do
not need to recompute Sgain and sjoss for the respective merging event. While we
still have to compute syan, this modification nonetheless accelerates phase II1.

3.2 Implementation

We implemented the above algorithm in C. We represent bipartitions as bit
vectors, because of their efficiency for set operations. Specifically, bits set in the
bit vector for bipartition B; denote the smaller partition b; with |b;| < |b;|. We
sort our array of bipartitions by the number of bits that are set and create an
index for rapidly accessing the first bipartition in an array of bipartitions with a
specific number of set bits. We perform the necessary steps (inverting bit vectors
representing the larger partition, sorting and indexing the bipartition array) at
every iteration. This is done in an phase 0 that precedes phase I of Alg. 1.

The comparatively cheap operations in phase 0 allow to efficiently compute
minimal dropsets in phase I, if the maximum dropset size is limited by param-
eter [as described in Section 2.3. A bipartition B; with k& set bits needs to be
compared to all bipartitions B; for which the smaller partition is of size x with
k—1 < x < k+I1. All bipartitions for which the smaller partition has either more
or less than = elements are not able to produce a dropset of size [with B;. For
[:=1, we only need to compare B; to those bipartitions B; in which either k-1
or k + 1 bits are set.

We calculate the dropset for bipartitions B; and B; by applying the bit-wise
zror-operator to the bit vectors. To save time, we discontinue the zor-operations
on the bit vectors that typically comprise several bytes, when they already differ
by more bits than specified by I.

We used the Pthreads-based fine-grained fork-join synchronization frame-
work implemented in RAXML [14] to parallelize phases I through III. All three
phases are essentially embarrassingly parallel. Only in phase I, we have to make
hash table insertions thread-safe by using an appropriate locking mechanism.

4 Results

We executed the RogueNaRok algorithm (RNR), the STA and the BMA on col-
lections of bootstrap trees from 34 real MSAs. If not stated otherwise, all tree
sets contain 1,000 trees. The number of taxa ranges between 24 and 7,764. For
details about the data sets and their availability, see [1, 2]. Runtime measure-

ments were performed on unloaded AMD Magny-Cours nodes (8 processors with
6 cores each, 2.2 GHz, 128/256 GB RAM).

4.1 Runtime

Fig. 2 depicts execution times for the three algorithms. We executed the RNR
algorithm for maximum dropset sizes | := 1 and [:= 2 (referred to as RNR-
1 and RNR-2). RNR-1 and the STA mostly produce identical results; results
only differ for iterations where multiple dropsets are equally optimal. However,
for all except the smallest datasets, RNR-1 is significantly faster than STA.
Overall, we observe an average runtime improvement ranging between two and
three orders of magnitude. In a case with 2,308 taxa and not more than 45,022

6

5
L

4

2 3
L L

1
|

log(runtime[sec])

3.5 4.0 4.5 5.0 55
log (18l)

Fig. 2: Runtimes for the STA, BMA and RNR algorithm with maximum dropset size
l:=1 and [:= 2. z-axis refers to the initial number of bipartitions |B| for a bootstrap
tree collection. Runtimes for MRC as consensus threshold (SC similar).

bipartitions the RNR, algorithm is 4,047-fold faster than STA. The main reason
for the significantly faster runtimes of RNR-1 is that we just carry over most
edges of G into the next iteration, instead of computing G from scratch (as
explained in Section 3.1). For instance, in the first iteration of the data set with
2,000 taxa, RNR spends 137 seconds in phase I to compute the minimal dropsets
in G. In subsequent iterations, updating G takes between 0.05 and 10 seconds
(mean: 1.2 seconds).

When choosing a larger [setting, collecting edges induced by sub-dropsets
for the quadratically growing number of dropsets (phase II) starts dominating
runtimes. Nevertheless, RNR-2 is in most cases still significantly faster than STA
(see Fig. 2), while potentially being more accurate as well.

While RNR-2 is considerably slower than the BMA, RNR-1 achieves runtimes
that are comparable to the BMA. However, the RNR algorithm usually identifies
at least 10 times more rogues than the BMA. In terms of runtime per identified
rogue, RNR-1 is faster than the BMA in all but two cases.

4.2 Parallel Scalability

We obtain up to 14-fold parallel speed-up (with 32 threads) for a maximum
dropset size of [:= 1. The reason for this sub-optimal speed-up is that, the
parallel runtime is dominated by phase I during the initial iteration. As explained
in Section 4.3, for [> 1, phase II starts dominating run-times. For [:= 2, we
observe a 7-fold parallel speed-up (with 48 threads) in the best case. Profiling
of phase II indicates that dynamic memory allocation and deallocation on the
heap consumes the largest fraction of time. We therefore further investigated the
performance of the malloc-implementation. We replaced the default malloc by
the Hoard memory allocator [3], but did not observe significant improvements.

- - BMA - - BMA
= = BMA-mod w _| = = BMA-mod
w _| = RNR-1 & 7 — RNR-1
~ | = RNR-2 — RNR-2
2 RNR-3 X R RNR-3
Qe S o
/M m -
~ ~ .
q <l 9 1N
o /___/.\/ \
n i
\[\ T : ©]
N7
o JdL? =T e o 4 _A(A':é{
dataset (ordered by RNR-1) dataset (ordered by RNR-1)

Fig. 3: Support improvement (in %) for optimization with a MRC (left) and SC (right)
threshold. RNR-1 depicts RNR runs with [€ [1, 3], BMA-mod is a less conservative
modification of the BMA. Data points missing because of prohibitive runtimes.

We suspect that, the unfavorable data locality inherent to phase II is the main
reason for the moderate speed-up values.

We used the parallel implementation of RogueNaRok to optimize the support
(for MRC and SC thresholds, [= 1) in 4 tree collections that are particularly
large in number of taxa (unpublished, if not indicated otherwise): (i) 672 trees
with 37,831 taxa, (ii) 211 trees with 55,593 [12], (iii) 200 trees with 77,215 taxa
and (iv) 118 trees with 116,334 taxa. On these tree sets, our algorithm recovered
between 4.6% and 7.9% of the maximum possible support and pruned between
1,312 and 8,684 taxa. For instance, the support of the strict consensus tree of
the 55,593-taxon dataset was increased from RBIC = 7.7% to 12.4 by pruning
2,037 taxa. Execution times with 48 threads ranged between 11 and 130 hours,
memory requirements between 30 and 40 GB. We expect runs for [:= 2 to take
between 7 and 50 days.

4.3 Qualitative Improvement

In this section, we evaluate to which degree various parameters for the RNR
algorithm improve the support in a SC or MRC tree and compare the perfor-
mance of our algorithm to that of the BMA. In general, comparison to the BMA
is difficult, since its optimality criterion penalizes dropsets by the number of
taxa that are pruned. We adapted BMA for obtaining an estimate to which
degree a less conservative version (referred to as BMA-mod) is able to recover
resolution. To this end, we changed its scoring scheme for a dropset d to ‘\%,Il’
where [V/] is the approximate increase of resolution and |d| is the dropset size.
For BMA-mod, the final dropsets as determined before termination, usually ex-
hibit a strong detrimental effect on the support recovered so far. We account for
that by explicitly calculating the optimality after each iteration of the algorithm
(which significantly increases runtime) and stop when support can not be further
improved.

10

Fig. 3 depicts the RBIC improvements obtained by the BMA, BMA-mod, and
the RNR algorithm (with [:=1, [:= 2 and [:= 3). Overall, BMA-mod recovers
significantly more support than than the default BMA. For a MRC threshold,
RNR-1 performs consistently and significantly better than the BMA and BMA-
mod. While RNR-1 still performs better than BMA, we have to set [> 1 to
outperform BMA-mod. This is consistent with our previous observations [2],
that is, BMA is more accurate when a SC threshold is used. Surprisingly, with a
MRC threshold, RNR may yield less optimal results for larger maximum dropset
sizes [. We suspect that complex rogue taxon scenarios are rare and that the
algorithm starts to “over-prune”, if [is chosen too large.

5 Conclusion And Outlook

We have introduced a graph-based formulation and an efficient algorithm for
the rogue identification problem. We hope that, our “merger graph” concept
will either give rise to a polynomial time algorithm or help to show that MISC
is N"P-hard. Based on the graph formulation, we designed the RogueNaRok
algorithm, which iteratively computes all minimal dropsets and determines how
the optimality score changes when all possible minimal dropsets are pruned.
Our algorithm is parametrized to only partially compute the graph of merger
events between bipartitions. The parameter allows for trading potential result
optimality for reduced execution times. The parameter also allows for re-using
dropset information computed in previous iterations. For a maximum dropset
size of [:= 1, our implementation is up to 4,040 times faster than our previous
algorithm, while yielding equivalent or identical result. We plan to make available
a RogueNaRok-based web service, that will allow users to interactively explore
the space of possible dropsets.

A straight-forward parallelization of the algorithm allows for identifying rogues
in extremely large tree sets with respect to the number of taxa (up to 116,334 taxa).
Further improving the parallel performance of RogueNaRok is a challenging en-
gineering task that is beyond the scope of this study. Moreover, phase II of the
algorithm could be accelerated, if we updated instead of recomputed connected
components.

We also show that, RogueNaRok qualitatively outperforms a competing method.
However, when using a SC threshold, more expensive computations are nec-
essary than for MRC. For the MRC threshold, larger maximum dropset sizes
sometimes yield a less optimal result. This behavior is not due to the Rogue-
NaRok algorithm per se, but rather due to the greedy approximation strategy.
A branch-and-bound approach may remedy this problem. On the other side,
our observations on real datasets indicate that, the optimum can accurately be
approximated using small dropset sizes.

Acknowledgment

We thank Stephen A. Smith for the datasets discussed in Section 4.3.

1]
2]

3]

[10]

[11]

Bibliography

Andre J Aberer. Advanced Methods for Phylogenetic Post-Analysis. Mas-
ter’s thesis, TU/LMU Munich, 2011.

Andre J Aberer and Alexandros Stamatakis. A Simple and Accurate
Method for Rogue Taxon Identification. IEEE International Conference
on Bioinformatics & Biomedicine, 2011.

Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R
Wilson. Hoard: a scalable memory allocator for multithreaded applications.
SIGPLAN Not., 35(11):117-128, November 2000.

Casey W Dunn, Andreas Hejnol, David Q Matus, Kevin Pang, William E
Browne, Stephen A Smith, Elaine Seaver, Greg W Rouse, Matthias Obst,
Gregory D Edgecombe, Martin V Sg rensen, Steven H D Haddock, Andreas
Schmidt-Rhaesa, Akiko Okusu, Reinhardt Mg bjerg Kristensen, Ward C
Wheeler, Mark Q Martindale, and Gonzalo Giribet. Broad phyloge-
nomic sampling improves resolution of the animal tree of life. Nature,
452(7188):745-749, April 2008.

J Felsenstein, J Archie, W H E Day, W Maddinson, C Meacham, F J Rohlf,
and D Swofford. The Newick tree format, 1986.

Mark Holder and Paul O Lewis. Phylogeny estimation: traditional and
Bayesian approaches. Nat Rev Genet, 4(4):275-284, April 2003.

John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for
graph manipulation. Commun. ACM, 16(6):372-378, 1973.

W P Maddison and D R Maddison. Mesquite: a modular system for evolu-
tionary analysis, 2010.

Nicholas Pattengale, Andre Aberer, Krister Swenson, Alexandros Sta-
matakis, and Bernard Moret. Uncovering Hidden Phylogenetic Consensus
in Large Datasets. IEEE/ACM transactions on computational biology and
bioinformatics / IEEE, ACM, X(X):1-11, February 2011.

Michael J Sanderson and H Bradley Shaffer. Troubleshooting molecular
phylogenetic analyses. Annual Review of Ecology and Systematics, 33(1):49—
72, 2002.

Aaron B A Shafer and Jocelyn C Hall. Placing the mountain goat: a total
evidence approach to testing alternative hypotheses. Mol Phylogenet Evol,
55(1):18-25, April 2010.

S A Smith, J M Beaulieu, A Stamatakis, and M J Donoghue. Understanding
angiosperm diversification using small and large phylogenetic trees. Amer-
ican Journal of Botany, 98(3):404, 2011.

Erik A Sperling, Kevin J Peterson, and Davide Pisani. Phylogenetic-signal
dissection of nuclear housekeeping genes supports the paraphyly of sponges
and the monophyly of Eumetazoa. Mol Biol Evol, 26(10):2261-2274, 2009.
Alexandros Stamatakis. RAxXML-VI-HPC: maximum likelihood-based phy-
logenetic analyses with thousands of taxa and mixed models. Bioinformat-
ics, 22(21):2688-2690, November 2006.

12
[15]

[16]

Robert C Thomson and H Bradley Shaffer. Rapid progress on the vertebrate
tree of life. BMC' Biol, 8:19, 2010.

Robert C Thomson and H Bradley Shaffer. Sparse supermatrices for phy-
logenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of
living turtles. Syst Biol, 59(1):42-58, January 2010.

Thorley and Wilkinson. Testing the phylogenetic stability of early
tetrapods. J Theor Biol, 200(3):343-344, 1999.

M Wilkinson. Majority-rule reduced consensus trees and their use in boot-
strapping. Mol Biol Fvol, 13(3):437-444, 1996.

Mark Wilkinson. Common Cladistic Information and its Consensus Rep-
resentation: Reduced Adams and Reduced Cladistic Consensus Trees and
Profiles. Systematic Biology, 43(3):343-368, 1994.

Mark Wilkinson. More on Reduced Consensus Methods. Systematic Biol-
ogy, 44(3):pp. 435-439, 1995.

	RogueNaRok: an Efficient and Exact Algorithm for Rogue Taxon Identification
	Introduction
	Phylogenetic Analysis And Rogue Taxa
	Problem Description

	Algorithm
	Motivation
	General Algorithm
	Approximation

	Optimization and Implementation
	Updating Instead of Recreating the Graph
	Implementation

	Results
	Runtime
	Parallel Scalability
	Qualitative Improvement

	Conclusion And Outlook

