
Future Generation Computer Systems 18 (2002) 841–847

Tool environments in CORBA-based medical
high-performance computing

T. Ludwiga,∗, M. Lindermeierb, A. Stamatakisb, G. Racklb
a Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany

b Technische Universität München, Institut für Informatik, 80333 Munich, Germany

Abstract

High-performance computing in medical science has led to important progress in the field of computer tomography. A fast
calculation of various types of images is a precondition for statistical comparison of big sets of input data. With our current
research we adapted parallel programs from PVM to CORBA. CORBA makes the integration into clinical environments
much easier. In order to improve the efficiency and maintainability we added load balancing and graphical on-line tools to
our CORBA-based application program. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Computer tomography; Parallel computing; Load balancing

1. Introduction

Imaging in medical science is an important issue
that shows an increasing connection with high-perfor-
mance computing. Relevant picture series from imag-
ing hardware like magnetic resonance tomographs or
positron emission tomographs are usually computed
on powerful servers and stored in specialized picture
archiving systems.

Recently, workstation clusters became more and
more popular as they provide a good price–perfor-
mance ratio. Furthermore, many operations that are
performed on these picture series exhibit a maximum
parallelism. In many cases no interprocess communi-
cation is required and the parallelization is handled at
the granularity level of the individual pictures.

As soon as the parallel imaging servers are used
in production mode we are faced with two more

∗ Corresponding author.
E-mail address: thomas.ludwig@informatik.uni-heidelberg.de
(T. Ludwig).

problems. One is the load of the individual nodes of
the cluster. It should be balanced in order to guaran-
tee an optimal use of the computational power of the
cluster. Second, the imaging software has to interact
with other software components in a medical envi-
ronment and thus has to meet certain standards of
reliability and interoperability.

The paper will present an approach where we base
our parallelization of the imaging software on a dis-
tributed object-oriented middleware system (in our
case CORBA) to take advantage of component in-
tegration. A load balancing mechanism is integrated
into a specific CORBA ORB to provide optimal
performance to the application programs.

2. The load management system

Load management systems can be classified accord-
ing to their implementation. They may be integrated
into the application, the runtime system, or a sepa-
rate service. The first case is called application level,

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(02)00056-0

842 T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847

Fig. 1. The components of a load management system.

the second one system level, and the third one service
level load management. We decided to make a system
level implementation because it provides maximum
flexibility and transparency to the user.

In general, load management systems can be split
into three components: The load monitoring, the load
distribution, and the load evaluation component. They
fulfill different tasks and work at different abstraction
levels. This eases the design and the implementation
of the overall system. Fig. 1 shows the components of
a load management system and a runtime environment
containing some application objects.

The load monitoring component provides both, in-
formation on available computing resources and their
utilization, and information on application objects
and their resource usage. This information has to be
provided dynamically, i.e. at runtime, in order to ob-
tain knowledge about the runtime environment and
its objects. The computing resources in distributed
environments may be shared by middleware-based
applications and legacy applications.

Load distribution provides the functionality for dis-
tributing workload. Load distribution mechanisms for
system level load management are initial placement,
migration, and replication.

• Initial placement stands for the creation of an object
on a host that has enough computing resources in
order to efficiently execute an object. Initial place-
ment may be applied to all kinds of objects because
it is done at creation time.

• Migration means the movement of an existing ob-
ject to another host that promises a more efficient
execution. It may be applied to all kinds of objects,
too. However, migration is applied to existing ob-
jects, so the object state has to be considered. The

object’s communication has to be stopped and its
state has to be transferred to the new object. Finally,
all communication has to be redirected to the new
object.

• Replication is similar to migration but the original
object is not removed, so some identical objects
called replicas are created. Further requests to the
object are divided up among its replicas in order to
distribute workload (requests) among the replicas.
Replication is restricted to replication safe objects.
This means that an object can be replicated without
applying a consistency protocol to the replicas. A
precise definition of the term replication safe can
be found in [7].

Finally, the load evaluation component makes deci-
sions about load distribution based on the information
provided by load monitoring. The decisions can be
reached by a variety of strategies. The aim of the di-
verse strategies is to improve the overall performance
of the distributed application by compensating load
imbalance. There are two main reasons for load imbal-
ance in distributed systems. First, background load can
substantially decrease the performance of a distributed
application. Second, request overload that is caused by
too many simultaneously requesting clients increases
the request processing time and thus, decreases the
performance of the overall application. Both sources
of load imbalance have to be considered by a load
management system.

Distributed object-oriented environments like
CORBA [10] or DCOM [2] are based on some kind
of object model. In general, the object models imply
some transparency requirements [8]. Location trans-
parency demands that the location of an object is
unknown to its user. The middleware transparently

T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847 843

connects client and server. Access transparency pos-
tulates that all objects in a distributed system are
accessed in the same way. The middleware is re-
sponsible for providing uniform access to all objects,
independent of their implementation or runtime envi-
ronment. These transparency requirements have to be
fulfilled by load management systems, too. Therefore,
load distribution has to be transparent to the user. Our
load management system provides full migration and
replication transparency which means that migration
and replication are completely transparent to the user.

The load management concepts described so far are
universal and may be applied to diverse distributed
object-oriented environments. The implementation
of these concepts strongly depends on the underly-
ing middleware architecture. We decided to make an
implementation for CORBA because it is the most
popular middleware architecture.

In CORBA, objects are connected to the middle-
ware by the POA (Portable Object Adapter). The ob-
ject adapter provides the functionality for creating
and destroying objects, and for assigning requests to
them. The POA is configured by the developer via the
so-called policies. The ORB (Object Request Broker)
provides the functionality for creating object adapters
and for request handling. A request to an object ar-
rives at the ORB which transmits it to the appropri-
ate POA. Subsequently, the object adapter starts the
processing of the request by an implementation of the
object (Servant).

The load management functionality, especially load
monitoring and load distribution, have to be inte-
grated into the ORB and the POA because we decided
to make a system level implementation. Therefore,
we added some policies and interfaces to the POA
in order to enable state transfer and the creation of
replicas. The monitoring of the runtime environment
is performed via the Simple Network Management
Protocol (SNMP) [11] which is a well-established
standard in network management.

A new policy calledControlFlowPolicy that
controls the creation and destruction of CORBA ob-
jects is added to the POA. The policy valueUSER
indicates that objects are created by the programmer.
The valueSYSTEM indicates that objects are created
on demand by the CORBA runtime environment.
This enables the transparent creation of new objects
in case of migration and replication. Therefore, the

programmer has to provide aServantFactory
interface that enables the creation and destruction
of Servants analogous to the Factory design pattern
[4]. The POA’sRequestProcessingPolicy is
extended with the valueUSE SERVANT FACTORY
that causes the POA to use theServantFactory
for object creation and destruction.

Migration and replication of objects that hold state
require state transmission as described before. There-
fore, some persistence mechanism has to be provided.
A new policy, thePersistencePolicy is added
to the POA. The policy valueUSE PERSISTENT
SERVANT FACTORY indicates that an exten-
sion of the ServantFactory interface, the
PersistentServantFactory, is used in or-
der to create and destroy objects. Additionally, the
PersistentServantFactory provides the
functionality to extract an object’s state and to recre-
ate objects from that state. This approach enables
the application of various persistence mechanisms
like the Persistent State Service [9] or proprietary
mechanisms like Java serialization.

Finally, request redirection is performed by the
CORBA Location Forward mechanism [5]. It en-
ables to hand over object references to clients by
raising anForwardRequest exception. The client
runtime transparently reconnects to the forwarded
reference. This guarantees migration and replication
transparency.

3. The medical image-processing application

A medical image-processing application is chosen
for exploration of concept purposes. The realign-
ment process forms part of the Statistical Paramet-
ric Mapping (SPM) application developed by the
Wellcome Department of Cognitive Neurology in
London [6]. SPM is used for processing and analyz-
ing tomograph image sequences, as obtained, e.g., by
functional Magnetic Resonance Imaging (fMRI) or
Positron Emission Tomography (PET). Such image
sequences are used in the field of neuroscience, for
the analysis of activities in different regions of the
human brain during cognitive and motoric exercises.

Realignment is a cost intensive computation per-
formed during the preparation of raw image data for
the forthcoming statistical evaluation. It computes a

844 T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847

4× 4 transformation matrix for each image of the se-
quence, for compensating the effect of small move-
ments of the patient, caused, e.g. by his breath. The
images are realigned relatively to the first image of the
sequence.

The realignment algorithm for image sequences as
obtained by fMRI will briefly be presented. One has
to distinguish two cases.

• First case: realignment of one sequence of images:
The reference data set and the first matrix is ob-
tained by performing a number of preparatory com-
putations using the image data of the first image.
The matrices for all remaining images are calcu-
lated using the reference data set.

• Second case: realignment of multiple sequences of
images: The reference data set and the first matrix
of the first sequence are calculated. Thereafter, the
first images of all remaining sequences are realigned
relatively to the first image of the first sequence
and its reference data set. Finally, the realignment
algorithm as described in the first case is applied to
all sequences independently.

At this point the only precondition for the calcu-
lation of the transformation matrix is the availabil-
ity of the reference data set, which is calculated only
once for each sequence. Once the reference data set(s)
is(are) available, the matrices of the sequence(s) can
be computed independently.

The manually parallelized realignment application
is already available as sequential C++, C++/CORBA
and C++/PVM program. Previous work shows, that
the overhead induced by CORBA is not prohibitive
for its deployment in clinical environments.

For the following steps it is necessary to transform
the sequential C++ program into a Java program be-
cause some components of our tool environment only
provide Java interfaces. This program transformation
is performed using the Java Native Interface (JNI). An

Fig. 2. The structure of the medical image-processing application.

interesting intermediate result is that the deployment
of JNI does not lead to any performance decrease for
the specific program [12].

4. Integrating the application into the tool
environment

In order to improve performance and scalability of
the image-processing application we decided to inte-
grate it into our load management system.

As already mentioned in Section 3 the availability
of a Java program is a necessary prerequisite for the
integration into the load management system, since
it only provides services for Java/CORBA programs.
The sequential Java realignment application is trans-
formed into a distributed Java/CORBA application.

Fig. 2 depicts the structure of the CORBA appli-
cation. The service offered by the server object is the
compute() service, which calculates the transfor-
mation matrix for an image. The state of a server object
consists of a reference data queue (cache). Therefore
it is replication safe since it can be replicated with-
out applying a consistency protocol to its replicas, i.e.
the required cache data can easily be reestablished. A
getReferenceData() service is offered by each
client and provides the specific reference data to the
server if it is not already cached.

The basic adaptation of the Java/CORBA applica-
tion to the load balancer is straightforward. Minor
changes to the code are necessary in order to add the
ServantFactory and PersistantServant
Factory methods to the server object. In addition to
those modifications the system is extended by various
additional components for testing particular aspects of
the load management system. The mechanism itself
was integrated into the Java-based JacORB [1].

The second part of our tool environment consists
of the Middleware Monitoring Tool (MIMO) [3] and

T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847 845

the graphical on-line visualization tool MiVis (Mid-
dleware Visualization). The integration of these tools
is straightforward too. MIMO provides some stan-
dard events like object creation, object deletion, object
interactions, and additionally defines generic events.
Furthermore, MIMO provides the infrastructure for
designing active tools, i.e. tools that manipulate the
monitored application. Initially, we specify the data
to be monitored, for example client and server hosts,
client and server objects, server object load, server host
load, application object interactions, and load balanc-
ing actions like migration and replication. This infor-
mation is provided by a MIMO adapter that is used to
instrument the application and the load management
system.

MiVis is a graphical on-line visualization tool that
is based on the MIMO monitoring system. It pro-
vides a framework that enables the development of
new display types which can be plugged into the tool
core. We developed a new display that is used for

Fig. 3. Visualization of a replication and of object interactions.

the visualization of the new monitoring events de-
scribed before. Fig. 3 presents the basic layout of the
graphical on-line tool. Client and server objects are
located within the respective rectangles representing
the client and server hosts. In addition, server ob-
ject load (numerical representation) and server host
load values are depicted (numerical and graphical
representation). The CORBA methodcompute()
is represented as blue arrow (black in Fig. 3) with
a counter andgetReferenceData() as offset
turquoise arrow. Replications and migrations are rep-
resented as yellow (white in Fig. 3) and red arrows,
respectively. Replication and migration actions can be
initiated manually too, by a drag and drop function.

The combination of MIMO and MiVis provides a
flexible and extensible infrastructure for the develop-
ment and the maintenance of large scale distributed
applications. Together with our monitoring system
performance and scalability of applications can be
substantially improved.

846 T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847

Fig. 4. The load managed medical image-processing application.

5. Evaluation

In order to evaluate the efficiency of the presented
load management concept and its implementation, a
test case is shown.

The hardware consists of three machines with equal
configuration. There is no background load on the
machines. The examined CORBA application is the
medical image-processing application described in
Section 3 with two simultaneously requesting clients.
The application is replication safe as already men-
tioned in Section 4. Thus, migration and replication
can be applied to this application.

Fig. 4 shows the processing time per image against
the number of the processed image for both clients. At
the beginning, one server object is created and placed
on a machine (initial placement) and the clients start
requesting the server. The image-processing time is
equivalent for both clients now because the server
alternately processes their requests. After a while the
load management system recognizes that the server is
overloaded because both clients permanently request
the server. Accordingly, replication is performed, i.e.
a second server object (replica) is created and each
client gets a replica on its own. In consequence of
the replication, the image-processing time of each
client decreases about 50%. Some time later back-
ground processor load is generated on the machine
that is used by the second client’s replica. Hence, the

image-processing time of the second client substan-
tially increases. Again, the load management system
recognizes the processor overload and migrates the af-
fected replica to the third machine which was not used
so far. The consequence is that the image-processing
time returns to its normal level.

The test case shows how the load management
system is able to deal with different kinds of over-
load. Request overload is compensated by replication,
whereas background load is compensated by migrat-
ing an object to a less loaded host. Consequently, the
load management systems improves the performance
and the scalability of the medical image-processing
application.

6. Conclusion and future work

The combination of load balancing and graphi-
cal user interface provides a powerful environment
for the production oriented image-processing in
medical environments. Workstation clusters can be
used as high-performance servers for reconstruction
and statistical analysis of tomography pictures. Our
CORBA-based approach allows the integration of
image-processing into the workflow of clinical rou-
tine. Future steps in this field will cover aspects of
fault tolerance, where the computing environment will
have integrated mechanisms for fail-soft and recovery.

T. Ludwig et al. / Future Generation Computer Systems 18 (2002) 841–847 847

Acknowledgements

This work is partly funded by the Deutsche Stifter-
verband, Kurt-Eberhard-Bode Stiftung.

References

[1] G. Brose, JacORB: implementation and design of a Java ORB,
in: Proceedings of the International Conference on Distributed
Applications and Interoperable Systems (DAIS’97), Chapman
& Hall, London, 1997.

[2] G. Eddon, H. Eddon, Inside Distributed COM, Microsoft
Press, 1998.

[3] G. Rackl, Monitoring and managing heterogeneous
middleware, Ph.D. Thesis, Technische Universität München,
Munich, Germany, 2001.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Addison-Wesley, Reading, MA, 1994.

[5] M. Henning, Binding, migration, and scalability in CORBA,
Commun. ACM 40 (10) (1998) 62–71.

[6] K. Friston, SPM, Technical Report, The Wellcome Depart-
ment of Cognitive Neurology, University College London,
1999.

[7] M. Lindermeier, Load management for distributed object-
oriented environments, in: Proceedings of the International
Symposium on Distributed Objects and Applications (DOA’
2000), Antwerp, Belgium, IEEE Press, New York, 2000.

[8] OMG (object management group), A discussion of the
object management architecture, Technical Report, 1997.
http://www.omg.org.

[9] OMG (object management group), CORBAServices: common
object services specification, Technical Report, 1998.
http://www.omg.org.

[10] OMG (object management group), The common object
request broker: architecture and specification, Revision 2.3.1,
Technical Report, 1999. http://www.omg.org.

[11] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and
2, Addison-Wesley, Reading, MA, 1998.

[12] A. Stamatakis, Interoperable tool deployment for the late
development phases of distributed object-oriented programs,
Master’s Thesis, Technische Universität München, Munich,
Germany, 2001.

T. Ludwig received his diploma in com-
puter science from Universität Erlangen,
Germany in 1987. In 1988, he moved
to the Technische Universität München
where he worked on his PhD and after-
wards as a research assistant. His main
interest focusses on parallel computing.
He conducts research in this field and
teaches all aspects of parallel computing.
He participated in many national and in-

ternational projects in the field of parallel computing. His special
interests are on-line tools for program development and specifi-
cally load balancing mechanisms. His current research is in the
field of high-performance computing in bioinformatics.

A. Stamatakis studied computer science
and aeronautical engineering as secondary
subject and received his diploma degree in
March 2001 from the Technische Univer-
sität München. He conducted internships
and studies abroad at the Ecole Normale
Superieure de Lyon, the National Techni-
cal University of Athens, the Eurocontrol
Experimental Center (Paris), and the Insti-
tuto de Salud Carlos III (Madrid). In the

past he has conducted work on advanced tools for air traffic con-
trol, load-balanced CORBA applications and monitoring tools, and
data-bases for biochip experiments. Presently he is a PhD student
at the Lehrstuhl für Rechnertechnik und Rechnerorganisation of
the Technische Universität München and works in the field of
high-performance bioinformatics.

M. Lindermeier graduated with a
diploma in computer science from the
Technische Universität München in 1998.
Subsequently, he received a scholarship
from the Technische Universität München
to work on his doctoral thesis. Currently,
he is affiliated with the Lehrstuhl für
Rechnertechnik und Rechnerorganisa-
tion as doctoral researcher. His special
field of interest is load management for
distributed object-oriented environments.

G. Rackl received his PhD in com-
puter science at Technische Universitat
Munchen in 2001 with a thesis on mon-
itoring and management of heterogenous
middleware environments. Currently, he
is engaged in the group IT management
department of BMW Group in Munich,
Germany, where he is dealing with tool
support of the early phases of the soft-
ware lifecycle. During his time at TU

Munchen, he mainly participated in the ESPRIT project SEEDS
(simulation environment for the evaluation of distributed traffic
control systems) and in the SFB 342 research grant of the Ger-
man Science Foundation (DFG), which dealt with tools for the
development of parallel and distributed systems.

http://www.omg.org
http://www.omg.org
http://www.omg.org

	Tool environments in CORBA-based medical high-performance computing
	Introduction
	The load management system
	The medical image-processing application
	Integrating the application into the tool environment
	Evaluation
	Conclusion and future work
	Acknowledgements
	References

