
Future Generation Computer Systems 21 (2005) 725–730

DRAxML@home: a distributed program for
computation of large phylogenetic trees

A. Stamatakisa,∗, M. Lindermeiera, M. Otta, T. Ludwigb, H. Meiera

a Department of Computer Science, Technical University of Munich, Boltzmannstr. 3, D-85748 Garching b. M¨unchen, Germany
b Department of Computer Science, Ruprecht-Karls-University, Im Neuenheimer Feld 348, D-69120 Heidelberg, Germany

Available online 5 November 2004

Abstract

Inference of large phylogenetic trees using statistical methods is computationally extremely expensive. Thus, progress is
primarily achieved via algorithmic innovation rather than by brute-force allocation of available computational ressources. We
describe simple heuristics which yield accurate trees for synthetic (simulated) as well as real data and significantly improve
execution time. The heuristics are implemented in a sequential program (RAxML) and a novel non-deterministic distributed
algorithm (DRAxML@home). We implemented an MPI-based and a http-based distributed prototype of this algorithm and used
DRAxML@home to infer trees comprising 1000 and 2025 organisms on LINUX PC clusters.
© 2004 Elsevier B.V. All rights reserved.

Keywords:High performance bioinformatics; Distributed computing; Phylogenetic tree inference; Maximum-likelihood method

1

U
i
b
w
a
b
l
a
a
F
i

ich
ccu-
best
rams

sults
tion
istic
s of
ke-

ny
astD-

0
d

. Introduction

Within the ParBaum project at the Technical
niversity of Munich, we work on phylogenetic tree

nference based on the maximum likelihood method
y Felsenstein[1]. A phylogenetic inference starts
ith a collection of taxa (organsims, sequences) in an
ppropriately prepared form (multiple alignment) and
uilds an unrooted binary tree with the sequences at its

eaves under an optimality criterion. For elaborate and
ccurate statistical topology scoring functions such
s maximum likelihood the problem is NP-complete.
urthermore, the computation of the topology score

tself is computationally expensive.

∗ Corresponding author.
E-mail address:stamatak@in.tum.de (A. Stamatakis).

In this paper, we describe simple heuristics wh
accelerate the tree optimization process, yield a
rate results, and ouperform the currently-to the
of our knowledge-fastest and most accurate prog
on real data: MrBayes[3] and PHYML [2]. We first
presenteded those new heuristics and related re
in [11]. Thus, in this paper we focus on the descrip
and first experimental results of the non-determin
http-based and MPI-based distributed prototype
Distributed Randomized Axelerated Maximum Li
lihood (DRAxML@home).

1.1. Related work

An excellent comparison of popular phyloge
programs using statistical approaches such as f

167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.future.2004.05.013

726 A. Stamatakis et al. / Future Generation Computer Systems 21 (2005) 725–730

NAml [5], MrBayes, PAUP[6], and treepuzzle[13]
based on synthetic (simulated) data may be found
in [14]. An in-depth analysis of related work can be
found in[11].

Distributed algorithms for phylogenetic tree infer-
ence have-to our best knowledge-so far only been im-
plemented for parsimony searches by Snell et al.[10]
using the CONDOR platform.

2. Heuristics

2.1. Sequential algorithm

“Traditional” maximum likelihood searches can be
implemented in two ways: On the one hand, they can
start from scratch and insert organisms progressively
into the tree such as the stepwise addition algorithm
(implemented, e.g. in[1] [5]). On the other hand, they
can start with an initial tree already containing all or-
ganisms built by a simpler method such as Neighbor
Joining or by random (implemented in[2] [3]). The
likelihood of such a starting tree is then progressively
optimized by application of minor topological changes.
RAxML belongs to this second class of algorithms.

The first part of our heuristics consists in building
a starting tree using dnapars from PHYLIP[7] for two
reasons.

Firstly, parsimony is related to maximum likelihood
under simple evolutionary models[15], such that we
c ood
l ting
t

tree ST

Secondly, this enables the construction of different
starting trees by using a randomized input sequence or-
dering, since distinct input orderings produce distinct
final trees. Thus, RAxML can be run several times with
different starting trees and the set of final trees may be
used for building a consensus tree and augment con-
fidence in the final result. We removed however some
optimization steps from the dnapars algorithm to ac-
celerate computations.

The second and most important part of our heuris-
tics is the tree optimization process. RAxML performs
simple tree rearrangements by subsequently removing
all possible subtrees from the present tree and insert-
ing them into neighbouring branches up to a specified
distance of nodes. RAxML inherited this optimization
strategy from fastDNAml. One rearrangement step in
fastDNAml consists of moving all subtrees within the
currently best tree by the minimum up to the maxi-
mum distance of nodes specified (rearrangement set-
ting). This process is outlined for a single subtree (ST5)
and a distance of 1 inFig. 1(not all possible moves are
shown). The likelihood of the such generated topolo-
gies is evaluated and the best tree is kept. If one alter-
native toplogy improves the likelihood the process is
repeated with the new tree until no better topology is
found.

The rearrangement process of RAxML differs in
two major points: In fastDNAml after each insertion
of a subtree into an alternative branch the branch
lengths of the entire tree are optimized. As depicted
i e
t fore
c of
an expect to obtain a starting tree with a relatively g
ikelihood value compared to random or NJ star
rees.

Fig. 1. Rearrangments traversing one node for sub
 5, branches which are optimized are indicated by bold lines.

n Fig. 1 with bold lines RAxML only optimizes th
hree branches adjactent to the insertion point be
omputing its likelihood value. Since the likelihood

A. Stamatakis et al. / Future Generation Computer Systems 21 (2005) 725–730 727

the tree strongly depends on the topology per se this
fast pre-scoring can be used to establish a small list
of good alternative trees. RAxML uses a list of only
size 20 to store the best trees obtained during one re-
arrengement step. This list size proved to be a prac-
tical value in terms of speed and thoroughness of the
search. The algorithm performs global branch length
optimizations only on those 20 best trees after comple-
tion of each rearrangement step. Due to the capability to
analyze many more alternative topologies in less time
higher rearrangements settings can be used, e.g. 1–5
or 1–10 which results in significantly improved final
trees.

Another important change especially for the ini-
tial optimization phase, i.e the first 3–4 rearrangement
steps, consists in the subsequent application of topo-
logical improvements during one rearrangement step.
If during the insertion of one specific subtree into an
alternative branch a topology with a better likelihood
is found thistree is kept immediatly and all subsequent
subtree rearrangements are performed on the improved
topology. This enables rapid optimization of the topol-
ogy during the initial optimization phase of the algo-
rithm (see below).

2.2. Distributed algorithm

Our Motivation to build a distributed seti@home-
like [9] code is driven by the computation time require-
ments for trees containing more than 1000 organisms
a for
t The
m re-
d ccept
p ple-
m rchi-
t

is-
t es.
T ign-
m ich
f at-
t taxa
a pen-
d tree
a

ro-
c the

high speed of a single topology evaluation it is not fea-
sible to distribute work by topologies as, e.g. in parallel
fastDNAml. Instead, we distribute work by sending a
span of subtree node numbers, i.e. IDs for the sub-
trees which shall be moved, along with the currently
best topologyct, to each worker. Since the subsequent
application of topological improvements during 1 rear-
rangement step is closely coupled we slightly modify
the algorithm according to the following observation:
Our experiments have shown that subsequent improved
topologies occur only during the first rearrangement
steps (initial optimization phase). Thereafter, only one
alternative topology per rearrangement step improves
the likelihood. This behaviour is illustrated inFig. 2
where we plot the number of improved topologies per
rearrangement step for a phylogenetic reconstruction of
a 150 taxa tree with a random and a parsimony starting
tree. When the number of improved topologies is zero
the improved tree has been obtained by optimizing a
toplogy of the best tree list (final optimization phase).
This phase requires the largest amount of computation
time, especially with big alignments (>500 organisms,
≈70% of execution time). Thus, during the initial op-
timization phase we send only one single subtree ID
i, i = 2, ..., #species× 2 − 1 along with the currently
best treect to each worker for rearrangements. The
worker returns the best treewti obtained by rearrang-
ing subtreei to the master. Ifwti has a better likelihood
thanct at the master,ct is set towti and distributed to
each worker along with the subsequent work (subtree
I

mu-
n
(er of
t

on
p orker
d local
w ts
o each
w its
b o the
m

zed
t nge-
m re-
q pro-
g nds
nd by the desire to provide inexpensive solutions
his problem which do not require supercomputers.
ain design principle of our distributed code is to
uce communication costs as far as possible and a
otentially bad speedup-values. The protoype im
entation is based on a simple master-worker a

ecture and consisits of two phases.
In phase I, our distributed algorithm starts by d

ributing the alignment file to all worker process
he alignment data transfer is not critical since al
ents show good compression ratios with gzip wh

orms part of our http communication library. We
ained, e.g. a compression by factor 31 for a 1000
lignment using gzip. Thereafter, each worker inde
ently computes a randomized parsimony starting
nd sends it to the master process.

In phase II, the master initiates the optimization p
ess for the best parsimony starting tree. Due to
D) requests.
In the final optimization phase, we reduce com

ication costs by generating only 5× #workers jobs
subtree ID spans) and entirely avoiding the transf
ree topologies.

Finally, irrespective of the current optimizati
hase the best 20 topologies computed by each w
uring one rearrengement step are stored in a
orker tree list. When all subtree rearrangemeni
f one rearrangement step have been completed,
orker conducts branch length optimizations on
est 20 local trees and returns the best topology t
aster.
When all workers have branch-length optimi

heir topologies the master initiates the next rearra
ent step until no better tree is found. Due to the
uired changes to the algorithm the distributed
ram is non-deterministic, since final output depe

728 A. Stamatakis et al. / Future Generation Computer Systems 21 (2005) 725–730

Fig. 2. Number of improved topologies per rearrangement step for a phylogenetic inference with 150 organisms using random and parsimony
starting trees.

on the number of workers and on the arrival sequence
of results for runs with equal numbers of workers. This
is due to the changed implementation of the subse-
quent application of topological improvements during
the initial rearrangement steps which causes a traversal
of search space on different paths.

2.3. Technical issues

We will shortly outline some technical issues of
our http-based implementation concerning communi-
cation, redundancy and security. The communication
infrastructure is provided by a http-library which can
easily be integrated into the MPI-based prototype by
replacing the MPI communication routines. The most
expensive part in terms of communication costs is the
distribution of the alignment file which is compressed
uzing gzip. To obtain redundancy we distribute every
subtree rearrangement job twice and use a queue and
timeouts to ensure that every job is computed. Further-
more, we have developed a failure protocol which is
able to handle temporary master and worker failures.
Finally, we deal with the scenario that some workers
deliberately return phony trees. If the tree is not in the
correct format, this can easily be detected by the rou-
tine which reads the tree string. The only problem arises
when a worker returns a tree that is in the correct fro-
mat and has a “fake” likelihood (i.e. a likelihood value
which is significantly better than the actual likelihood

of the topology conatined in the message) which is bet-
ter than the currently best tree at the master. In this case,
the likelihood of that topology is verified by the master
process.

3. Results

In order to test our distributed prototypes we exe-
cuted our MPI-based program for a fixed starting tree
on 4, 8, and 16 processors of the LINUX cluster at the
RRZE [8] with an alignment containing 1000 organ-
isms (1000ARB). Furthermore, we conducted an ini-
tial test of the http-based prototype on a small LINUX
PC cluster at our institute equipped with Intel Xeon
2.4 GHz processors which are interconnected by In-
finiband with an alignment of 2025 (2025ARB) se-
quences. Due to the design of the distributed implemen-
tation we can not expect near-optimal speedups and ex-
actly equivalent results for runs with distinct numbers
of processors. The sequential execution on the same
processor type for 1000ARB required 53002 seconds
and yielded a final likelihood value of -400970.31. The
times at which the distributed program passed the like-
lihood of the sequential one, the final likelihood values
and speedups for 1000ARB as well as the final result
for 2025ARB are listed inTable 1. For calculating,
the speedup we only consider the number of worker
processes.

A. Stamatakis et al. / Future Generation Computer Systems 21 (2005) 725–730 729

Table 1
Results obtained by the fisrt test with the distributed prototypes of DRAxML@home

Data set # Processors Likelihood Secs Speedup Program

1000ARB 1 (1) −400970.31 53002 1 Sequential
1000ARB 4 (3) −400945.43 17871 2.97 MPI
1000ARB 8 (7) −400950.58 10693 4.96 MPI
1000ARB 16 (15) −400947.24 7542 7.03 MPI

2025ARB 10 (9) −371366.74 141388 Void http

4. Conclusion & future work

We presented a distributed non-deterministic algo-
rithm for phylogenetic tree inference which is based on
heuristics which outperform the currently fastest and
most accurate programs for phylogenetic tree inference
on real-world data (see[11]) under simple models of
site substitution.

Furthermore, we have presented first experimental
results for DRAxML@home which demonstrate that
computing high-quality phylogenetic trees containing
up to 2000 organisms is now feasible on a couple of
workstations instead of supercomputers.

Future work will mainly cover the execution of large
parallel and distributed production runs and an effort to
install and execute DRAxML@home on a greater num-
ber of workstations. The overall goal is to compute a
first “small” tree of life containing about 10.000 repre-
sentative organims from the three domains: Archaea,
Bacteria and Eukarya.

Acknowledgement

This work is sponsored under the project ID ‘Par-
Baum’, within the framework of the “Competence Net-
work for Technical, Scientific High Performance Com-
puting in Bavaria” (KONWIHR)

R

max-

rithm
yst.

[3] J.P. Huelsenbeck, F. Ronquist, MRBAYES: Bayesian inference
of phylogenetic trees, Bioinformatics 17 (2001) 754.

[4] W. Ludwig, et al., ARB: a software environment for sequence
data, Nucl. Acids Res. 32 (2004) 1363.

[5] G. Olsen, et al., fastdnaml: a tool for construction of phylo-
genetic trees of DNA sequences using maximum likelihood,
Comput. Appl. Biosci. 10 (1994) 41.

[6] PAUP:paup.csit.fsu.edu, visited May 2003.
[7] PHYLIP: evolution.genetics.washington.edu, visited Novem-

ber 2003.
[8] RRZE:www.rrze.uni-erlangen.de, visited October 2003.
[9] Seti@home:setiathome.ssl.berkeley.edu, visited July 2003.

[10] Q. Snell, et al., Parallel phylogenetic inference, Proceedings of
Supercomputing Conference 2000, Dallas, Texas, USA, 2000.

[11] A. Stamatakis, et al., New fast and accurate heuristics
for inference of large phylogenetic trees, Proceedings of
IPDPS2004, Santa Fe, New Mexico, USA, 2004. Se-
quential open source code and paper available online at:
www.bode.cs.tum.edu/stamatak.

[12] C. Stewart, et al., Parallel implementation and performance of
fastdnaml – a program for maximum likelihood phylogenetic
inference, Proceedings of Supercomputing Conference 2001,
Denver, Colorado, USA, 2001.

[13] K. Strimmer, A.v. Haeseler, Quartet puzzling: a maximum-
likelihood Method for reconstructing tree topologies, Mol. Biol.
E 13 (1996) 964.

[14] T.L. Williams, B.M.E. Moret, An investigation of phylogenetic
likelihood methods, Proceedings of BIBE’03, Bethesda, Mary-
land, USA (2003) 79–86.

[15] C. Tuffley, M. Steel, Links between maximum likelihood and
maximum parsimony under a simple model of site substitution,
Bull. Math. Biol. 59 (1997) 581.

Alexandros Stamatakis received his
he
1.

at
on,
s,
is),
).
tu-
nik
che
eferences

[1] J. Felsenstein, Evolutionary trees from DNA sequences: a
imum likelihood approach, J. Mol. E 17 (1981) 368.

[2] S. Guindon, O. Gascuel, A simple, fast, and accurate algo
to estimate large phylogenies by maximum likelihood, S
Biol. 52 (2003) 696.
diploma in Computer Science from t
Technical University of Munich in 200
His studies included internships abroad
the Ecole Normale Superieure de Ly
National Technical University of Athen
Eurocontrol Experimental Center (Par
and Instituto de Salud Carlos III (Madrid
Since October 2001 he works as PhD S
dent at the Lehrstuhl fuer Rechnertech
und Rechnerorganisation of the technis

http://paup.csit.fsu.edu
http://evolution.genetics.washington.edu
http://www.rrze.uni-erlangen.de
http://setiathome.ssl.berkeley.edu
http://www.bode.cs.tum.edu/stamatak

730 A. Stamatakis et al. / Future Generation Computer Systems 21 (2005) 725–730

Universitaet Muenchen. His main research focus lies on parallel
and distributed systems and algorithms for computation of large
phylogenetic trees.

Markus Lindermeier studied computer
science at the Technical University of Mu-
nich from 1992–1998. In June 1998, he
joined the Lehrstuhl fuer Rechnertechnik
und Rechnerorganisation as PhD student.
He worked on load managment in dis-
tributed systems and received his doctoral
degree in 2002. He currently works for the
BMW group in the competence center for
IT-Architectures.

Michael Ott is a student of Computer
Science at the Technische Universitaet
Muenchen since October 1999. He currently
works on his diploma thesis and will receive
his diploma in autumn 2004. Since summer
2001, he works as a student assistant at the
Lehrstuhl fuer Rechnertechnik und Rech-
nerorganisation at the Technische Universi-
taet Muenchen. His main research interests
are parallel and distributed applications and
architectures.

Thomas Ludwig received his habilita-
tion degree from Technische Universität
München in Munich, Germany, where he
worked for 13 years in the field of parallel
computing with a focus on load balancing,
development tools, and cluster and tool in-
frastructures. He also conducted research in
the field of parallel programming, namely
with computer tomography and bioinfor-

for
rls-

U arch
f tems
f

HaraldMeier was borne on the 19th of May
1962 in Augsburg (Bavaria, Germany) He
studied Biology at the Technische Univer-
sitaet Muenchen, and received the diploma
degree in 1993. At the Department for Mi-
crobiology he performed his PhD in the area
of molecular identification of bacteria and
phylogenetic treeing, and received his Dr.
rer. nat. in 1997. From 1997 until 1999, he
held a postdoc position at the GSF-National
Research Center in Neuherberg, on devel-

opment of molecular methods for insuring the microbial safety of
bottled mineral waters. In 1999/2001, he performed postgraduate
studies in Computer Sciences in Munich and Bioinformatics at the
University Heidelberg. Since 2001, he is head of the group ’Applied
High Performance Bioinformatics’ at the LRR at the Institute for
Informatics, Technische Universitaet Muenchen. His main research
topics are the molecular sequence analysis, molecular phylogeny, de-
sign and analysis of DNA-probes and DNA-Microarrays, and high
performance computing.
matics. Since 2001, he is a professor
computer science at the Ruprecht-Ka

niversität Heidelberg in Heidelberg, Germany. His current rese
ocus is in the field of high performance parallel input/output sys
or cluster environments.

	DRAxML@home: a distributed program for computation of large phylogenetic trees
	1Introduction
	Related work

	2Heuristics
	Sequential algorithm
	Distributed algorithm
	Technical issues

	Results
	Conclusion & future work
	Acknowledgement
	References

