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Abstract

Inference of large phylogenetic trees using statistical methods is computationally extremely expensive. Thus, progress is
primarily achieved via algorithmic innovation rather than by brute-force allocation of available computational ressources. We
describe simple heuristics which yield accurate trees for synthetic (simulated) as well as real data and significantly improve
execution time. The heuristics are implemented in a sequential program (RAxML) and a novel non-deterministic distributed
algorithm (DRAxML@home). We implemented an MPI-based and a http-based distributed prototype of this algorithm and used
DRAxML@home to infer trees comprising 1000 and 2025 organisms on LINUX PC clusters.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Within the ParBaum project at the Technical
niversity of Munich, we work on phylogenetic tree

nference based on the maximum likelihood method
y Felsenstein[1]. A phylogenetic inference starts
ith a collection of taxa (organsims, sequences) in an
ppropriately prepared form (multiple alignment) and
uilds an unrooted binary tree with the sequences at its

eaves under an optimality criterion. For elaborate and
ccurate statistical topology scoring functions such
s maximum likelihood the problem is NP-complete.
urthermore, the computation of the topology score

tself is computationally expensive.

∗ Corresponding author.
E-mail address:stamatak@in.tum.de (A. Stamatakis).

In this paper, we describe simple heuristics wh
accelerate the tree optimization process, yield a
rate results, and ouperform the currently-to the
of our knowledge-fastest and most accurate prog
on real data: MrBayes[3] and PHYML [2]. We first
presenteded those new heuristics and related re
in [11]. Thus, in this paper we focus on the descrip
and first experimental results of the non-determin
http-based and MPI-based distributed prototype
Distributed Randomized Axelerated Maximum Li
lihood (DRAxML@home).

1.1. Related work

An excellent comparison of popular phyloge
programs using statistical approaches such as f

167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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NAml [5], MrBayes, PAUP[6], and treepuzzle[13]
based on synthetic (simulated) data may be found
in [14]. An in-depth analysis of related work can be
found in[11].

Distributed algorithms for phylogenetic tree infer-
ence have-to our best knowledge-so far only been im-
plemented for parsimony searches by Snell et al.[10]
using the CONDOR platform.

2. Heuristics

2.1. Sequential algorithm

“Traditional” maximum likelihood searches can be
implemented in two ways: On the one hand, they can
start from scratch and insert organisms progressively
into the tree such as the stepwise addition algorithm
(implemented, e.g. in[1] [5] ). On the other hand, they
can start with an initial tree already containing all or-
ganisms built by a simpler method such as Neighbor
Joining or by random (implemented in[2] [3] ). The
likelihood of such a starting tree is then progressively
optimized by application of minor topological changes.
RAxML belongs to this second class of algorithms.

The first part of our heuristics consists in building
a starting tree using dnapars from PHYLIP[7] for two
reasons.

Firstly, parsimony is related to maximum likelihood
under simple evolutionary models[15], such that we
c ood
l ting
t

tree ST

Secondly, this enables the construction of different
starting trees by using a randomized input sequence or-
dering, since distinct input orderings produce distinct
final trees. Thus, RAxML can be run several times with
different starting trees and the set of final trees may be
used for building a consensus tree and augment con-
fidence in the final result. We removed however some
optimization steps from the dnapars algorithm to ac-
celerate computations.

The second and most important part of our heuris-
tics is the tree optimization process. RAxML performs
simple tree rearrangements by subsequently removing
all possible subtrees from the present tree and insert-
ing them into neighbouring branches up to a specified
distance of nodes. RAxML inherited this optimization
strategy from fastDNAml. One rearrangement step in
fastDNAml consists of moving all subtrees within the
currently best tree by the minimum up to the maxi-
mum distance of nodes specified (rearrangement set-
ting). This process is outlined for a single subtree (ST5)
and a distance of 1 inFig. 1(not all possible moves are
shown). The likelihood of the such generated topolo-
gies is evaluated and the best tree is kept. If one alter-
native toplogy improves the likelihood the process is
repeated with the new tree until no better topology is
found.

The rearrangement process of RAxML differs in
two major points: In fastDNAml after each insertion
of a subtree into an alternative branch the branch
lengths of the entire tree are optimized. As depicted
i e
t fore
c of
an expect to obtain a starting tree with a relatively g
ikelihood value compared to random or NJ star
rees.

Fig. 1. Rearrangments traversing one node for sub
 5, branches which are optimized are indicated by bold lines.

n Fig. 1 with bold lines RAxML only optimizes th
hree branches adjactent to the insertion point be
omputing its likelihood value. Since the likelihood
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the tree strongly depends on the topology per se this
fast pre-scoring can be used to establish a small list
of good alternative trees. RAxML uses a list of only
size 20 to store the best trees obtained during one re-
arrengement step. This list size proved to be a prac-
tical value in terms of speed and thoroughness of the
search. The algorithm performs global branch length
optimizations only on those 20 best trees after comple-
tion of each rearrangement step. Due to the capability to
analyze many more alternative topologies in less time
higher rearrangements settings can be used, e.g. 1–5
or 1–10 which results in significantly improved final
trees.

Another important change especially for the ini-
tial optimization phase, i.e the first 3–4 rearrangement
steps, consists in the subsequent application of topo-
logical improvements during one rearrangement step.
If during the insertion of one specific subtree into an
alternative branch a topology with a better likelihood
is found thistree is kept immediatly and all subsequent
subtree rearrangements are performed on the improved
topology. This enables rapid optimization of the topol-
ogy during the initial optimization phase of the algo-
rithm (see below).

2.2. Distributed algorithm

Our Motivation to build a distributed seti@home-
like [9] code is driven by the computation time require-
ments for trees containing more than 1000 organisms
a for
t The
m re-
d ccept
p ple-
m rchi-
t

is-
t es.
T ign-
m ich
f at-
t taxa
a pen-
d tree
a

ro-
c the

high speed of a single topology evaluation it is not fea-
sible to distribute work by topologies as, e.g. in parallel
fastDNAml. Instead, we distribute work by sending a
span of subtree node numbers, i.e. IDs for the sub-
trees which shall be moved, along with the currently
best topologyct, to each worker. Since the subsequent
application of topological improvements during 1 rear-
rangement step is closely coupled we slightly modify
the algorithm according to the following observation:
Our experiments have shown that subsequent improved
topologies occur only during the first rearrangement
steps (initial optimization phase). Thereafter, only one
alternative topology per rearrangement step improves
the likelihood. This behaviour is illustrated inFig. 2
where we plot the number of improved topologies per
rearrangement step for a phylogenetic reconstruction of
a 150 taxa tree with a random and a parsimony starting
tree. When the number of improved topologies is zero
the improved tree has been obtained by optimizing a
toplogy of the best tree list (final optimization phase).
This phase requires the largest amount of computation
time, especially with big alignments (>500 organisms,
≈70% of execution time). Thus, during the initial op-
timization phase we send only one single subtree ID
i, i = 2, ..., #species× 2 − 1 along with the currently
best treect to each worker for rearrangements. The
worker returns the best treewti obtained by rearrang-
ing subtreei to the master. Ifwti has a better likelihood
thanct at the master,ct is set towti and distributed to
each worker along with the subsequent work (subtree
I

mu-
n
( er of
t

on
p orker
d local
w ts
o each
w its
b o the
m

zed
t nge-
m re-
q pro-
g nds
nd by the desire to provide inexpensive solutions
his problem which do not require supercomputers.
ain design principle of our distributed code is to
uce communication costs as far as possible and a
otentially bad speedup-values. The protoype im
entation is based on a simple master-worker a

ecture and consisits of two phases.
In phase I, our distributed algorithm starts by d

ributing the alignment file to all worker process
he alignment data transfer is not critical since al
ents show good compression ratios with gzip wh

orms part of our http communication library. We
ained, e.g. a compression by factor 31 for a 1000
lignment using gzip. Thereafter, each worker inde
ently computes a randomized parsimony starting
nd sends it to the master process.

In phase II, the master initiates the optimization p
ess for the best parsimony starting tree. Due to
D) requests.
In the final optimization phase, we reduce com

ication costs by generating only 5× #workers jobs
subtree ID spans) and entirely avoiding the transf
ree topologies.

Finally, irrespective of the current optimizati
hase the best 20 topologies computed by each w
uring one rearrengement step are stored in a
orker tree list. When all subtree rearrangemeni
f one rearrangement step have been completed,
orker conducts branch length optimizations on
est 20 local trees and returns the best topology t
aster.
When all workers have branch-length optimi

heir topologies the master initiates the next rearra
ent step until no better tree is found. Due to the
uired changes to the algorithm the distributed
ram is non-deterministic, since final output depe
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Fig. 2. Number of improved topologies per rearrangement step for a phylogenetic inference with 150 organisms using random and parsimony
starting trees.

on the number of workers and on the arrival sequence
of results for runs with equal numbers of workers. This
is due to the changed implementation of the subse-
quent application of topological improvements during
the initial rearrangement steps which causes a traversal
of search space on different paths.

2.3. Technical issues

We will shortly outline some technical issues of
our http-based implementation concerning communi-
cation, redundancy and security. The communication
infrastructure is provided by a http-library which can
easily be integrated into the MPI-based prototype by
replacing the MPI communication routines. The most
expensive part in terms of communication costs is the
distribution of the alignment file which is compressed
uzing gzip. To obtain redundancy we distribute every
subtree rearrangement job twice and use a queue and
timeouts to ensure that every job is computed. Further-
more, we have developed a failure protocol which is
able to handle temporary master and worker failures.
Finally, we deal with the scenario that some workers
deliberately return phony trees. If the tree is not in the
correct format, this can easily be detected by the rou-
tine which reads the tree string. The only problem arises
when a worker returns a tree that is in the correct fro-
mat and has a “fake” likelihood (i.e. a likelihood value
which is significantly better than the actual likelihood

of the topology conatined in the message) which is bet-
ter than the currently best tree at the master. In this case,
the likelihood of that topology is verified by the master
process.

3. Results

In order to test our distributed prototypes we exe-
cuted our MPI-based program for a fixed starting tree
on 4, 8, and 16 processors of the LINUX cluster at the
RRZE [8] with an alignment containing 1000 organ-
isms (1000ARB). Furthermore, we conducted an ini-
tial test of the http-based prototype on a small LINUX
PC cluster at our institute equipped with Intel Xeon
2.4 GHz processors which are interconnected by In-
finiband with an alignment of 2025 (2025ARB) se-
quences. Due to the design of the distributed implemen-
tation we can not expect near-optimal speedups and ex-
actly equivalent results for runs with distinct numbers
of processors. The sequential execution on the same
processor type for 1000ARB required 53002 seconds
and yielded a final likelihood value of -400970.31. The
times at which the distributed program passed the like-
lihood of the sequential one, the final likelihood values
and speedups for 1000ARB as well as the final result
for 2025ARB are listed inTable 1. For calculating,
the speedup we only consider the number of worker
processes.
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Table 1
Results obtained by the fisrt test with the distributed prototypes of DRAxML@home

Data set # Processors Likelihood Secs Speedup Program

1000ARB 1 (1) −400970.31 53002 1 Sequential
1000ARB 4 (3) −400945.43 17871 2.97 MPI
1000ARB 8 (7) −400950.58 10693 4.96 MPI
1000ARB 16 (15) −400947.24 7542 7.03 MPI

2025ARB 10 (9) −371366.74 141388 Void http

4. Conclusion & future work

We presented a distributed non-deterministic algo-
rithm for phylogenetic tree inference which is based on
heuristics which outperform the currently fastest and
most accurate programs for phylogenetic tree inference
on real-world data (see[11]) under simple models of
site substitution.

Furthermore, we have presented first experimental
results for DRAxML@home which demonstrate that
computing high-quality phylogenetic trees containing
up to 2000 organisms is now feasible on a couple of
workstations instead of supercomputers.

Future work will mainly cover the execution of large
parallel and distributed production runs and an effort to
install and execute DRAxML@home on a greater num-
ber of workstations. The overall goal is to compute a
first “small” tree of life containing about 10.000 repre-
sentative organims from the three domains: Archaea,
Bacteria and Eukarya.
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