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ABSTRACT

As FPGA devices become larger, the trend is to have more

coarse-grain modules coupled with large scale reconfigurable

fabric, thus enabling new classes of applications to run effi-

ciently compared to a general-purpose computer. This paper

presents an architecture that benefits from the large number

of DSP modules in Xilinx technology to implement mas-

sive floating point arithmetic. Our architecture computes

the Phylogenetic Likelihood Function (PLF) which is an im-

portant bioinformatics kernel. The PLF accounts for ap-

proximately 95% of total execution time in all state-of-the-

art Maximum Likelihood (ML) based programs for recon-

struction of evolutionary relationships. We validate and as-

sess performance of our architecture using a highly opti-

mized and parallelized SW implementation of the PLF that

is based on RAxML, which is considered to be one of the

fastest and most accurate programs for phylogenetic infer-

ence. Both software and hardware implementations use dou-

ble precision floating point arithmetics. The new architec-

ture achieves speed ups ranging from 1.6 up to 7.2 com-

pared to a high-end 8-way dual-core general-purpose com-

puter running the aforementioned highly optimized OpenMP-

based multi-threaded version of the PLF.

1. INTRODUCTION

Several reconfigurable logic-based solutions for various bioin-

formatics algorithms and applications came to light in re-

cent years. Bioinformatics algorithms that solve the DNA

sequence matching problem such as Smith Waterman [1, 2]

and BLAST [3, 4, 5] have frequently been mapped to FP-

GAs in the past. From a computer architecture point of

view, these problems deal with data streaming as well as

character matching issues and exhibit similar characteristics

as applications from other domains, such as network pro-

cessor and intrusion detection systems [6, 7]. While the re-

∗Part of this work is funded under the auspices of the Emmy-Noether

program by the German Science Foundation (DFG)

configurable architecture community has been involved with

bioinformatics, several interesting problems characterized

by great computational demands came to light. New FPGA

devices offer hardware resources that can be used to build

powerful floating point arithmetic architectures, which un-

til recent years represented a weak point of reconfigurable

technology. This feature now allows to deploy new gener-

ation FPGAs for novel classes of bioinformatics problems.

One such challenging problem is the evaluation of the Phy-

logenetic Likelihood Function (PLF). Previous efforts to de-

sign reconfigurable architectures for this problem have been

reported [8, 9] but due to the wide number of methods avail-

able and the biological data flood that is driven by new wet-

lab technologies, the efficient computation of the PLF re-

mains an open challenge.

The PLF is the most computationally intensive part of

the RAxML algorithm [10] and a plethora of other PLF-

based codes such as GARLI, MrBayes, PAML, or PAUP*.

Those programs are widely used by biologists (the most

popular ones have accumulated over 20,000 citations ac-

cording to Google Scholar) to reconstruct the evolutionary

history for a group of species by using the DNA sequences

of the species under study. The input for PLF-based pro-

grams is a multiple sequence alignment, essentially an nxm

data matrix, that contains n DNA sequences which all have

a lenght of m nucleotide characters (m columns). More than

95% of overall execution time is spent to compute the PLF in

the aforementioned programs. A phylogeny or phylogenetic

tree is a binary tree structure that represents the evolution-

ary relationships among species. The tips (also called leaves

or taxa) of the tree represent species alive today in contrast

to internal (ancestral) nodes that represent species that have

become extinct.

Phylogenetic trees have many important applications in

medical and biological research (see [11] for a summary). In

this paper we present a new architecture which significantly

extends an initial proof-of-concept design [11] (preprint at

http://wwwkramer.in.tum.de/exelixis/HICOMB2009.pdf).

The initial architecture was only able to compute the PLF



on fully balanced trees, but already yielded a significant per-

formance boost. The major extension in the more versatile

architecture presented here is that it can evaluate the PLF for

any given tree topology at the same speed as the previous ar-

chitecture, it exploits the intrinsic parallelism of the PLF in

a more flexible and scalable way, and that it is able to con-

duct so-called partial tree traversals which represent a fun-

damental mechanism in the design of current tree search al-

gorithms. The proposed architecture yields exactly the same

likelihood scores as the reference software. It has been fully

post place and route simulated and executes several dozens

of double-precision floating point operations during every

clock cycle. Input/output issues have been taken into ac-

count to allow for mapping to a modern platform. An ac-

celereated HW solution, can save valuable time, since cur-

rent large-scale phylogenetic analyses projects with RAxML

in collaboration with biologists require up to 2.25 million

CPU hours on an IBM BlueGene/L supercomputer and up

to 89GB of main memory [12].

2. COMPUTING THE PHYLOGENETIC

LIKELIHOOD FUNCTION

Felsenstein’s pruning algorithm [13] is the standard method

to compute the PLF and hence the likelihood score for a

given tree topology. In the following we provide an ab-

stract description of this algorithm. The first step consists

in tracking down a pair of child nodes i and j in the given

tree for which the likelihood vector at the common ancestor

k (1 ≤ i, j, k ≤ 2n − 2) has not already been computed.

The second step is to calculate the likelihood vector entries

of the common ancestor (ancestral likelihood vector at k)

and prune out the child nodes. These steps are executed re-

cursively until the likelihood vector at the virtual root vr

has been calculated and thus the pruning process has trans-

formed the initial tree to only one node that is located at the

virtual root. Phylogenetic trees under ML are unrooted for

mathematical and computational reasons (see [13] for de-

tails), but a virtual root vr can be placed into any branch of

the tree to evaluate its likelihood score.

In order to compute the PLF on a given, fixed, tree topol-

ogy one also requires the branch lengths and the parame-

ters of the statistical model of nucleotide substitution P (b)
which is a 4x4 matrix that provides the transition probabil-

ities between nucleotide states A, C, G, T given a branch b.

To compute the likelihood on a fixed tree with given branch

lengths and model parameters, one initially needs to com-

pute the entries for all ancestral likelihood vectors which are

located at the inner nodes of the tree bottom up from the tips

towards the virtual root. Every likelihood vector entry at po-

sition c (c = 1...m) ~L(c) at the tips and at the inner nodes

contains the four probabilities P(A), P(C), P(G), P(T) of ob-

serving a nucleotide A, C, G, or T at a specific column c of
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Fig. 1. Computation of ancestral likelihood vector entries.

the input alignment. The probabilities at the tips (leaves) of

the tree for which observed data (the DNA sequences of the

organisms under study) is available are set to 1.0 for the ob-

served nucleotide character at the respective position c, e.g.,

for the nucleotide A: ~L(c) = (1.0, 0.0, 0.0, 0.0).
Given, a parent node k and two child nodes i and j,

their likelihood vectors ~L(i) and ~L(j), the respective branch

lengths leading to the childern bi and bj and the transition

probability matrices P (bi), P (bj), the likelihood of observ-

ing an A at position c of the ancestral (parent) vector ~L
(k)
A (c)

is computed as follows:

~L
(k)
A (c) =

`

T
X

S=A

PAS(bi)~L
(i)
S (c)

´`

T
X

S=A

PAS(bj)~L
(j)
S (c)

´

(1)

A schematic representation of this procedure is outlined

in Figure 1. When the procedure reaches the root, the col-

umn likelihood l(c) is computed as follows using the likeli-

hood vector ~L(vr) of the virtual root:

l(c) =

T
X

S=A

πSLS
(vr)(c) (2)

The probabilities πA through πT are the prior probabili-

ties (also called base frequencies) for observing A, C, G, or

T at vr and are typically drawn empirically from the input

data. To compute the overall likelihood we then compute the

product over all l(c).

3. RELATED WORK

While there exist many tools and methods for phylogeny re-

construction, only few of them have been mapped to hard-

ware. Bakos et al [14] map GRAPPA [15] to an FPGA



which is based on gene order input data. Phylogenetic in-

ference using gene order data is mainly a discrete problem

and therefore only requires few floating point operations.

Phylogenetic analyses that use gene order instead of DNA

sequence input data are rarely used for real-world analyses

at present. Also, a simple sequence-based method called

UPGMA (Unweighted Pair Group Method with Arithmetic

Mean) has been mapped to HW [16]. UPGMA is one of

the most simple tree reconstruction methods and is currently

not used for real-world phylogenetic analyses. Mak and

Lam [8, 9] report the mapping of a reduced floating point

precision PLF implementation to FPGAs that is based on the

simple Jukes-Cantor (JC69 [17]) model of nucleotide substi-

tution. The most commonly used and most complex model

is the GTR (General Time Reversible) model of nucleotide

substitution which we also implement in our architecture.

4. ARCHITECTURE

We propose a master-worker architecture that consists of

two main units: the Target Pair Unit (TPU, master) and the

Computational Basic Core (CBC, worker). The TPU (mas-

ter) performs the first of the previously described algorith-

mic steps while the CBC (worker) unit performs the second.

The TPU executes the tree traversal steps of the pruning al-

gorithm on the contents of a local memory which is used to

hold information about the tree nodes and tips, i.e., the tree

structure. The TPU tracks down which tips, inner nodes or

which combination thereof should be combined to compute

the entries of an ancestral likelihood vector. The informa-

tion needed by the worker to locate the tip sequences or the

likelihood vectors in the external or internal memories in or-

der to start calculating the ancestral likelihood vector is pro-

vided via shared registers. Both the TPU as well as the CBC

have access to these registers. Once the TPU has written the

required addresses and selection bits, it sends a start signal

to the CBC which indicates that there are valid data avail-

able in the registers. This means that the CBC can start its

calculation process. At the same time the TPU switches to

stand-by mode. The TPU now waits for the CBC to calculate

the ancestral likelihood vector and write back (to the shared

registers) the address and selection bits of the memory posi-

tion where the newly computed ancestral likelihood vector

has been stored. The CBC then announces that the calcu-

lation process has been completed by sending a respective

signal to the TPU. The TPU will then update its local mem-

ory accordingly using the information from the shared reg-

isters and will determine the next pair of tips and/or nodes

for which an ancestral vector needs to be computed.

We denote this design as master-worker architecture be-

cause only the TPU can initiate computations on the CBC.

The general architectural scheme of the proposed design is

illustrated in Figure 2.
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4.1. The Target Pair Unit (TPU)

As already mentioned the TPU executes Felsenstein’s prun-

ing algorithm on the contents of its local memory. The top-

level architecture of this unit is outlined in Figure 3. The unit

consists of three structural components, a Control Unit im-

plemented as FSM (Finite State Machine) and a local mem-

ory. The component Examine Line in coordination with the

Control Unit execute the algorithm to determine the pairs of

tips and/or nodes to be combined.

The Store Tree unit is used to initialize the contents of

the local memory. It reads in the input tree to be evaluated

that is encoded as an integer array. The integer array that

describes the tree topology contains the node depths (dis-

tances from the virtual root) in depth-first order from the

virtual root. For example, the tree illustrated in Figure 5 (top

right) is given by the integer array: 1 (depth of A), 2 (depth

of D), 3 (depth of C), 3 (depth of B). The Create New Line

unit is used to back-transfer the information that has been

written to the shared registers by the CBC which describes

the ancestral vector that has just been calculated. The fields

in the memory lines of the local memory which holds the

tree structure are shown in Figure 4. The valid field indi-

cates whether the memory line contains useful information

for the remainder of the pruning process. The depth field

contains the depth of the tip or node that the line describes.

As already mentioned, the depth represents the depth-first

node distance to the virtual root, e.g., the two child nodes of

the virtual root have depth one. The remaining fields (ad-

dress, ext int sel and lft rght sel ) hold the necessary infor-

mation for addressing the nucleotide sequences at the tips

or the ancestral likelihood vectors. The address field is an

index to the memory line that contains the first nucleotide of

a DNA sequence (if the line denotes a tip) or the first likeli-

hood vector entry (if the line represents an inner node). Both

nucleotide sequences and ancestral likelihood vectors are
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memory and the respective trees.

stored contiguously in the external and the internal memory

respectively. The address field contains a memory address

but it has not yet been specified, whether this address refers

to internal or external memory. This information is provided

by the ext int sel (external/internal selection) field. If this

bit is set, the address refers to the internal memory. Internal

memory is organized into two big parts, thus the lft rght sel

(left/right selection) field is used to select between these two

parts. If this bit is set, then the address refers to the right part

of internal memory. Each valid line represents a tip or a node

vector of the tree. Two snapshots of the local memory that

illustrate how the TPU works are depicted in Figure 5. For

the four-taxon tree shown in the figure (top right), the master

unit initializes the memory as shown by the table in the top

left corner. Every tip of the tree has been labeled with a cap-

ital letter. The virtual root has been placed into the branch

that connects A to the rest of the tree. There is also one num-

ber for every node (tips as well as internal nodes) of the tree

that indicates the distance to the virtual root. The component

Examine Line reads the memory from the top and stores the

contents of the fields: address, ext int sel and lft rght sel to

the shared registers. Then the Control Unit triggers the CBC

to start the calculation. When the CBC has calculated the

respective likelihood vectors it updates the shared registers

with the address and selection bits of the ancestral vector

which has been labeled by E in the second tree of Figure 5

(lower part). Then, the unit Create New Line updates the

memory and the contents of it are available to the next step

of the pruning algorithm. The memory update sequence is

thus equivalent to the pruning steps in the tree.
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4.2. The Computational Basic Core (CBC)

Initially the CBC (worker unit) remains idle while the TPU

determines the nodes to be combined. When the CBC is

triggered by the TPU to start the calculations, it fetches the

data at the position provided by the addresses and selection

bits in the shared registers and starts the calculation of the

likelihood vectors. An overview of the CBC architecture is

provided in Figure 6. It consists of the Control FSM, the

Basic Cell Array, the Fetch Units (FIFOs), internal memo-

ries and the Likelihood Score Unit. The Fetch Units have

been specifically designed to hide the latency of linear ex-

ternal memory acesses to likelihood vectors (evidently the

latency can not be hidden for the initial accesses to vector

or tip addresses) from the Basic Cells. Since the likelihood

vectors are long, i.e., typically m ≥ 1, 000, the latency for

the access to the first datum of an array is negligible while

we can achieve infinitely large burst ability.

The Basic Cell Array consists of ten Basic Cells which

perform the double precision floating point additions and

multiplications provided in Equation 1. All Basic Cells work

in parallel on a different column of the sequence alignment

which is stored in external memory. This design can easily

be extended to a maximum of m Basic Cells, i.e., every Ba-

sic Cell can work concurrently to compute one of the entries

of the respective vector ~L of length m. According to the

node pair provided by the TPU the appropriate data are pre-

fetched and stored in the Fetch Units or accessed directly in

internal memories. The resulting ancestral likelihood vec-

tor is written to the internal memories. Once the likelihood

vector of the virtual root has been computed, the Basic Cells

are used again to calculate the per-column likelihood scores

(see Equation 2) and the product over the per-column scores

l(c) is then computed by the Likelihood Score Unit.
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4.2.1. The Basic Cell Design

The Basic Cell Array consists of 10 Basic Cells that work

in parallel. Each Basic Cell is arranged as a tree of double

precision floating point adders and multipliers, which also

operate in parallel as shown in Figure 7. The Basic Cells are

fully pipelined with a total pipeline depth of 58 cycles. Each

Basic Cell evaluates one likelihood value per cycle yield-

ing one likelihood vector entry every 4 cycles (for all 4 nu-

cleotides). Because the operations required for the calcula-

tion of the likelihood vector at the virtual root are slightly

different, the Basic Cell also contains a vector of pipeline

registers and a 4 to 1 multiplexer in order to perform the ap-

propriate operations when the respective mode signal is set.

# taxa 1 Thr. 2 Thr. 4 Thr. 8 Thr. 16 Thr.

4 7.04 3.92 2.40 2.16 3.77

8 5.76 3.32 2.14 2.18 3.08

16 5.22 3.04 1.95 1.62 2.84

32 5.19 2.90 1.86 1.66 2.92

64 5.49 3.00 1.86 1.64 2.89

128 5.50 3.20 2.18 1.73 2.27

256 5.44 3.20 2.33 1.94 2.34

512 5.41 3.18 2.28 2.01 2.96

Table 1. Speedups of the hardware design compared to the

multi-core software implementation.

5. SYSTEM EVALUATION & PERFORMANCE

Extensive post place and route simulations were conducted

to verify the functionality of the proposed architecture. The

input data sets contained trees with 4, 8, 16, 32, 64, 128, 256

and 512 taxa (tips/leaves) and a length of 1,000 nucleotides

each. The results (likelihood scores of the trees) computed

by the new architecture were exactly identical to those ob-

tained by the software implementation. In order to conduct

a fair performance comparison between the HW and SW

implementations, we designed and optimized (based on 8

years of programming experience with phylogenetic infer-

ence software) a light-weight SW version to compute the

PLF that omits the overhead of the standard RAxML open-

source distribution. We compiled this light-weight version

(available at http://wwwkramer.in.tum.de/exelixis/software)

using the Intel icc compiler (v 10.1, optimization option -

O3) that generates faster code than gcc for RAxML and also

parallelized the PLF with OpenMP. We executed the pro-

gram with 1, 2, 4, 8, and 16 threads on a high-end SUN

x4600 system equipped with 8 dual core AMD Opteron pro-

cessors running at 2.6 GHz and with 64 GB of main mem-

ory. In order to obtain accurate software timing results, we

measured the time required by a loop that executes 20,000

full tree traversals. The proposed architecture was mapped

to a Xilinx V5 SX240T FPGA. The design with 10 parallel

basic cells uses 87% of the slice LUTs, 94% of the BRAMs,

and 93% of the DSP48Es on this device.

The clock speed that was measured for the design amounts

to 101 MHz (static timing report of the Xilinx Tools, AD-

VANCED 1.53 speed file). Figure 8 provides the projected

FPGA execution times and actual software execution times

on the Sun x4600 for 1, 2, 8, and 16 threads as a plot over in-

put tree size for the respective data sets. As can be observed

in the plot, the execution of the SW implementation with

16-threads is slower than with 8-threads. The reason for this

slowdown and the lack of scalability lies in an unfavorable

communication to computation ratio. For all test datasets,

FPGA performance is better than that of a highly optimized

SW implementation running in parallel on a high-end multi-

core machine. While the execution times are within the mil-



lisecond range, in real application scenarios, search algo-

rithms will invoke likelihood computations millions of times

to conduct ML estimates of model parameters and to search

for the best ML tree topology which is an NP-complete op-

timization problem. As already mentioned current large-

scale analyses can require up to 2.25 million CPU hours and

89GB of main memory. Hence, architectural solutions are

urgently required to be able to handle the biological data

flood in the near future.

6. CONCLUSION & FUTUREWORK

A new architecture which was jointly developed by a high

performance computing bioinformatics group and a recon-

figurable hardware group was presented. It yields exactly

identical results (likelihood scores) as the equivalent soft-

ware implementation. The speedups of 1.6–7.04 are mod-

est, though within the typical order of magnitude for dou-

ble precision floating point kernel implementations on FP-

GAs. Moreover, performance is compared in a fair way to a

highly optimized and OpenMP-parallelized code on a high-

end multi-core machine. Thus, the results presented here

are encouraging and the insights and experience that has

been gained can be used to further improve this new archi-

tecture. We will work towards redesigning the critical path

in order to increase the clock speed, and plan for mapping

the design to actual hardware and integrate it with software

for phylogenetic inference. We will further extend the cur-

rent hardware design by modules to calculate the likelihood

score of very large trees (with respect to the number of taxa

n), which require a scaling mechanism to avoid numerical

underflow, as well as by modules for supporting the branch

length optimization process which is conducted via an iter-

ative Newton-Raphson procedure.
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