
Phylogenetic Tree Inference on PC Architectures with AxML/PAxML
�

Alexandros P. Stamatakis
Technical University of Munich, Department of Computer Science

Thomas Ludwig
Ruprecht-Karls-University, Department of Computer Science

Abstract

Inference of phylogenetic trees comprising hundreds or
even thousands of organisms based on the maximum like-
lihood method is computationally extremely expensive. In
previous work, we have introduced Subtree Equality Vec-
tors (SEVs) to significantly reduce the number of required
floating point operations during topology evaluation and
implemented this method in (P)AxML, which is a deriva-
tive of (parallel) fastDNAml. Experimental results show
that (P)AxML scales particularly well on inexpensive PC-
processor architectures obtaining global run time acceler-
ations between 51% and 65% over (parallel) fastDNAml
for large data sets, yet rendering exactly the same output.
In this paper, we present an additional SEV-based algorith-
mic optimization which scales well on PC processors and
leads to a further improvement of global execution times of
14% to 19% compared to the initial version of AxML. Fur-
thermore, we present novel distance-based heuristics for re-
ducing the number of analyzed tree topologies, which fur-
ther accelerate the program by 4% up to 8%. Finally, we
discuss a novel experimental tree-building algorithm and
potential heuristic solutions for inferring large high quality
trees, which for some initial tests rendered better trees and
accelerated program execution at the same time by a factor
greater than 6.

1. Introduction

Within the ParBaum (Parallel Tree) project at the Tech-
nical University of Munich (TUM), work is conducted on
parallel phylogenetic tree inference based on the maximum
likelihood method by J. Felsenstein [2]. The overall aim

�

This work is sponsored under the project ID ParBaum, within the
framework of the “Competence Network for Technical, Scientific High
Performance Computing in Bavaria”: Kompetenznetzwerk für Technisch-
Wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern (KON-
WIHR). KONWIHR is funded by means of “High-Tech-Offensive Bay-
ern”.

of the project is to develop novel systems and algorithms
for the computation of huge phylogenetic trees based on se-
quence data from the ARB [12] database in distributed and
parallel environments. In previous work [8, 9, 10] we have
introduced Subtree Equality Vectors (SEVs) as a means to
reduce topology evaluation time significantly, which repre-
sents the by far most cost-intensive part of every phyloge-
netic tree inference process based on the maximum likeli-
hood method irrespective of the tree building algorithm de-
ployed. We implemented our concept in (parallel) fastD-
NAml [7, 11] and named the resulting program Parallel
A(x)ccelerated Maximum Likelihood (PAxML). In tests
with alignments of 150 up to 500 sequences, we achieved
global run time improvements of 26% up to 65% 1 for both
the sequential and the parallel version on various platforms.
An important result of this work is that the amount of per-
formance improvement primarily depends on the processor
architecture and far less on the specific data set used. We
found that (P)AxML scale particularly well on inexpensive
PC processor architectures such as the AMD Athlon MP
or Intel Pentium III. E.g. for the same 150 sequence align-
ment the acceleration achieved with PAxML was 26.57%
on the Hitachi SR8000-F1 [6] supercomputer and 62.42%
on a LINUX cluster. This is due to the fact that SEVs
require the execution of a certain amount of integer and
pointer arithmetics. Traditional supercomputers have pri-
marily been designed to perform efficiently floating point
operations as required for typical supercomputing applica-
tions such as fluid dynamics are not well suited for bioin-
formatics applications, which perform irregular data access
in graphs and an important amount of integer arithmetics.
Therfore, in this paper, we focus on optimizing and im-
proving our (P)AxML code for PC processor architectures
and clusters. Furthermore, the HELICS [3] 512 processor
PC cluster is at our disposal for computations and PC clus-
ters are inexpensive as well as more adequate for our pro-
grams than supercomputers and facilitate installation and
adaptation. Finally, (P)AxML is a good candidate for a

1The best accelaration values have been achieved with PAxML

seti@home-like system [1] due to its coarse-grained paral-
lelism which increases as the tree grows. Such distributed
applications primarily run PCs.

The remainder of this paper is organized as follows: In
section 2 we describe the SEV method, which is a prereq-
uisite for understanding the novel SEV-based optimization
of (P)AxML in the same section. This additional optimiza-
tion rendered performance improvements of 14% to 19%
compared to the initial version of (P)AxML on PC proces-
sor architectures. In section 3 we describe novel distance-
based heuristics for further accelerating the program by an
average of 4% to 8%. In section 5 we describe results ob-
tained with the modified algorithms. Finally, in section 6
we report about current work covering a new experimental
tree building algorithm and potential additional heuristics
as well as solutions for the inference of huge phylogenetic
trees. First tests with a novel randomized approach render
run time improvements of factor � 6 and yield trees with
better likelihood scores at the same time. We conclude with
a description of future work.

2. Subtree Column Equalities

In general the cost of the likelihood function and the
branch length optimization function, which accounts for the
greatest portion of execution time (95% in the sequential
version of fastDNAml), can be reduced in two ways:

Firstly, by reducing the size of the search space us-
ing some additional heuristics, i.e. reducing the number of
topologies evaluated and thus reducing the number of like-
lihood function invocations. This approach might, however,
overlook high quality trees.

Secondly, by reducing the number of sequence positions
taken into account during computation and thus reducing
the number of computations at each inner node during each
tree’s evaluation.

We consider the second possibility through a detailed
analysis of column equalities. Two columns in an align-
ment are equal and belong to the same column class if, on
a sequence by sequence basis, the base is the same. A ho-
mogeneous column consists of the same base, whereas a
heterogeneous column consists of different bases.

More formally, let �����������	�
��� be the set of aligned input
sequences. Let
 be the number of sequence positions of
the alignment. We say that two columns of the input data set�

and � are equal if �������������������	�����������! "�#���%$, where ���%$
is the � -th position of sequence � . One can now calculate
the number of equivalent columns for each column class of
the input data set.

After calculating column classes, one can compress the
input data set by keeping a single representative column
for each column class, removing the equivalent columns of

the specific class and assigning a count of the number of
columns the selected column represents.

Since a necessary prerequisite for a phylogenetic tree
calculation is a high-quality multiple alignment of the input
sequences, one might expect quite a large number of col-
umn equalities on a global level. In fact, this kind of global
data compression is already performed by most programs.
Unfortunately, as the number of aligned sequences grows,
the probability of finding two globally equal columns de-
creases. However, it is reasonable to expect more equalities
on the subtree, or local, level.

The fundamental idea of this paper is to extend this com-
pression mechanism to the subtree level, since a large num-
ber of column equalities might be expected on the subtree
level. Depending on the size of the subtree, fewer sequences
have to be compared for column equality and thus, the prob-
ability of finding equal columns is higher.

None the less, we restrain the analysis of subtree column
equality to homogeneous columns for the following reason:

The calculation of heterogeneous equality vectors at an
inner node & is complex and requires the search for ' � dif-
ferent column equality classes, where � is the number of
tips (sequences) in the subtree of & and ' is the number of
distinct values the characters of the sequence alignment are
mapped to (e.g. fastDNAml uses 15 different values). This
overhead would not amortize well over the additional col-
umn equalities we would obtain, especially when ' � �(
*) .

We now describe an efficient and easy way for recur-
sively calculating subtree column equalities using Subtree
Equality Vectors (SEVs).

Let � be the virtual root placed in an unrooted tree for
the calculation of its likelihood value. Let & be the root of a
subtree with children + and , , relative to � . Let -/. & (-/. + ,
-/. ,) be the equality vector of & (+ , , , respectively), with
size
) , where
) is the length of the compressed global
sequences. The value of the equality vector for node & at
position

�
, where

� �0�������	����
) can be calculated by the
following function:

-/. &"1 �32 �
4 -�. +51 �326�37 -/. +51 �32 �8-/. ,51 �329 � -�:;�/- (1)

If & is a leaf, we set -/. &<1 �32 �=�>
@?/&"1A�/-/+�BC-/�D'E- &<1 �32�2 ,
where,
*?�&<1 2 is a function that maps the character repre-
sentation of the aligned input sequence �/-�+�BF-/�D'E- & at leaf &
to values GH���I���	���	��' . Thus, the values of an inner SEV -�. & ,
at position

�
, range from 9 ���%GJ�����	���%' , i.e. 9 � if column

�
is heterogeneous and from GJ�����	���%' in the case of an homo-
geneous column. For SEV values GJ�����	���%' a pointer array
,�- 7 &<1K' 2 is maintained, which is initialized with L�MONPN
pointers, for storing the references to the first occurrence of
the respective column equality class in the likelihood vector
of the current node & .

Thus, if the value of the equality vector -/. &"1�� 2 � 9 �
and ,�- 7 &"1K-/. &"1�� 2%2��� L MON N for an index � of the likeli-
hood vector :K. &"1�� 2 of & , the value for the specific homoge-
neous column equality class -/. &<1	� 2 has already been cal-
culated for an index

��� � and a large block of floating point
operations can be replaced by a simple value assignment
: . &<1	� 2 � �8:K. &<1 �32 . If -�. &"1�� 2 � 9 � and ,�- 7 &"1K-/. &"1�� 2%2 �L�MON N , we assign ,�- 7 &<1K-/. &<1	� 2�2 to the address of
: . &<1	� 2 , i.e. ,�- 7 &<1K-/. &"1	� 2%2 �=� ?��I,51K:K. &"1	� 2%2 .

The additional memory required for equality vectors is� 1 � �
) 2 . The additional time required for calculating the
equality vectors is

� 1K
) 2 at every node.
The initial approach renders global run time improve-

ments of 12% to 15%. These result from an acceleration of
the likelihood evaluation function between 19% and 22%,
which in turn is achieved by a reduction in the number of
floating point operations between 23% and 26% in the spe-
cific function.

It is important to note that the initial optimization is only
applicable to the likelihood evaluation function, and not to
the branch length optimization function. This limitation is
due to the fact that the SEV calculated for the virtual root
placed into the topology under evaluation, at either end of
the branch being optimized, is very sparse, i.e. has few en-
tries � 9 � . Therefore, the additional overhead induced by
SEV calculation does not amortize well with the relatively
small reduction in the number of floating point operations
(2% - 7%). Note however, that the SEVs of the real nodes
at either end of the specific branch do not need to be sparse,
this depends on the number of tips in the respective sub-
trees.

We now show how to efficiently exploit the information
provided by an SEV in order to achieve an additional reduc-
tion in the number of floating point operations by extending
this mechanism to the branch length optimization function.

In order to make better use of the information provided
by an SEV at an inner node & with children , and + , it is
sufficient to analyze at a high level how a single entry

�
of

the likelihood vector at & , :K. &<1 �32 is calculated:

: . &"1 �32 � 7 1���1K:K. +51 �32 �
	F1 & ��+ 2�2 ����1K: . ,51 �32 ��	 1 & ��, 2%2�2 (2)

where 	 1 & ��+ 2 (1 & �%, 2) is the length of the branch from & to
+ (& to , respectively). Function ��1 2 is a computationally ex-
pensive function that calculates the likelihood of the left and
the right branch of & respectively, depending on the branch
lengths and the values of : . +51 �32 and : . ,51 �32 , whereas

7 1 2
performs some simple arithmetic operations for combining
the results of ��1K:K. +51 �32 �
	F1 & ��+ 2�2 and ��1K: . ,51 �32 ��	 1 & ��, 2%2 into
the value of :K. &<1 �32 . Note that 	 1 & �%+ 2 and 	F1 &"��, 2 do not
change with

�
.

If we have -�. +51 �32 � 9 � and -/. +51 � 2 �-�. +51	� 2 � �
� � , we have :K. +51 �32 � : . +51	� 2 and therefore�C1;: . +51 �32 �
	F1 &"�%+ 2%2 ����1K:K. +51�� 2 �
	F1 &"�%+ 2�2 (the same equal-

ity holds for node ,). Thus, for any node + we can avoid
the recalculation of ��1K:K. +51 � 2 �
	F1 &"�%+ 2�2 for all ��� �

, where-/. +51�� 2 � -�. +51 �32 � 9 � . We precalculate those values
and store them in arrays &J,�-�'E? :K' +51K' 2 and &J,�-�'E? :K' ,51K' 2 re-
spectively, where ' is the number of distinct character-value
mappings found in the sequence alignment.

Our final optimization consists in the elimination of
value assignments of type : . +51 �32 �=�8: . +51	� 2 , for -/. +51 �32 �
-/. +51�� 2 � 9 �I� ��� � where

�
is the first entry for a specific

homogeneous equality class -/. +51 �32 ��GH���	�����%' in -/. + . We
need not assign those values due to the fact that :K. +51	� 2 will
never be accessed. Instead, since -/. +51�� 2 � -/. +51 � 2 � 9 �
and the value of � +51	� 2 ��� +51 � 2 has been precalculated and
stored in &J,�-�'E? :K' +51;-/. &<1 �32�2 , we access : . +51 �32 through its
reference in ,�- 7 +51K-/. +51 �32�2 .

During the main for-loop in the calculation of : . & we
have to consider 6 cases, depending on the values of -/. +
and -/. , . For simplicity we will write & +51 �32 instead of&J,�-�'E? :K' +51 � 2 and � +51 �32 instead of �C1;: . +51 �32 ��	 1 & �%+ 2%2 .

: . &"1 �32 � �

������������������������������������ �����������������������������������

7 1 & +51K-/. +51 �32�2 �K& , 1;-/. ,51 � 2%2�2��� -/. +51 �32 � -/. ,51 �32 � 9 �I�
,�- 7 &"1;-/. ,51 �32%2 � L�M N N
��� � &��� -/. +51 �32 � -/. ,51 �32 � 9 �I�,�- 7 &"1;-/. ,51 �32%2��� L�M N N
7 1 & +51K-/. +51 �32�2 �K& , 1;-/. ,51 � 2%2�2��� -/. +51 �32��� -/. ,51 �32 �
-/. +51 �32 ��-/. ,51 �32 � 9 �
7 1 & +51K-/. +51 �32�2 ��� ,51 �32�2��� -/. +51 �32 � 9 ���%-/. ,51 � 2 � 9 �
7 1�� +51 � 2 �K& , 1;-/. ,51 � 2%2�2��� -/. , 1 �32 � 9 ���%-/. +51 �32 � 9 �
7 1�� +51 � 2 ��� ,51 �32�2��� -/. +51 �32 � 9 ���%-/. ,51 � 2 � 9 �

(3)

For a more thorough description of SEVs see [10].

Additional Algorithmic Optimization: Since the initial
implementation was designed for no particular target plat-
form and (P)AxML scales best on PC processor architec-
tures, we investigated additional algorithmic optimizations
especially designed for these architectures. An additional
acceleration can be achieved by a more thorough exploita-
tion of SEV information in function makenewz(), which
optimizes the length of a specific branch � and accounts for
approximately one third of total execution time. Function
makenewz() consists of two main parts: Initially, a for-
loop over all alignment positions is executed for computing

the likelihood vector of the virtual root � placed into branch� connecting nodes & and + . Thereafter, a do-loop is exe-
cuted which iteratively alters the branch length according
to a convergence criterion. For calculating the new likeli-
hood value of the tree for the altered branch length within
that do-loop, an inner for-loop over the likelihood vector of
the virtual root � which uses the data computed by the initial
for-loop is executed.

A detailed analysis of makenewz() reveals two points
for further optimization:

Firstly, the do-loop for optimizing branch lengths is
rarely executed more than once (see Table 1). Furthermore,
the inner for-loop accesses the data computed by the ini-
tial for-loop. Therefore, we integrated the computations
performed by the first execution of the inner for-loop into
the initial for-loop and appended the conditional statement
which terminates the iterative optimization process to the
initial for-loop, such as to avoid the computation of the first
inner for-loop completely.

seq. # invoc. # invoc.
��� �#� avg

��� �#�
10 1629 132 7.23
20 8571 661 6.14
30 21171 1584 6.17
40 39654 2909 6.21
50 63112 4637 6.26

Table 1. makenewz() analysis

Secondly, when more than one iteration is required for
optimizing the branch length in the do-loop we can reduce
the length of the inner for-loop by using SEVs. The length
of the inner for-loop

7 �
) can be reduced by ��� 9 ' the
number of non-negative entries ��� of the SEV at the vir-
tual root � minus the number ' of distinct column equality
classes, since we need to calculate only one representative
entry for each column equality class. Note that the weight
of the column equality class representative is the accumu-
lated weight of all column equalities of the specific class
at � . Thus, the reduced length

7) of the inner for-loop is
obtained by

7) �=�8
) 9 ����� ' .
We obtain the SEV -/. � of the virtual root � by applying:

-�. ��1 �32 � �
4 -/. &<1 �32 �37 -/. &<1 �32 � -/. +51 �329 � -�:;�/- (4)

Since the branch length optimization process requires a
sufficiently large average number of iterations to converge
if it does not converge after the first iteration (see Table 1)
our optimization scales well despite the fact that the SEV at
the virtual root � is relatively sparse, i.e. ��� 9 ' is relatively
small compared to
) .

3. Distance-based Heuristics

Although the maximum-likelihood method is not
distance-based, sequence distance has some impact on the
inference process, especially when inferring large trees with
organisms from all three kingdoms (Eucarya, Bacteria, Ar-
chaea).

Thus, we implemented and tested simple distance-based
heuristics, which enable skipping the evaluation of a cer-
tain amount of topologies. Let us consider the tree-building
algorithm of (P)AxML. Suppose we have already calcu-
lated the best tree

� � containing the first � sequences of the
sequence input order. Tree

� ���"� is obtained by inserting
sequence ����� into all �I� 9�� branches of

� � and evalu-
ating the respective topologies. The algorithm starts with
the only possible tree topology for 3 sequences, i.e. with�
	

. Note that � branches of
� � lead to a leaf (sequence)

which we will call “terminal branches” from now on. If se-
quence ���(� finally is inserted into such a terminal branch,
it has to be closely related to the sequence at this terminal
branch in terms of sequence distance. We call topologies
constructed by insertion of sequence ��� � into a terminal
branch, “terminal branch topologies”. For implementing
distance-based heuristics before each transition ��
 ��� �
we calculate a score vector �/'���,�-����"� of size � for each ter-
minal branch topology by applying a simple score-function
(number of equal characters) to the sequence pairs 1��I�
���
� 2 �����	����1A�C������� 2 . The amount of terminal branch topologies
to be skipped is determined by calculating the difference� ���"� �
*?��<1;�/'���,�- ���"� 2 9
 � � 1;�/'���,�- ���"� 2 between the
lowest and the highest score of �/'���,�- ���<� and comparing it
to the average ?�. � � of

��� �������	� � � of all previous insertions� ���	���	�
� . If
� ���"� � ?�. � � we do not skip any topologies.

This is done to avoid skipping terminal branch topologies
generated by insertion of a sequence that fits equally bad or
good into all terminal branches. If

� ���"�O� ?�. ��� we skip a
portion
 � � 1;GH� �H��� 9 1 � ���"����?�. ��� 2%2 of the worst scores in�/'���,�-����"� (0.8 proved to be a good value in our experiments
leading to few deviations in the final tree, see section 5).

Note that this method can equivalently be used with the
local and/or global rearrangement option where after each
transition ��
 ��� � the tree

� ���"� is rearranged for further
improving its likelihood. This is due to the fact that rear-
ranging the tree will once again yield a certain amount of
terminal branch topologies.

4. Implementation

We implemented the new concepts described in sec-
tions 2 and 3 in the original version of the sequential pro-
gram AxML (v1.7). We name the new version containing
the algorithmic optimizations AxML (v2.5) and the pro-
gram which in addition contains the distance-based heuris-

tics AxML (v3.0). The new versions of our parallel code
are named PAxML (v1.5) and PAxML (v1.6) respectively.

Furthermore, we integrated a random sequence input
order permutation generator for testing the distance-based
heuristics. AxML (v3.0) loops over random permutations
and invokes the de novo tree building function twice for
each permutation (with and without heuristics) for compar-
ing the resulting trees and execution times. This modifica-
tion was carried out to enable thorough testing and for eval-
uating the impact of the sequence input order on distance-
based heuristics.

Finally, the alternative tree building algorithm described
in section 6 has been implemented in AxML (v4.0), which
can optionally be executed with distance-based heuristics.

AxML and PAxML are freely available for download at:
wwwbode.in.tum.de/˜stamatak/research.html.

5. Results

Platforms & Test Data: For testing the new (P)AxML
programs, we used a small LINUX cluster equipped with
16 Intel Pentium III processors and 1 Gbyte of memory and
the HELICS cluster with 512 AMD Athlon MP processors
and 2 Gbyte of memory. Both clusters are interconnected
by Myrinet. We extracted several alignments comprising
organisms from all three kingdoms (Eucarya, Bacteria, Ar-
chaea) from the small subunit ribosomal RiboNucleic Acid
(ssrRNA) database of the ARB system [12] and also used a
56 sequence alignment provided as test set with the parallel
fastDNAml distribution [4].

Results: In Table 2 we list the global run time (secs) of
AxML (v2.5), AxML (v1.7) and fastDNAml (v1.2.2) for
alignments containing 150, 200, 250 and 500 sequences.
The tree inference was conducted without global and local
rearrangements (for details on program options see fastD-
NAml documentation and [7]).

sequences v2.5 v1.7 fastDNAml
150 632 748 1603
200 1227 1443 3186
250 2055 2403 5431
500 10476 12861 26270

Table 2. AxML (v1.7)/(v2.5) vs. fastDNAml

In Table 3 we describe results obtained by comparing
the output of the de novo tree building function with and
without distance-based heuristics for sets of randomized se-
quence input order permutations. All tests in the first four
rows were executed without local and/or global rearrange-
ments, whereas the test with the 56 sequence alignment

was conducted with rearrangements (local and global rear-
rangements set to 1) to prove that our distance-based heuris-
tics work equally well with this program option. Finally,
the last line of this table 150(P,R) refers to the global ex-
ecution times of one parallel run with PAxML (v1.5) and
PAxML (v1.6) respectively which were executed with local
and global rearrangements (local and global rearrangements
set to 1). Column patterns gives the number of distinct

0

2000

4000

6000

8000

10000

12000

14000

150 200 250 300 350 400 450 500

se
cs

number of sequences

"AxML1.7"
"AxML2.5"
"AxML3.0"

Figure 1. Execution times of AxML versions

patterns in the alignments, column permutations indicates
the number of randomized input order permutations eval-
uated. Furthermore, skip represents the number of topolo-
gies skipped by our heuristics and topol the total number
of generated topologies. In addition, we measured the av-
erage and maximum (improvement and max improvement)
run time improvement for the de novo tree building func-
tion and counted the number of differing trees. Finally, we
calculated the maximum deviation in final likelihood val-
ues (max diff). Table 3 indicates that our heuristics are
sound, i.e. only a few final trees differ and are thus well-
suited especially for quickly evaluating a large number of
sequence input order permutations and calculating an initial
set of good trees which can then be refined in a second step
without heuristics (see section 6). We note however that the
performance of the heuristics depends on the sequence in-
put order due to significant differences in measured average
and maximum run time improvements. Finally Table 3 in-
dicates that the average run time improvement achieved by
distance-based heuristics increases with tree size. In Fig-
ure 1 we depict the global run times for all AxML versions
for one specific input order permutation of the 150, 200, 250
and 500 sequences alignments on a Pentium III processor.

sequences patterns permutations skip topol improvement max improvement diff max diff
150 2137 569 1237.5 21904 5.63% 20.43% 4 -0.26%
200 2253 222 2297.3 39204 5.73% 20.04% 3 -0.02%
250 2330 133 4263.4 61504 6.89% 15.99% 4 -0.03%
500 2751 28 17266.9 248004 7.84% 20.72% 3 -0.04%

56(R) 386 48 358.0 8274 4.26% 18.86% 1 -0.05%

150(P,R) 2137 1 9476 50948 22.75% 22.75% 0 0.00%

Table 3. Tree quality and inference times with and without heuristics

6. Current & Future Work

In this section we present experimental work and discuss
potential solutions and novel approaches for the inference
of huge trees.

An Alternative Algorithm: As already mentioned, the
input order of the sequences has a major impact on the like-
lihood of the final tree.

In order to investigate this problem further, we imple-
mented an alternative tree building algorithm, which is cur-
rently at an experimental stage. We call the respective pro-
gram AxML (v4.0).

As already described in section 3, the tree building algo-
rithm of AxML (v2.5) progressively inserts the sequences
into the tree. Our consideration is that the dependency on
sequence input order may eventually be reduced by chang-
ing the algorithm at the transition

� �
 � ���"� as follows:
Let

� � be the best tree comprising � sequences (not neces-
sarily the first � sequences of the input order, see below).
Instead of inserting only sequence ��� � into all branches
of
� � and evaluating the respective topologies, we insert all

remaining � 9 � 9 � sequences from �I���	������� , that have not
already been inserted into the tree, into all branches of

� �
and continue with the best such obtained tree

� ���"� . Finally,
we mark the sequence which was added to the tree at tran-
sition �
 � �8� as inserted.

Initial tests with small sequence alignments (40, 50
and 56 taxa) of relatively closely related organisms, and a
large 150 sequence alignment comprising organisms of all
three kingdoms (Eucarya, Bacteria, Archaea) suggested that
AxML (v4.0) might render better results than the standard
program version for closely related organisms, whereas it
does not seem to perform well for alignments containing
distant organisms. For an initial test of this hypothesis we
extracted three alignments comprising 100 closely related
organisms each from the ARB database and executed test
runs with AxML (v4.0) and AxML (v2.5).

In Table 4 we depict the execution times, global and local
rearrangement settings, as well as the final Ln likelihood
values for AxML (v2.5) and AxML (v4.0) on a Sun-Blade-
1000.

Initial results suggest that the use of AxML (v4.0) might
be a good option for building maximum likelihood trees for
closely related organisms, since in some cases it yields bet-
ter results than AxML (v2.5) at a significantly lower com-
putational cost, as indicated in Table 4.

Note that the changes introduced in AxML (v4.0) can
easily be integrated into PAxML since only few lines of
additional code are required for adapting the tree building
algorithm.

Solutions for Huge Trees: The inference of large trees is
limited by two main factors.

Firstly, in order to improve the quality of the final tree
a high amount of local, regional and global rearrangements
should be performed for avoiding local maxima. On the
other hand this practice significantly increases the compu-
tational cost. E.g. the sequential inference of a 150 taxa tree
can be carried out within a few minutes without local and/or
global rearrangements, whereas with local and global rear-
rangements only set to 1 it requires several hours.

Secondly, in order to attain some kind of confidence that
the final tree is close to the best tree the inference process
should be repeatedly executed with several (randomized)
sequence input order permutations.

Thus, although we have been able to infer a 1000 taxa
tree on HELICS (global and local rearrangements set to 1),
the acceleration achieved over parallel fastDNAml by us-
ing SEVs is not sufficient for inferring huge trees of high
quality.

In this section we discuss various possibilities to further
accelerate the program and handle the problems mentioned
above.

During the execution of AxML (v3.0) with randomized
sequence input order permutations and global as well as lo-
cal rearrangements switched off we observed that tree val-
ues close to, or even better than those originally obtained by
the execution of PAxML (global and local rearrangements
set to 1) with the default sequence input order were achieved
with some random permutations.

Such a randomized approach has several advantages,
since the distributed computation of a great number of input
sequence order permutations with AxML can be performed

version data set execution time (secs) local global Ln likelihood heuristics used? difference
v2.5 100 1 7922.39 1 1 -25797.84 No -0.49%
v2.5 100 1 50390.96 2 2 -25669.88 No best
v4.0 100 1 8517.61 1 1 -25691.23 No -0.08%
v4.0 100 1 8308.54 1 1 -25691.23 Yes -0.08%
v2.5 100 2 7136.94 1 1 -25429.59 No -0.90%
v2.5 100 2 43826.03 2 2 -25381.05 No -0.72%
v4.0 100 2 7922.35 1 1 -25198.63 No best
v4.0 100 2 7456.53 1 1 -25198.63 Yes best
v2.5 100 3 5452.92 1 1 -23885.10 No -0.13%
v2.5 100 3 34406.41 2 2 -23852.59 No best
v4.0 100 3 6813.99 1 1 -23918.41 No -0.27%
v4.0 100 3 6461.43 1 1 -23892.74 Yes -0.16%

Table 4. Comparison of AxML (v2.5) and (v4.0) for three alignments of closely-related sequences

with a seti@home-like distributed system due to its coarse-
grained parallelism. Furthermore, the best trees obtained by
such a randomized tree inference can be used to build a con-
sensus tree with CONSENSE [5]. Such a consensus tree or
a certain portion of the best trees can then be globally re-
arranged on a parallel computer using PAxML. Finally, the
permutation(s) which rendered the best tree(s) can be used
for a large parallel or distributed run with PAxML with high
rearrangement levels.

In Table 5 we summarize first results for such a ran-
domized approach which were obtained by an appropriately
modified version of AxML (v3.0) on the small 16-node
LINUX cluster. For each data set we generated a set of ran-
dom sequence input order permutations (perm) and inferred
the respective tree without local and global rearrangements.
Thereafter, we rearranged only the best final tree for each
data set globally. We measured total required CPU hours for
the randomized approach and CPU hours for one complete
parallel run with PAxML and the default input sequence or-
dering for determining the acceleration factor acc. Columns
L and G indicate the respective setting of the rearrangement
option for PAxML and RR indicates the global rearrange-
ment setting for the best randomized tree. In all cases we
achieved a slightly better final likelihood with the random-
ized approach (impr) at a significantly lower computational
cost (see acc).

Thus, our randomized approach significantly reduces the
computational cost for the inference of large phylogenetic
trees and provides a framework for handling sequence in-
put order permutations. Furthermore, it produces trees
with slightly improved likelihood values and at the same
time provides a set of several good trees and permutations
which can then be used for one large parallel run. Fi-
nally, our approach represents a significantly faster alter-
native to the recommended practice of executing parallel
fastDNAml/PAxML repeatedly with random input order
permutations and a high level of global and local rearrange-

ments which is a substantial limiting factor for the inference
of large phylogenetic trees due to its high computational
cost.

Another important observation within this context is that
the number
) of distinct column patterns in the alignment
has an impact on program performance. Since the complex-
ity of (parallel) fastDNAml is linear in
) we can achieve
a linear acceleration of the program by reducing the num-
ber of patterns by some heuristic criterion to
)) �
) .
We call such heuristics “pattern reduction methods”. Note
however that pattern reduction might not scale equally well
to (P)AxML if patterns containing a large number of equal
characters are eliminated, since this reduces the amount of
subtree column equalities. An additional advantage of pat-
tern reduction is that it reduces the memory requirements of
(P)AxML which are approximately

� 1 � �
) 2 , i.e. the size
of the sequence alignment and may become a bottleneck for
huge trees.

seq # perm RR L G acc impr.
150 50 1 1 1 6.17 +0.04%
150 50 2 5 5 15.68 +0.00%
200 29 1 1 1 6.21 +0.08%
250 16 1 1 1 9.60 +0.10%

Table 5. Results for randomized tree inference

The aptness of a pattern reduction method can be eval-
uated in various ways. Initially the likelihood : � 1
)) �%
) 2
of the final tree

� 1
)) 2 obtained by the reduced pattern
))
is recomputed with the full pattern
) and compared with
the likelihood : � 1K
) 2 obtained by a de novo computation
with the full pattern for the same input order permutation.
We repeat this process for several data sets and randomized
input order permutations.

If there are little or no deviations between : � 1
)) �%
) 2
and : � 1
) 2 we can use the reduced pattern for tree recon-
struction.

If pattern reduction shall be used for an initial fast eval-
uation of a great number of input order permutations we
can analyze the correlation between the likelihood values
of the sets

� 1
)) � �32 , � � �������	����, with the reduced pattern
and

� 1
*);� �32 with the complete pattern. If likelihood values
of
� 1K
)) � � 2 and

� 1K
) � � 2 are correlated, especially among the
trees with the best likelihoods we can use the criterion for a
fast evaluation of sequence input order permutations.

We consider the first point to be appropriate for the eval-
uation of more conservative heuristics which reduce the
length of
*) by a small portion only, whereas the second
point can be used for the evaluation of more aggressive
heuristics.

One good conservative criterion is to skip all those
columns consisting mainly of gaps and only a small number
of characters, e.g. 4 or 5 and has already been implemented
in an experimental version of AxML. Applying this crite-
rion already yields a significantly smaller number of pat-
terns for large alignments e.g. 1915 instead of 2137 for the
150 taxa test set (10.39% pattern reduction). The full eval-
uation of that tree, i.e. with all patterns rendered exactly the
same likelihood.

Furthermore, this approach has already been used for
computing trees for randomized sequence input order per-
mutations for the 150, 200 and 250 taxa trees mentioned in
Table 5.

An approach for more aggressive heuristics is to reduce
the number of patterns by performing one or several initial
evaluations with all patterns and analyzing the contribution
of each pattern to the intermediate and final likelihood val-
ues. Note that the contribution of each pattern to the final
likelihood value appears to be relatively invariant for a set
of random input order permutations.

Then some simple criterion for eliminating patterns can
be applied, e.g. skipping a certain percentage of the worst
patterns, i.e. those patterns that contribute little.

Future Work: We are going to further investigate the ap-
plicability of pattern reduction methods and analyze if good
permutations have intrinsic properties.

Our main focus is going to be on building a large dis-
tributed seti@home-like system for phylogenetic tree in-
ference. We are planning to implement a flexible client,
able to provide randomized sequential tree inference ser-
vices optionally including distance-based or pattern reduc-
tion heuristics or an evaluation with ATrExML [10, 13],
as well as parallel style topology evaluation services, sim-
ilar to the worker component in PAxML. We are planning
to split up the inference process into two phases. Initially,
a large set of randomized input order permutations will be

evaluated by the clients and stored by the main server. In the
second phase the best randomized trees will be globally re-
arranged and the best input order permutations will be used
for de novo tree calculations in a parallel style. We believe
that such an approach will provide the potential for building
large trusted trees of 1000 taxa and more.

Acknowledgments: We would like to thank Markus
P ögel for giving us access to the LINUX cluster and
Dr. Harald Meier for providing us the alignments from the
ARB database.

References

[1] Berkley. Setiathome homepage. Technical report,
SETIATHOME.SSL.BERKELEY.EDU, 2002.

[2] J. Felsenstein. Evolutionary trees from dna sequences: A
maximum likelihood approach. J. Mol. Evol., 17:368–376,
1981.

[3] HeLiCs. Heidelberg linux cluster. Technical report,
HELICS.UNI-HD.DE, 2002.

[4] Indiana-State-University. Parallel fastdnaml. Technical re-
port,
WWW.INDIANA.EDU/ RAC/HPC/FASTDNAML, 2001.

[5] L. Jermiin, G. Olsen, K. Mengersen, and S. Easteal.
Majority-rule consensus of phylogenetic trees obtained by
maximum-likelihood analysis. Mol. Biol. Evol., 14:1297–
1302, 1997.

[6] LRZ. The hitachi sr8000-f1. Technical report,
WWW.LRZ-MUENCHEN.DE/SERVICES/COMPUTE/HLRB,
2002.

[7] G. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek.
fastdnaml: A tool for construction of phylogenetic trees of
dna sequences using maximum likelihood. Comput. Appl.
Biosci., 10:41–48, 1994.

[8] A. P. Stamatakis, T. Ludwig, and H. Meier. Adapting paxml
to the hitachi sr8000-f1 supercomputer. In Proceedings of 1.
Joint HLRB and KONWIHR Workshop, October 2002.

[9] A. P. Stamatakis, T. Ludwig, H. Meier, and M. J. Wolf. Ac-
celerating parallel maximum likelihood-based phylogenetic
tree computations using subtree equality vectors. In Pro-
ceedings of SC2002, November 2002.

[10] A. P. Stamatakis, T. Ludwig, H. Meier, and M. J. Wolf.
Axml: A fast program for sequential and parallel phylo-
genetic tree calculations based on the maximum likelihood
method. In Proceedings of CSB2002, August 2002.

[11] C. Stewart, D. Hart, D. Berry, G. Olsen, E. Wernert, and
W. Fischer. Parallel implementation and performance of
fastdnaml - a program for maximum likelihood phylogenetic
inference. In Proceedings of SC2001, November 2001.

[12] TUM. The arb project. Technical report,
WWW.ARB-HOME.DE, 2002.

[13] M. Wolf, S. Easteal, M. Kahn, B. McKay, and L. Jermiin.
Trexml: A maximum likelihood program for extensive tree-
space exploration. Bioinformatics, 16(4):383–394, 2000.

