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Motivation: Bootstrapping is a standard method to infer
confidence values on phylogenetic trees. Given the rapid
growth of current input datasets that is driven by ad-
vances in wet-lab techniques as well as the high energy
consumption and cost of computational resources we ad-
dress the following question: How can a limited amount
of computational resources best be used to infer the most
accurate relative bootstrap support values under resource
constraints. In particular, we address the question
whether more computing time should be invested into op-
timizing per-bootstrap replicate Maximum Likelihood
model parameters or if one should compute more repli-
cates at the expense of lower model accuracy. Our com-
putational experiments with the RAxML and GARLI
algorithms indicate that it is better to invest more time into
perreplicate model parameter optimization at the expense
of computing less replicates, i.e., the computation of
more, superficially optimized replicates, does not yield ad-
vantages.

Introduction: The significant progress in DNA sequenc-
ing technology over the last years poses new challenges
for phylogenetic analyses, since it provides the possibility
to build and analyze significantly larger data sets that in-
corporate more sequences and/or more taxa. An impor-
tant observation within this context, is that the pace of
molecular data accumulation is significantly higher than
the pace at which hardware architectures become faster,
i.e., advances in sequencing techniques have outpaced
Moore's law. Figure 1 provides the relative growth of data
in Genebank compared to the transistor count in hard-
ware architectures from 1982-2005 (note the logscale on
the y-axis). We call this phenomenon the “Bio-Gap”.
With the emerging discipline of phylogenomics (see Del-
suc et al. (2005) for a review) and the growing popularity
of Expressed Sequence Tags (ESTs) for phylogeny recon-
struction (Jeffroy et al., 2006), there is an increasing need
to develop more efficient algorithms for tree-building, es-
pecially for time- as well as memory-intensive model-
based methods such as Maximum Likelihood
(Felsenstein, 1981) or closely related Bayesian methods.
Because of the growing popularity of multi-gene align-
ments, multi-core and supercomputer architectures will
be deployed more frequently to conduct large-scale real-
world phylogenetic analyses (see for example Dunn et al.,
2008). Access to “classic” supercomputers such as the
IBM BlueGene/L or BlueGene/P systems is typically
granted in terms of CPU hours, i.e., a limited amount of
time and resources is available to carry out an analysis.
Moreover, many supercomputing centers currently face
serious problems because of high energy costs, that in

some cases even lead to the shutdown of relatively new
and powerful facilities. This recent development has lead
to a new research area in high performance computing
called power-aware computing. Following this trend, the
so-called green500 list (http://www.green500.org/) that
covers the 500 most energy efficient supercomputers in
the world was introduced. This list only partially overlaps
with the “classic” top500 list (http://www.top500.org/) that
comprises the most powerful supercomputers worldwide.
Thus, taking into account this trend in computer architec-
tures and energy prices, combined with the current mo-
lecular data explosion and rapidly growing alignment
sizes we address the following question: Given a certain
amount of time- or cost-constrained computational re-
sources (CPU hours), how can those limited resources
best be used for accurate phylogeny reconstruction? We
intend to determine the trade-off, by means of the relative
topological accuracy, between investing resources into
optimization of per-bootstrap (bootstrapping: see below)
replicate ML model parameters at the expense of com-
puting less replicates versus superficial model parameter
optimization for the sake of computing more replicates.
The general Bootstrapping procedure is a well-estab-
lished computer-based statistical method to obtain non-
parametric error estimates (Efron, 1979), by inferring the
variability in an unknown distribution from which the data
(bootstrap replicates) was drawn by re-sampling from the
original data. The seminal paper by Joe Felsenstein
(Felsenstein, 1985), introduced the application of the
bootstrap method to phylogenetic inference. The non-
parametric phylogenetic Bootstrap (BS) method proceeds
by randomly re-sampling the characters (columns) from
the original matrix with replacement by creating a respec-
tive pseudo-replicate matrix that contains as many
columns as the original alignment but has a slightly differ-
ent column composition. This re-sampled (bootstrapped)
alignment is then used as input for a Maximum Likelihood
(ML, Felsenstein, 1981) tree search algorithm like GARLI
or RAxML. Once ML trees for all 100 or 1,000 replicates
have been computed, the frequency of appearance of a
particular group (bipartition) of taxa among all the boot-
strapped trees corresponds to the bootstrap confidence
limit or simply BS value and can then be used to assess
the relative stability of the respective phylogenetic group
and stability of the overall tree under slight alterations (re-
samplings) of the original input alignment. To summarize
and visualize the results of such a BS analysis the boot-
strapped tree topologies are either used to compute var-
ious flavors of consensus trees: strict, majority rule, or
extended (bifurcating) majority rule trees. Alternatively, the
bootstrapped trees can be used to draw support values
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on the best-scoring (best-known) ML tree on the original
alignment. The phylogenetic BS is probably the most
widely and commonly used approach to assess confi-
dence on phylogenetic trees.

Figure 1: The “Bio-Gap”: Relative growth of processor speeds
and sequence data in GeneBank 1982-2005; Molecular data
growth has overtaken Moore's law. Note the logscale on the y-

axis.

To date, Joe Felsenstein's seminal paper on the phyloge-
netic BS (Felsenstein, 1985) has been cited over 11,000
times in the literature (ISI Web of Knowledge). Despite
the significant progress in the development of heuristic
ML search algorithms over the last years (see Morisson
(2007) for a review), the bootstrap analyses still represent
the major computational bottleneck in real-world phyloge-
nomic studies under ML (Stamatakis et al., 2008; Moris-
son, 2007) and thus require a high amount of
computational resources. These high resource require-
ments for inference of BS values, particularly on large
memory-intensive phylogenomic datasets, have so far
been a limiting factor in phylogeny reconstruction, in par-
ticular under the ML model (see McMahon and Sander-
son 2006). Phylogenetic inference under ML for a single
BS replicate/input alignment requires the estimation and
optimization of: 

1. the substitution model parameters 
2. the branch lengths 
3. the tree topology 

In the standard phylogenetic BS procedure the above
three computational steps have to be repeated for every
BS replicate, i.e., the tree for every replicate is computed
“de novo”, without making use of any topological or model
parameter information from ML searches on preceding BS
replicates. Recently, Stamatakis et al. (2008) have par-
tially solved the computational problem associated with
bootstrapping by developing a novel rapid BS search al-
gorithm (RBS algorithm) that uses the following two ap-
proximations to improve inference times by more than one
order of magnitude while returning qualitatively compara-
ble support values: Firstly, the replacement of the model
parameter optimization procedure for each replicate by a
one-time model parameter optimization on the original
alignment and a reasonable, i.e., non-random starting

tree, and, secondly, by designing a “quick & dirty” search
algorithm to accelerate per-replicate BS tree searches.
This “quick & dirty” algorithm also makes use of the topo-
logical information collected during preceding replicates
(see Stamatakis et al., 2008 for details). Based on this
fast RBS algorithm, here, we assess the trade-offs be-
tween speed and accuracy with respect to the first ap-
proximation only. We compare support values obtained
from standard RBS searches (henceforth denoted as 1-
RBS) that use the aforementioned one-time only model
parameter optimization on the original alignment to mod-
ified RBS searches that use a more compute-intensive
per-replicate optimization of model parameters (denoted
as N-RBS, where N is the number of replicates). Our ob-
jective is to experimentally determine if, given a certain
CPU time limit T, more replicates with 1-RBS or less repli-
cates using N-RBS yield better relative accuracy with re-
spect to a large number of 500 N-RBS replicates. Our
findings, that are based on a large benchmark set of 18
real-world alignments, indicate that investing more time
into per-replicate model parameter optimization yields
slightly (RAxML) to significantly (GARLI) more accurate
results than the execution of more replicates without thor-
ough model parameter re-optimization.

Experimental Setup: We conducted computational ex-
periments on 18 single- and multi-gene real world align-
ments (17 DNA alignments and 1 Protein alignment)
comprising 8 up to 2,000 taxa using an appropriately mod-
ified version of RAxML (Stamatakis, 2006b, see below).
To ensure that our results are not biased by the specific
RBS search algorithm and model parameter optimization
strategy implemented in RAxML, we also performed 3 ex-
periments with GARLI (Zwickl, 2006). GARLI allows to
disable model parameter optimization by reading in user-
specified model parameters instead. As model parame-
ters for GARLI we used ML model parameters that were
estimated with RAxML on the original alignment and an
MP starting tree. Moreover, the GARLI search algorithm
is equally powerful with respect to finding bestscoring
trees as the RAxML search algorithm (Stamatakis,
2006b), but significantly slower by 1-2 orders of magni-
tude (Stamatakis 2006b, Stamatakis et al., 2008). There-
fore, we only conducted 3 GARLI reference runs on
datasets d150, d218, d354 (see below) with 500 repli-
cates each. We call the resulting collections of BS trees
with fixed model parameters 1-GARLI and with on-the-fly
model parameter optimization N-GARLI, accordingly.
The 18 test alignments are diverse in terms of organisms
(green plants, acer, mammals, bacteria, archaea, fungi,
Pappilomaviruses), genes (protein, mitochondrial, riboso-
mal, and non-coding genes), the number of taxa (from 8
to 2,000), and the number of concatenated genes in a sin-
gle matrix (up to 106 genes for d8_M). Data set sizes are
provided in Table 1 and are referred to in the text by
dXYZ, where XYZ is the respective number of taxa. Multi-
gene datasets for which we executed partitioned analyses
are denoted by _M and the protein protein datasets by
_AA.

Friday 31/10/2008Session V - High Performance Computing in Bioinformatics



!"#$%&'()")'*)$&($+,)$-)..)'/*$0&*/)+1$(&"$%&234+5+/&'5.$6/&.&71$5'#$6/&/'(&"25+/*89$!:;!<$=*+&>)" ?::@9$%ABC-9$C,)885.&'/D/

38

Table 1: Dataset sizes in the benchmark set.

Computational experiments were conducted at the
CIPRES (http://www.phylo.org) project cluster located at
the San Diego Supercomputer Center that is equipped
with 16 8-way AMD 2.4 GHz Opteron shared-memory
nodes. For each data set, we executed two RBS analyses
with 500 replicates each: One analysis using a per-repli-
cate optimization of ML model parameters (N-RBS) and
a second analysis using the one-time model parameter
optimization on the original alignment that are optimized
on a Maximum Parsimony starting tree (1-RBS). All 1-
RBS and N-RBS analyses on DNA data sets were per-
formed under the GTR+ model (General
Time-Reversible model of nucleotide substitution (Tavare,
1986) with the  model of rate heterogeneity (Yang,
1994)), which is among the most widely used models for
phylogenetic analyses of DNA (Ripplinger and Sullivan,
2008). Analyses on the 140 taxon protein dataset
(d140_AA_M) were conducted under WAG+ (Whelan
and Goldman, 2001), a widely used model of amino acid
substitution. In addition, we conducted searches for the
respective best-scoring ML trees on all original align-
ments.

Adaptation of RAxML RBS Algorithm

The RAxML RBS algorithm was adapted as follows with
respect to the standard publicly available code described
in Stamatakis et al. (2008): The restriction that only the
GTR+CAT approximation of rate heterogeneity (Sta-
matakis, 2006a) can be used in combination with the
“quick & dirty” RBS tree search algorithm was removed
to allow usage of GTR+. In addition, we changed the
command line interface parameters for invoking RBS to
run 1-RBS (-f x) and N-RBS (-f X) analyses (for details
please refer to the RAxML manual at
http://icwww.epfl.ch/~stamatak/. The modified code as
well as all test datasets and result files are available for
download at the following address
http://wwwbode.in.tum.de/~stamatak/HSCBB2008.tar.bz2.

Result Analysis

Experimental results were analyzed as follows: For each
N-RBS run we determined the number of replicates that

can be compute within the time taken by the significantly
faster (average speedup 2.63) 500 1-RBS replicates, i.e.,
we used the execution time of the 500 1-RBS replicates
on each dataset as a time constraint. We denote this re-
duced number of N-RBS replicates as N-RBS|T, i.e., N-
RBS constrained by CPU time T. We then computed
various statistics between the N-RBS|T trees, the 500 1-
RBS trees, and the full N-RBS trees. We use the 500 N-
RBS trees as reference because they represent the
statistically more correct, but slower, standard approach
to bootstrapping. For all sets of replicates we computed
the relative Robinson-Foulds distance (RF, Robinson and
Foulds, 1981) with treedist from PHYLIP as well as the
weighted Robinson-Foulds distance (WRF, Robinson and
Foulds, 1979) with a script by Olaf Bininda-Emonds called
partitionMetric.pl (available at
http://www.unioldenburg.de/molekularesystematik/33997.html)
on the extended majority rule (bifurcating/binary) consen-
sus trees obtained by applying the consense program
from the PHYLIP package. The unweighted RF distance
between two tree topologies counts the number of sub-
trees found in one tree or the other, but not both. The
WRF distance uses the support value information on the
respective subtrees instead, i.e., a subtree with a support
of 0.5 counts 0.5 instead of 1 as for RF. The WRF dis-
tance thus allows to take support values on consensus
trees into account and penalizes differently placed sub-
trees with low support to a lesser extent than differently
placed subtrees with high support. If the RF distance for
a pair of trees with support values is significantly larger
than the respective WRF distances, this means that the
topological differences are mainly due to differently placed
subtrees with low support, whereas when RF  WRF this
means that subtrees with high support are placed differ-
ently in the two trees under comparison. In addition, we
computed the Pearson correlation coefficient  between
support values obtained via 1-RBS and N-RBS, as well
as N-RBS|T and N-RBS drawn on the respective best-
scoring ML trees. We also computed the intercept and
slope of the respective linear regression function. We
mostly focus on the results obtained via RF and WRF
since those topological distances appear to be more sen-
sitive than the Pearson coefficient to slight changes/dif-
ferences in the collections of replicates and better allow
to discriminate between the approaches (see also Sta-
matakis et al., 2008). For the experiments with GARLI we
computed the RF as well as WRF distances between 500
1-GARLI runs and 500 N-GARLI runs. We also computed
the topological distances between 250 N-GARLI runs, i.e.,
N-GARLI|T and 500 N-GARLI runs. Here we chose a
fixed value of 250, because unlike in RAxML, the run time
differences between 1-GARLI and N-GARLI runs are in-
significant, the run time variation lies between 0.97 and
1.17. This insignificant execution time improvement is due
to the genetic search algorithm that is used in GARLI
(Zwickl, 2006). The omission of model parameter opti-
mization does not necessarily mean that the algorithm will
execute less generations, i.e., converge faster, in partic-
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Dataset #bp Dataset #bp

d8_M 127,026 d354 460
d53 7,542 d404_M 13,158
d59_M 6,951 d500 1,398
d81 4,552 d628 1,228

d125_M 29,149 d714 1,241
d140_AA_M 1,104 d855 1,436
d150 1,269 d1604 1,276
d217_M 3,665 d1908 1,424
d218 2,294 d2000 1,251
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ular because the search space becomes less smooth
without model parameter optimization. In the RAxML RBS
algorithm the run time improvements are more prevalent,
because the number of iterations of the search algorithm
is fixed a priori (Stamatakis et al., 2008).

Results: We provide the speedup (denoted as acc) of
500 1-RBS replicates over 500 N-RBS replicates in Table
2. We also indicate the number of replicates (#reps) in the
time-constrained N-RBS|T searches.

Table 2: Speedup of 1-RBS over N-RBS and number of repli-
cates that N-RBS can conduct within the time required for 500

1-RBS replicates.

The average number of replicates is 264 while the aver-
age speedup amounts to 2.63. In Table 3 we indicate the
topological RF as well as WRF distances in percent be-
tween 500 1-RBS replicates and the 500 N-RBS repli-
cates. The average relative RF is 6.51% and the average
WRF is 2.47%.

Table 3: Relative RF and WRF distances in % between consen-

sus trees induced by 500 1-RBS and 500 N-RBS replicates.

Finally, in Table 4 we indicated relative RF and WRF topo-
logical distances in % between varying numbers of
NRBS|T replicates (see Table 2) and 500 N-RBS repli-
cates. The average RF amounts to 4.60% and the WRF
to 1.98%. The average Pearson correlation coefficient
(data not shown) between 500 1-RBS and 500 N-RBS
support values drawn on the respective best-scoring ML
trees is 0.999 (min: 0.998, max: 1.0), the average slope
of the linear regression function is 0.998 (min: 0.984, max:

1.009) and the average absolute offset amounts to 0.34%
(max: 1.48%) . The average Pearson correlation coeffi-
cient between time constrained N-RBS|T and 500 N-
RBS replicates on the best-scoring ML tree is 0.998 (min:
0.995, max: 1.0) with an average slope of 1.001 (min:
0.97, max: 1.012) and an average absolute offset of
0.56% (max: 3.09%).

Table 4: Relative RF and WRF distances in % between consen-

sus trees induced by varying numbers of N-RBS|T and 500 N-

RBS replicates.

GARLI Results

The results obtained by GARLI generally show a similar,
though stronger tendency as the results obtained by
RAxML. The relative RF/WRF topological distances be-
tween 1-GARLI and N-GARLI are 10.8%/4.4% (d150),
25.1%/12.8% (d218), and 55.8%/14.9% (d354). The
RF/WRF distances between 250 N-GARLI|T replicates
and 500 N-GARLI replicates are 5.4%/1.6% (d150),
8.3%/2.4% (d218), and 34.47%/5.5%(d354) respectively.

Discussion: In general our results indicate that the dif-
ferences between the relative accuracy of 1-RBS boot-
strap replicates and time-constrained NRBS|T replicates
with respect to a reference set of 500 N-RBS replicates
are not very large. This indicates that the model parame-
ter approximation used in the original RBS algorithm,
which uses the 1-RBS strategy only has an insignificant
impact on the support value distribution and shape of the
extended majority rule consensus trees. The average
speedup achieved by omitting per-replicate model param-
eter optimization is 2.63. However, if the very large
speedup on the 8-taxon data set is not included in the cal-
culation, 1-RBS is only two times faster than N-RBS. The
large speedup on the 8-taxon dataset is due to the low
number of taxa and hence small search space in combi-
nation with the very long sequences (127,026 bp). Hence,
in contrast to other datasets, the largest amount of CPU
time is required to optimize model parameters and not for
the tree search. The fact that virtually no speedup is ob-
served on the protein alignment (d140_AA_M) is due to
the fact that a fixed model of amino acid substitution is
used and hence less parameters need to be optimized.
Whereas the Pearson correlation on the best-scoring ML
trees only yields insignificant differences between 1-RBS
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Dataset acc #reps Dataset acc #reps

d8_M 13.18 38 d354 2.34 213
d53 3.29 152 d404_M 1.44 348
d59_M 3.06 163 d500 1.81 277
d81 1.88 266 d628 1.65 302
d125_M 3.99 125 d714 1.92 261
d140_AA_M1.06 472 d855 1.55 322
d150 1.89 265 d1604 1.61 310
d217_M 1.85 270 d1908 1.65 302
d218 1.84 272 d2000 1.27 394

Dataset RF WRF Dataset RF WRF

d8_M 0 0 d354 23.9 6.9
d53 0 0 d404_M 13.2 5.0
d59_M 3.5 2.6 d500 9.6 4.7
d81 7.6 0.7 d628 6.7 3.4
d125_M 0 0 d714 6.2 2.0
d140_AA_M 2.9 2.5 d855 7.4 3.4
d150 0 0 d1604 11.6 4.6
d217_M 5.6 2.4 d1908 6.5 2.4
d218 2.7 1.4 d2000 9.4 1.7

Dataset RF WRF Dataset RF WRF
d8_M 0 0 d354 9.1 4.2
d53 0 0 d404_M 13.4 2.2
d59_M 0 0 d500 5.6 3.0
d81 0 0 d628 3.8 2.2
d125_M 3.2 0.5 d714 6.8 3.1
d140_AA_M 0 0 d855 8.3 3.7
d150 2.7 2.4 d1604 4.7 3.2
d217_M 0.93 0.9 d1908 11.0 5.0
d218 6.5 3.2 d2000 4.6 2.2



!"#$%&'()")'*)$&($+,)$-)..)'/*$0&*/)+1$(&"$%&234+5+/&'5.$6/&.&71$5'#$6/&/'(&"25+/*89$!:;!<$=*+&>)" ?::@9$%ABC-9$C,)885.&'/D/

40

and N-RBS|T, the RF as well as WRF distances on the
extended majority rule consensus trees exhibit larger dis-
crepancies. As mentioned before, RF and WRF exhibit a
higher degree of sensitivity for the comparison of sets of
bootstrapped trees than the Pearson correlation. The N-
RBS| T approach shows smaller average RF and WRF
values than 1-RBS, in particular on partitioned multigene
analyses (denoted by _M). The results also indicate that
the effects of Bootstrapping with one-time model param-
eter optimization regarding the relative accuracy and the
run time improvements are highly algorithm-specific,
since the omission of model parameter optimization in
GARLI does not yield any speedup. Besides, unlike for
RBS, the relative accuracy of 500 1-GARLI bootstrap
analyses is significantly worse than for 250 N-GARLI|T
analyses. The main reason for this phenomenon is that
the model parameter optimization, branch length opti-
mization, and tree search mechanisms are more strongly
interleaved and interdependent in GARLI than in RAxML.

Conclusion: Our results support that computing more
replicates at the expense of a more superficial per-repli-
cate model parameter optimization is costly in terms of
relative accuracy and does not constitute a good alterna-
tive to the standard bootstrapping method. With respect
to GARLI, omission of per-replicate model parameter op-
timization actually significantly decreases relative accu-
racy. We thus conclude that when only a limited amount
of computational resources is available, it should be used
to infer less replicates with higher per-replicate model ac-
curacy. In addition, the biologically more meaningful av-
erage WRF distance is lower for this approach and at the
same time it represents the statistically less debatable ap-
proach. Moreover, except for DNA datasets with few taxa
and many genes (d8_M, d53, d59_M, d125_M) the infer-
ence times do not increase dramatically and the average
WRF for these datasets is significantly lower for N-
RBS|T. The results obtained with GARLI also indicate
that speedups induced by omission of the model param-
eter optimization procedure are highly algorithm-specific.
Hence, the computation of more superficially optimized
replicates does not seem to yield any substantial advan-
tages. Future work will focus on devising a fast per-repli-
cate model optimization procedure in the RBS algorithm.
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