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Abstract—Recent advances in DNA sequencing techniques
have led to an unprecedented accumulation and availability of
molecular sequence data that needs to be analyzed. This data
explosion in combination with the multi-core revolution also
affects the computational kernels for phylogenetic inference
(reconstruction of evolutionary trees from molecular sequence
data) under the widely-used Maximum Likelihood (ML) model.
At present, analyses of so called multi-gene or phylogenomic
alignments, i.e., input data sets that comprise concatenated
sequence data of several genes, are becoming increasingly
popular. Usually such multi-gene analyses are partitioned, i.e.,
a separate set of likelihood model parameters is estimated for
each gene/partition. While the phylogenetic likelihood function
exhibits intrinsic fine-grained parallelism, the parallel com-
putation of the likelihood function in such partitioned multi-
gene analyses can lead to significant load-balance problems.
Here, we describe these problems for the first time, discuss
the implications on the design of “classic” ML-based as well
as Bayesian search algorithms, and provide an initial solution
that yields up to eight-fold improvements in speedup values on
AMD Barcelona and Sun x4600 16-core systems for realistic
application scenarios.

I. INTRODUCTION

Emerging parallel multi- and many-core computer archi-
tectures pose new challenges for the field of Bioinformatics,
since a large number of widely used applications will have
to be ported to these systems. In addition, because of
the continuous explosive accumulation of sequence data,
which is driven by novel wet-lab techniques such as, e.g.,
pyrosequencing [1] or advances in Expressed Sequence Tag
techniques (ESTs [2]), the application of high performance
computing methods needs to become an integral part of
Bioinformatics. Moreover, there is an increasing gap, which
we call the “Bio-Gap” between the speed at which molecular
data accumulates and the speed at which computer archi-
tectures become faster according to Moore’s law (see [3]
for a respective plot). Hence, we urgently need to devise
appropriate parallelization schemes in order to keep pace
with the biological data flood.

Many problems in Bioinformatics such as BLAST
searches [4], statistical tests for host–parasite co-
evolution [5], or computation of Bootstrap replicates [6]
for phylogenetic trees are embarrassingly parallel and can

be parallelized at coarse grained level. Nonetheless, they
might soon require the introduction of an additional layer of
parallelism, i.e., hybrid [5], [7] or multi–grain [8] parallelism
to handle constantly growing dataset–sizes and the
associated huge memory requirements. Moreover, for large
embarrassingly parallel problems, hybrid parallelizations
can potentially allow for more efficient exploitation of
current computer architectures by achieving super-linear
speedups because of increased cache efficiency (see [9]).

Here we focus on the parallelization of the Phyloge-
netic Likelihood Kernel (PLK [10]) which is among the
most important statistical functions in Bioinformatics and
forms the computational core of a plethora of programs
(IQPNNI [11], PHYML [12], [13], PhyloBayes [14], Mr-
Bayes [15], TREEFINDER [16], TREE-PUZZLE [17], [18],
GARLI [19], DPRML [20], LEAPHY [21], RAxML [22],
[23], PAML [24], PAUP∗ [25]) that are used to reconstruct
evolutionary (phylogenetic) trees from molecular sequence
data under statistical models of sequence evolution. The
aforementioned programs represent important tools for many
biological disciplines such as microbial ecology, virology,
conservation biology, paleontology, etc. and have accumu-
lated over 20,000 citations to date.

While finding the optimal Maximum Likelihood (ML)
evolutionary tree is NP-hard [26] the other major compu-
tational challenge lies in computing the PLK, i.e., the likeli-
hood score on a given tree. The PLK consumes about 85%-
98% of total execution time in all of the above programs
and hence represents the computational kernel that needs to
be optimized and parallelized.

The relatively straight–forward fine–grained parallelism
in the PLK scales particularly well on relatively long, in
terms of sequence length, input datasets (see, e.g., [27],
[28]) and hence fits well to a current trend in systematics,
which focuses on the analysis of so-called multi-gene or
phylogenomic sequence alignments (see, e.g., [29]–[31] for
recent phylogenomic analyses using RAxML). Phyloge-
nomic alignments are typically assembled by concatenating
the sequence data of several (typically 10 to over 100) genes
for the organisms under study. Such large phylogenomic
analyses under the ML model have huge computational



resource requirements; in two recent real-world studies with
biologists we used 2.25 million CPU hours on a BlueGene/L
system and analyzed a dataset that required 89GB of main
memory and contained more than 1,000 genes. Thus, the
analysis of such large phylogenomic datasets which is
also driven by advances in DNA sequencing techniques
represents an important computational problem. Because
of this trend we focus on exploiting fine–grained loop
level parallelism in the PLK for phylogenomic datasets. We
describe and study a new load balance problem in the PLK
that arose during production runs on the aforementioned
large-scale biological datasets. The load imbalance is caused
by separately estimating certain parameters (see Section III)
of the ML model on a per-gene basis, i.e., by conducting
so called partitioned likelihood analyses. Biologically this
makes sense, since different genes exhibit distinct evolu-
tionary histories. Evidently, respective sequence data is not
available for every gene of the organisms under study.
Hence, such phylogenomic alignments tend to be “gappy”,
i.e., contain relatively large holes in the gene sampling that
are filled up by alignment gaps (see [32] for a more detailed
description). Moreover, there also exist strong computational
arguments for conducting partitioned analyses, since only
partitioned analyses can be accelerated by one to two orders
of magnitude using a strategy that does not take into account
these alignment gaps [32].

We study this load balance problem for partitioned phy-
logenomic analyses and develop an initial solution using
the Pthreads-based development version of RAxML [22]
which is a widely used program (over 4,600 downloads
from distinct IP addresses; over 25,000 jobs submitted to
the RAxML web-servers [33]) for ML-based inference of
phylogenetic trees. However, we only consider RAxML
as being one possible implementation of the PLK; our
findings have implications on the algorithmic design and
parallelization of all PLK-based programs (either “classic”
ML or Bayesian inference). We tested our approach on
several current multi-core architectures with 8 to 16 cores
using real-world as well as simulated datasets and achieved
up to eight-fold improvements in speedups for partitioned
phylogenomic analyses.

The remainder of this paper is organized as follows: In
Section II we briefly outline related work on exploiting fine-
grained parallelism in the PLK. Thereafter, we describe how
the likelihood score is computed on a tree at an abstract
level (Section III). In the following Section IV we present an
initial solution to improve scalability of partitioned analyses
and provide respective performance results in Section V. We
conclude with an overview of current and future work.

II. RELATED WORK

As already mentioned, this paper represents—to the best
of our knowledge—the first description and attempt to solve
the load balance problem in the Phylogenetic Likelihood

Kernel. Hence, we are not aware of any related work that
covers the problem we describe here.

Apart from our own work on exploiting loop-level and
multi-grain parallelism in RAxML on Graphics Processing
Units [34], shared memory systems [9], FPGAs [35], multi-
core systems [32], the IBM Cell [8], the SGI Altix [36],
the IBM BlueGene/L [27], and for comparing performance
of Pthreads versus OpenMP versus MPI for the PLK [28],
there is relatively few related work in this field.

Minh et al [7] implemented a hybrid OpenMP/MPI ver-
sion of IQPNNI that exploits loop-level as well as coarse-
grained parallelism. The PKL in GARLI [19] which repre-
sents a widely used program for phylogenetic inference has
also been parallelized with OpenMP. RAxML was also ini-
tially parallelized with OpenMP [9] and then with Pthreads,
mainly for software engineering reasons [28]. Finally, a
recent proof-of-concept parallelization of the Bayesian pro-
gram PBPI (Parallel Bayesian Phylogenetic Inference) on
the BlueGene/L has been presented by Feng et al [37].

However, none of the above programs (GARLI, IQPNNI,
PBPI) currently offers the possibility to conduct analyses of
partitioned multi-gene datasets with a per-partition estimate
of ML model parameters. However, a GARLI version that
can handle partitioned analyses is currently under prepara-
tion (Derrick Zwickl, personal communication). Currently,
MrBayes [15], RAxML, PAML [24], and PAUP∗ [25]
provide this option while PhyloBayes [14] uses a slightly
different ML model.

III. THE PHYLOGENETIC LIKELIHOOD KERNEL

The input of a phylogenomic analysis consists of a
multiple sequence alignment with n sequences (taxa/tips)
and m alignment columns. The output is an unrooted binary
tree; the n taxa are located at the leaves of the tree and the
inner nodes represent common extinct ancestors. The branch
lengths essentially represent the relative time of evolution
between nodes in the tree. In order to be able to compute
the likelihood on a fixed tree topology one also needs several
ML model parameters: the instantaneous nucleotide substi-
tution matrix Q which contains the transition probabilities
for time dt between nucleotide (4x4 matrix) or Amino Acids
(20x20 matrix) characters, the prior probabilities of observ-
ing the nucleotides, e.g., πA, πC , πG, πT for DNA data,
which can be determined empirically from the alignment,
the α shape parameter that forms part of the Γ model [38]
of rate heterogeneity that accounts for the fact that different
columns in the alignment evolve at different speeds, and
finally the 2n− 3 branch lengths.

Given all these parameters, in order to compute the like-
lihood of a fixed unrooted binary tree topology, initially one
needs to compute the entries for all internal likelihood arrays
(located at the inner nodes) that contain the probabilities
P (A), P (C), P (G), P (T ) of observing an A,C,G, or T
for each site m of the input alignment at the specific inner



node, bottom-up from the tips towards a virtual root that
can be placed into any branch of the tree. Under certain
standard model restrictions (time-reversibility of the model)
the final likelihood score will be the same regardless of the
placement of the virtual root. Once the partial likelihood
arrays to the left and right of the virtual root have been
computed, the log likelihood score can then be calculated
by combining and summing over the entries in the two like-
lihood arrays (for mathematical details please refer to [10]).
An important property of the likelihood function is the
assumption, that sites evolve independently, hence all entries
i of the likelihood arrays, where i=1...m can be computed
independently. This property represents the main source of
fine-grained parallelism in the PLK.

In order to compute the Maximum Likelihood value for a
fixed tree topology all individual branch lengths, as well as
the parameters of the Q matrix and the α shape parameter,
must also be optimized via an ML estimate. For the Q matrix
and the α shape parameter the most common approach
in “classic” ML implementations consists in using Brent’s
algorithm [39]. In order to evaluate changes in Q or α
the entire tree needs to be re-traversed, i.e., a full tree
traversal needs to be conducted in order to correctly re-
compute the likelihood. For the optimization of branch
lengths the Newton-Raphson method is commonly used.
In order to optimize the branches of a tree, the branches
are repeatedly visited and optimized one by one until the
achieved likelihood improvement is smaller than some pre-
defined ε. Note that, if only one branch length is changed, the
tree does not need to be completely re-traversed, since the
likelihood score is invariant to the placement of the virtual
root.

Provided the prolegomena, the computation of the ML
score after a change to the tree topology, requires all
these parameters to be re-optimized. However, most modern
search algorithms (GARLI, RAxML, PHYML), do not re-
optimize all branch lengths, do not re-compute all par-
tial likelihood arrays, and do not re-estimate all model
parameters after a change in tree topology. They rather
carry out local optimizations as outlined in Figure 1 in the
neighborhood of the tree region that is most affected by
the topological change. Hence, we do not need to conduct
full tree traversals and to re-compute all inner likelihood
arrays, but only execute partial traversals on those likeli-
hood arrays that are affected by the topological change.
Typically current algorithms alternate between tree search
phases and model optimization phases, i.e., the ML score
is improved by changing the topology, re-estimating only
a part of the branch lengths, and then by re-estimating the
model parameters on the improved topology after several
topological moves.

The main bulk of all of the above likelihood computations
consists of for-loops over the length m of the multiple
sequence input alignment, or more precisely over the number
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Figure 1. Approximate computation of the maximum likelihood score
after a topological change in the tree and general parallelization outline

m′ of distinct column patterns in the alignment. Operations
like branch length optimization and likelihood score com-
putation, that need to compute a likelihood score, i.e., that
require to sum over all m′ entries at the current virtual root
represent natural synchronization points for the fine-grained
parallelization because of the reduction operations that need
to be conducted and are outlined in more detail in the next
Section.

IV. PARALLELIZATION OF PARTITIONED ANALYSES

The general parallelization scheme of the Pthreads-version
of RAxML is outlined in Figure 1. We use a cyclic distribu-
tion of the m′ distinct alignment patterns to threads, mainly
to allow for better load-balance in phylogenomic datasets
that can contain DNA as well as AA (protein) data. The
computation of a likelihood vector entry for a protein pattern
position requires significantly more floating point operations,
since there are 20 instead of 4 likelihood entries to compute.

After a change in tree topology the master thread gener-
ates a partial tree traversal list that contains references to the
inner likelihood vector arrays that need to be recomputed.
Thereafter, it also orchestrates the optimization of the local
branch lengths that are most affected by the change. In the
tree search phase, both the number of likelihood arrays as
well as the number of branches to be optimized is signif-
icantly smaller than the respective overall number (n − 2
inner vectors, 2n− 3 branch lengths).

In the model optimization phase that typically contributes
less to overall execution time in RAxML (approximately 20-
30%) the tree needs to be fully traversed. Hence, the master
thread generates a full tree traversal list, that remains fixed
during the model parameter optimization process because
the tree topology is not changed. When a parameter has
been changed, every worker thread can independently update
its fraction of the likelihood array entries for the full tree
traversal and the threads only need to be synchronized
when the virtual root is reached and the likelihood score is
computed. Therefore, every thread conducts a significantly



larger fraction of independent work per alignment pattern
during the model parameter optimization phase.

In the tree search phase the worker threads will only
need to update 3-4 inner likelihood vectors on average.
Regardless of the algorithmic state (i.e., tree search or model
parameter optimization phase), synchronization is always
required between optimizations of distinct branches in the
tree.

While the above approach has shown to be highly efficient
and scalable for unpartitioned phylogenomic analyses [27],
[28], new problems arise for partitioned analyses. As shown
in Figure 2 the phylogenomic alignment and the likelihood
model can be divided into distinct partitions that correspond
to the individual genes. For every partition the Q matrix, α
shape parameter, and the branch lengths can be separately
optimized. One can also conduct a joint branch length
estimate over all partitions, however the aforementioned
approach to more efficiently compute likelihood scores on
gappy multi-gene alignments requires a per-partition branch
length estimate [32]. Because of the great computational
potential of this approach ( [32] only represents proof-
of-concept work, i.e., we have not yet implemented tree
searches under this model) we strongly argue in favor of
using per-gene branch length estimates. The load-balance
problems arise for the iterative optimization procedures
(Brent for Q and α, Newton-Raphson for branches) used.
Evidently, the number of iterations required to converge
will be different for each partition. Hence, the original,
relatively straight-forward approach consisted in optimizing
parameters for one partition at a time. While this is not
that critical for the optimization of Q and α because a full
tree traversal and hence more work is conducted by every
thread on each of its columns that form part of the current
partition, the problem is more severe for branch length
optimization. If we conduct branch length optimization, that
occurs both during the tree search as well as during the
model parameter optimization phase (albeit with a smaller
contribution to overall execution time in the latter case)
on a per-partition basis, this will significantly increase the
synchronization overhead and decrease the amount of work
a thread can conduct per branch length optimization cycle
that is triggered by the master. In the worst case, which
actually occurred in practice on a large phylogenomic dataset
using an SGI Altix supercomputer, i.e., many short partitions
and a large number of threads, it can happen, that there are
more threads available than distinct patterns in a specific
partition which means that some threads will be idling. This
can also affect the performance of the Q and α parameter
optimization, even in analyses that use a joint branch length
estimate across all partitions.

As an initial solution, we have completely re-designed
the iterative optimization procedures in RAxML to conduct
computations on the full length of the likelihood vectors for
as long as feasible, to provide as much work as available to
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Figure 2. A partitioned phylogenomic alignment with per-partition ML
model parameter estimate

the worker threads, and reduce the synchronization overhead.
The basic idea consists in re-designing the routines that
implement the Newton-Raphson and Brent procedures in
such a way that they simultaneously optimize all partitions.
Because the iterative optimization procedures on every parti-
tions will converge after a variable number of iterations, we
need to keep track of the convergence conditions for every
partition separately and be cautious to avoid the invocation
of the likelihood functions on partitions that have already
converged via an appropriate boolean vector. While this
approach sounds relatively straight-forward it was a major
software engineering challenge due to the code complexity
of RAxML that can handle concatenated datasets consisting
of morphological, DNA, secondary structure, and protein
data, i.e., we needed to design a production-level imple-
mentation. Despite the relative simplicity of the proposed
approach it already works considerably well, as shown by
our experimental results.

Implications for Bayesian Inference: At the technical
level the implementation of the PLK for Bayesian inference
programs is significantly easier, because they do not require
the iterative optimization routines (Brent, Newton-Raphson)
to optimize model parameters. This is conducted via random
proposals in the Metropolis-Coupled Markov-Chain Monte-
Carlo (MC3) procedure. While the efficiency of the like-
lihood computations for proposals to change Q or α will
not decrease to such a large extent for the same reasons
as for “classic” ML, the same problems arise for branch
length change proposals. Thus, keeping future fine-grained
parallelizations of Bayesian inference programs in mind, that
will need to be implemented in order to handle the data flood
and because Metropolis-Coupled Bayesian programs have
higher memory requirements than ML (we need to assign
separate memory space for the inner likelihood vectors for
each chain) the proposal mechanisms need to be re-designed.
Ideally, the mechanism and underlying statistics should be
designed such as to allow for applying simultaneous changes



to one of the parameter types across all partitions. Moreover,
branch length changes should be simultaneously proposed
for all partitions of the same topological connection in order
to require the same amount of re-computations of inner
likelihood vectors when the virtual root is re-located to the
branch to be changed.

V. RESULTS

Test Datasets: To test the revised parallelization of the
PKL we used 12 simulated DNA datasets, that were gener-
ated with SeqGen [40] (v1.3.2) on seed trees containing 10,
20, 50, and 100 taxa from real-world analyses. For each tree
size we generated alignments with a length of 5,000, 20,000,
and 50,000 nucleotides. We will refer to these alignments as
dXX YYYY, where XX stands for the number of taxa and
YYYY for the number of alignment columns. We ensured
that each alignment consists entirely of unique columns,
hence m = m′. We then generated several partition files
(for details see RAxML manual) that divide the respective
alignments into p partitions of length 1,000, 5,000, and
10,000 (designated as p1000, p5000, p10000). Note that
a partition length of 1,000 columns (nucleotides) roughly
corresponds to average gene length.

In addition, we used three real-world phylogenomic align-
ments: two alignments (r26 21451, r24 16916) of viral
protein sequences with 26 and 24 taxa (26 partitions, 21,451
distinct patterns; 20 partitions, 16,916 distinct alignment pat-
terns) and an alignment of 125 mammalian DNA sequences
(r125 19839) with 19,839 distinct patterns and 34 partitions.
The minimum and maximum partition lengths in terms of
distinct alignment column patterns are: 173 and 2,695 for
dataset r26 21451 as well as r24 16916 and 148 and 2,705
for r125 19839 respectively.

Availability: All test datasets as well as the source
code, that can be compiled to yield the new or the old
parallelization approach via a respective compiler switch
are available for download at http://wwwkramer.in.tum.de/
exelixis/software.html.

Platforms: We used the following general-purpose multi-
core architectures to test the new approach: a 4-way AMD
Barcelona with a total of 16 cores, 128GB of main memory
running at 2.2 GHz; a 8-way Sun x4600 with 16 cores,
64GB, at 2.6GHz; a 2-way Intel Nehalem pre-production
system with 8 cores, 12 GB, at 2.933GHz; a 2-way Intel
Clovertown with 8 cores, 8GB 2.66 GHz. The code on
the AMD Barcelona was compiled with gcc version 4.3.2
and on the x4600 with version 4.1.3 respectively using the
-O3 -fomit-frame-pointer -funroll-loops op-
timization flags. The code on the Nehalem and Clovertown
systems was compiled using icc (v11.0.074) with flags
-O3 -xS and -O3 -xT respectively.

Experimental Setup: For every possible combination
of simulated datasets and corresponding partition schemes
(e.g., dataset d10 5000 can not be executed with p10000)

we executed 4 distinct analyses: An optimization of ML
model parameters (without tree search) on a fixed input
tree with joint and per-partition branch length estimates, as
well as full ML tree searches (on a fixed input tree for
reproducibility) with joint and per-partition branch length
estimates. In addition, we measured parallel performance for
unpartitioned ML parameter optimization and tree searches
on all 12 simulated datasets.

The three real-world datasets where analyzed using the
biologically meaningful per-gene partitions provided by our
collaborators. We once again conducted model parameter
optimization and tree search runs using a joint and a per-
partition estimate of branch lengths.

We executed all of the above runs on 1, 8 and 16 cores
where available (Sun x4600, AMD Barcelona).

Results: As expected (because of the significantly more
favorable synchronization to computation ratio for joint
branch length optimization) the run time differences between
the old per-partition parallelization approach (oldPAR) and
the new simultaneous parallelization approach (newPAR)
where insignificant for analyses using a joint branch length
estimate over all partitions. The average execution time
improvement amounts to approximately 5%, both for full
tree searches as well as for stand-alone model parameter
optimization on a fixed tree (results not shown). Hence, we
focus on the results and speedup improvements obtained
for analyses with a per-partition branch length estimate. As
already mentioned, the optimization of ML model parame-
ters on a fixed tree (i.e., no tree search is performed), even
with a per-partition branch length estimate, exhibits more
computations per synchronization event, since the entire
tree needs to be traversed to re-compute the likelihood
score after changes to Q and α, i.e., there is significantly
more computational work per alignment column. Therefore,
the average execution time improvements range between
5% and 10% for model parameter optimization on a fixed
tree depending on the dataset and platform used (data not
shown).

Thus, also the practically most relevant case is that of full
ML tree searches with per-partition branch length estimates.
Evidently, the number and length of partitions in a dataset
will have direct impact on the performance improvements
achieved by newPAR, i.e., the more and the shorter the
partitions are, the better the performance of newPAR versus
oldPAR will become. We present the realistic (given the
partition length that corresponds to the typical length of an
average gene) worst-case scenario for oldPAR which at the
same time is the best-case scenario, in terms of speedup over
oldPAR, for newPAR.

In Figure 3 we provide absolute execution times for the
four test systems (Nehalem, Clovertown, Barcelona, Sun
x4600) for the sequential, the oldPAR, and the newPAR
versions on 1, 8, and 16 threads (where applicable) for a
full ML tree search on dataset d50 50000 with 50 partitions



of 1,000 columns each. In Figure 4 we provide an analogous
plot for dataset d100 50000 that is also partitioned into
50 partitions of 1,000 alignment columns. In Figure 5 we
show that execution times on the real-world mammalian
DNA dataset with 34 partitions of variable length (minimum
length: 148; maximum length: 2,705) improve to a similar
degree as for our simulated datasets. Note that the speedups
were smaller (around 5-10%) on the two protein datasets
(data not shown). While they are similar in number and
length of the partitions to the mammalian dataset, the com-
putation of the likelihood score for protein sequences that
is based on a 20x20 instead of a 4x4 nucleotide substitution
matrix requires a significantly higher amount (roughly by
a factor of 20x20/4x4=25) of floating point operations per
column. Hence, the load balance problem is less prevalent
for protein data. Nonetheless, Figures 3, 4 and 5 clearly
show that firstly there is a significant load balance problem
in the PKL for analyses of realistically-dimensioned and
partitioned DNA datasets with a per-partition branch length
estimate, and secondly that up to eight-fold improvements
in parallel efficiency can be achieved on current multi-
core architectures using the novel approach we propose
here. Moreover, the parallel slowdown observed on 16 cores
(AMD Barcelona, Sun x4600) for oldPAR compared to
run times on 8 cores can be alleviated by our newPAR
method. Moreover, as underlined by Figure 6 on dataset
d50 50000 (again with p1000) for the Intel Nehalem, the
speedup achieved for the partitioned analysis with newPAR
is nearly as good as the speedup obtained for a completely
unpartitioned analysis, despite the load imbalance problem.

The absolute run-times for the different processor ar-
chitectures are consistent with previous observations [28]:
performance on Intel processors for sequential program runs
is significantly better than performance on AMD processors.
However, with 8 threads the AMD processors are on par
with the Intel Clovertown. This is due to the fact that all
8 cores of the Clovertown system share a common front-
side bus for main memory accesses, whereas the AMD
NUMA architecture provides a higher aggregated memory
bandwidth for parallel program runs. Because RAxML is
memory-bound, the memory bandwidth available to each
thread heavily influences execution times. For the same
reason the Intel Nehalem system clearly outperforms all
other systems, since it is also based on a NUMA (QuickPath
Interconnect) architecture. Because of a memory bandwidth
of approximately 30GB per second and per processor, the
sequential runtime on the Nehalem is almost 40% lower than
on the Clovertown.

VI. CONCLUSION AND FUTURE WORK

We have provided the first description and analysis of
a practically highly relevant load balance problem in the
Phylogenetic Likelihood Kernel that has implications on the
future design and parallelization of “classic” ML as well
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Figure 3. Sequential and parallel execution times for dataset d50 50000
with 50 partitions of 1,000 columns each on Nehalem, Clovertown,
Barcelona, and Sun x4600 multi-core systems
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Figure 4. Sequential and parallel execution times for dataset d100 50000
with 50 partitions of 1,000 columns each on Nehalem, Clovertown,
Barcelona, and Sun x4600 multi-core systems
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Figure 5. Sequential and parallel execution times for the real-world
mammalian dataset r125 19839 with 34 partitions of variable length on
Nehalem, Clovertown, Barcelona, and Sun x4600 multi-core systems

as Bayesian methods for the reconstruction of evolutionary
trees from molecular sequence data. We also provide an
initial solution and production-level implementation for this
load-balance problem that increases parallel efficiency of the
PLK by a factor of two to eight for large-scale phylogenomic
analyses on several current multi-core architectures. The
focus is on multi-core architectures, since they already
form part of the standard analysis environment of system-
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Figure 6. Speedup comparisons for dataset d50 50000 on the Intel
Nehalem for an unpartitioned analysis as well as for the old parallelization
approach and the new parallelization approach for partitioned analyses with
50 partitions of 1,000 columns each

atists. While the increase in parallel efficiency achieved
via simultaneous iterative optimization of ML model pa-
rameters across all partitions is significant, the speedups
are still slightly lower than for unpartitioned analyses that
partially achieve substantial super-linear speedups [28]. We
will hence further investigate this important problem, try
to identify additional performance bottlenecks and assess
scalability on supercomputers with several hundred cores.
Finally, we also intend to implement tree searches under
the computationally improved likelihood model for gappy
phylogenomic alignments [32].
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