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ABSTRACT

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus 
requires high-performance technologies. Another compute- and memory-intensive problem is that of host-
parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals) and 
one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are more 
similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows biologists 
to conduct such co-phylogenetic studies within an elaborate statistical framework based on the highly 
optimized sequential and parallel AxParafit program. We have developed enhanced versions of these tools 
that efficiently exploit a Grid environment and therefore facilitate large-scale data analyses. Furthermore, 
we developed a freely accessible client tool that provides co-phylogenetic analysis capabilities. Since the 
computational bulk of the problem is embarrassingly parallel, it fits well to a computational Grid and 
reduces the response time of large scale analyses.
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INTRODUCTION

The generation of novel insights in many 
scientific domains such as biology, physics, or 
chemistry increasingly relies on compute-inten-
sive applications that require high-performance 
or large-scale, distributed high-throughput 
computing technology and infrastructure. In the 
discipline of bioinformatics, biological insight 
is typically generated via data analysis pipelines 

that use a plethora of distinct and highly special-
ized tools. Most commonly, bioinformaticians 
and biologists collaborate to analyze data ex-
tracted from large databases containing DNA 
and/or protein data in order to study, e.g., the 
function of living beings, the effect and influence 
of diseases and defects, or their evolutionary 
history. Early “classic” bioinformatics tools, 
such as CLUSTALW (Thompson et al., 1994) 
or BLAST (Altschul et al., 1997) that have 
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been ported to Grid computing environments 
deal with biological sequence search, analysis, 
and comparison. Typically, these programs are 
embarrassingly parallel and therefore represent 
ideal candidate applications for Grid computing 
environments (Stockinger et al., 2006).

The study of the genome represents a 
way to obtain new insight and extract novel 
knowledge about living beings. In particular, 
stand-alone phylogenetic analyses have many 
important applications in biological and medi-
cal research. Applications range from predict-
ing the development of emerging infectious 
diseases (Salzberg et al., 2007), over the study 
of Papillomavirus evolution that is associated 
with cervical cancer (Gottschling et al., 2007), 
to the determination of the common origin of 
Caribbean frogs (Heinicke et al., 2007). 

Recent years have witnessed significant 
progress in the field of stand-alone phylogeny 
reconstruction algorithms, which represent an 
NP-complete optimization problem (Chor and 
Tuller, 2005), with the release of programs such 
as TNT (Goloboff, 1999), RAxML (Stamatakis, 
2006), MrBayes (Ronquist and Huelsenbeck, 
2003) or GARLI (Zwickl, 2006). Because of the 
continuous explosive accumulation and avail-
ability of molecular sequence data coupled with 
advances in phylogeny reconstruction methods, 
it has now become feasible to reconstruct and 
fully analyze large phylogenetic trees compris-
ing hundreds or even thousands of sequences 
(organisms). However, current meta-analysis 
methods for phylogenetic trees such as programs 
that conduct co-phylogenetic tests can currently 
not handle such large datasets. 

To alleviate this bottleneck in the meta-
analysis pipeline, we recently parallelized, and 
released the highly optimized co-phylogenetic 
analysis program AxParafit (Axelerated Parafit 
- Stamatakis et al., 2007) that implements an 
elaborate statistical test of congruence between 
host and parasite trees (Legendre et al., 2002). 
AxParafit is a typical stand-alone Linux/Unix 
command line program. AxParafit has been 
integrated and can be invoked via a user-
friendly graphical interface for co-phylogenetic 
analyses called CopyCat (Meier-Kolthoff et al., 

2007). In this article, we present an enhanced 
version of this tool suite (henceforth denoted 
as CopyCat(AxParafit)) for co-phylogenetic 
analyses, that is packaged into a client tool 
which makes use of a world-wide Grid environ-
ment and thereby allows for large-scale data 
analysis. In the current version, the underlying 
Grid middleware is gLite (Laure et al., 2006) 
that is coupled with an efficient submission and 
execution model called Run Time Sensitive 
(RTS) scheduling and execution (Stockinger 
et al., 2006).

The remainder of this article is organized 
as follows: initially, we provide a brief intro-
duction to the field of phylogenetic inference, 
co-phylogenetic analyses, and related soft-
ware packages in Section 2. Next, we discuss 
the implementation and architecture of our 
new approach for efficient adaptation of the 
CopyCat(AxParafit) tool-suite to a Grid envi-
ronment. Finally, we provide detailed perfor-
mance results on the EGEE (Enabling Grids 
for E-SciencE, http://www.eu-egee.org) Grid 
infrastructure (where the gLite middleware is 
deployed in production mode) and demonstrate 
the performance as well as scalability of our 
proposed bioinformatics tool.

BACKGROUND

Phylogenetic (evolutionary) trees are used to 
represent the evolutionary history of a set of s 
currently living organisms, roughly comparable 
to a genealogical tree of species rather than indi-
vidual organisms. Phylogenetic trees or simply 
phylogenies are typically unrooted binary trees. 
The s organisms, which are represented by their 
DNA or AA (Amino Acid/Protein) sequences 
that are used as input data for the computation, 
are located at the leave nodes (tips) of the tree 
while the inner nodes of the topology represent 
common extinct ancestors. There exist various 
methods and models to reconstruct such trees 
which differ in their computational complex-
ity and also in the accuracy of the final results, 
i.e., there exists a “classic” trade-off between 
speed and accuracy. As already mentioned in 



International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009   41

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

the introduction, phylogenetic analysis has 
many important applications in medical and 
biological research. In Figure 1, we provide 
a simple example for the phylogenetic tree of 
monkeys.

In the context of this article, however, 
we will not address stand-alone phylogenetic 
inference, but consider the problem of co-
phylogenetic analysis. Given two phylogenetic 
trees that represent the evolutionary histories of 
hosts and their respective parasites, the “classic” 
example being mammals and lice, and given 
the extant associations between the former 
and the latter, we want to determine whether 
the parasite phylogeny is more similar to the 
phylogeny of the respective hosts than expected 
by chance alone. The main interpretation of 
such a congruence between the trees is that 
parasites have been associated with respect to 
their evolutionary history and mostly speciated 
in parallel (co-speciated) with their hosts (Page, 
2002). Given a parasite tree with n organisms 
and a host tree with m organisms (sequences), 
their associations can be represented as a n times 
m binary matrix, that contains information of the 

type: does parasite x (x=1...n) occur or live on 
host y (y=1...m)? In addition to the question of 
global congruence, one may also be interested 
in whether individual associations significantly 
increase the agreement between the phylog-
enies. Such associations can be interpreted as 
being caused mainly by co-speciation.

As previously mentioned, recent advances 
in stand-alone phylogenetic inference methods 
in combination with the increasing availability 
of appropriate sequence data, allow for large-
scale phylogenetic analyses with several hun-
dred or thousand sequences (Stamatakis, 2006). 
Thus, large-scale co-phylogenetic studies have, 
in principle, become feasible. However, most 
common co-phylogenetic tools or methods such 
as BPA, Component, TreeMap, TreeFitter (cf. 
review in Charleston, 2006) or Tarzan (Merkle, 
2006) are not able to handle datasets with a large 
number of organisms or have not been tested in 
this regard with respect to their statistical prop-
erties and scalability. Faster methods based on 
topological distances between trees, like, e.g., 
Icong (de Vienne, 2007) are even limited to the 
analysis of bijective associations only. In this 

Figure 1. Phylogenetic tree of monkeys
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context bijectivity means that each parasite can 
only be associated to one single host, and vice 
versa. Therefore, there is a performance and 
scalability gap between tools for phylogenetic 
analysis and meta-analysis. The capability to 
analyze large datasets is important to infer 
“deep co-phylogenetic” relationships which 
can otherwise not be assessed (Meier-Kolthoff 
et al., 2007; Stamatakis et al., 2007). Deep re-
lationships are relationships that determine the 
extant associations between parasite and host 
organisms at a high taxonomic level, such as, 
e.g., families and orders.

Parafit (Legendre, 2002) and the analo-
gous highly optimized AxParafit (Stamatakis 
et al., 2007) program implement a statistical 
test to assess hypotheses of global congruence 
between trees as well as the impact of indi-
vidual associations. This test is based on the 
permutation of the entries in the association 
matrix. The null hypothesis is that the global 
similarity between the trees, or the respective 
impact of an individual local association on the 
similarity, is not larger than expected by pure 
chance. Extensive simulations have shown that 
the Parafit test is statistically well-behaved 
and yields acceptable error rates. The method 
has been successfully applied in a number of 
biological studies (Hansen et al., 2003; Ricklefs 
et al., 2004; Meinilä et al., 2004).

In addition, the type-II statistical error of 
Parafit decreases with the size of the dataset 
(see Legendre, 2002), i.e., this approach scales 
well on large phylogenies of hosts and parasites 
in terms of accuracy. The AxParafit program 
is a highly optimized version of Parafit which 
yields exactly the same results. The sequential 
version of AxParafit is up to 67 times faster than 
the original Parafit implementation, while the 
speedup increases with increasing input size, 
caused by higher cache efficiency. The speedup 
of AxParafit has been achieved via low-level 
optimizations in C, re-design of the algorithm, 
omission of redundant code, reduction of 
memory footprint, and integration of highly 
optimized BLAS (Basic Linear Algebra Subrou-
tines, http://www.netlib.org/blas/) routines.

Earlier work describes these optimizations 
together with a respective performance study. 
Moreover, the program was used to conduct 
the largest co-phylogenetic analysis on real-
world data to date. The underlying data were 
smut fungi and their respective host plants 
(Stamatakis et al., 2007). Smut fungi are para-
sitic mushrooms that cause plant diseases. For 
economically important hosts, such as barley 
and other cereals, smut fungi can for instance 
cause considerable yield losses (Thomas and 
Menzies, 1997).

Workflow of a Co-Phylogenetic 
Analysis with CopyCat and  
AxParafit

In this section, we provide an outline of the 
work-flow for a full co-phylogenetic analysis 
using CopyCat(AxParafit). The input for a co-
phylogenetic analysis with CopyCat(AxParafit) 
are the host and parasite phylogenies, that might 
have branch lengths, depending on which meth-
od/model was used to calculate the trees. The 
aforementioned associations are represented as 
a plain text file containing a list of sequence (or-
ganism) name pairs of hosts and parasites, i.e., an 
adjacency list. This input data representation is 
henceforth also referred to as list of host-parasite 
associations. Initially, these files are parsed and 
transformed into the appropriate file format by 
CopyCat. In a first step, a principal coordinate 
analysis is conducted on the respective tree-
based distance matrices induced by the host and 
parasite trees. This analysis is carried out by the 
AxPcoords (Axelerated Principal Coordinates) 
program (Stamatakis et al., 2007), which is an 
optimized version of the analogous DistPCoA 
program (Legendre and Anderson, 1998). The 
output of AxPcoords for the host and parasite 
trees is then parsed and appropriately prepared 
for the AxParafit analysis which takes the two 
principal coordinates matrices and the binary 
matrix with the associations as input. The output 
of this computation is a list of probabilities for 
the individual null hypotheses that a certain 
association does not improve the fit between 
host and associate phylogenies. In addition, 
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a probability for the global null hypothesis of 
the absence of congruence between host and 
parasite trees is computed. Upon termination 
of AxParafit the output files are read by the 
CopyCat tool and presented in a human-read-
able format. It is important to note that the 
computations with AxParafit represent the by 
far largest part (over 95%) of the computational 
effort required to conduct such a co-phyloge-
netic analysis. Therefore, the AxPcoords and 
CopyCat parts of the workflow can be handled 
sequentially and executed locally. We will, 
thus, mainly focus on the parallel and gridified 
versions of AxParafit in the next sections. The 
basic workflow is outlined in Figure 2 (at the 
end of the article). 

Parallel AxParafit

The most compute-intensive operation (95% 
of execution time) conducted by AxParafit to 
compute the statistics is a dense matrix-matrix 
multiplication of double precision floating point 
numbers. This is the rationale for integration 
of highly optimized BLAS routines. In the 
remainder of this article, we thus always refer 
to the BLAS-based version of AxParafit.

Initially, the program will compute the sta-
tistics for the global congruence of the complete 
list of host-parasite associations. This part of 
the computation is significantly less expensive 
than the individual tests for each host-para-
site association, which take nz times longer, 
where nz is the number of non-zero entries in 
the binary association matrix, i.e., number of 
entries in the original host-parasite association 
list. For large datasets that require parallel and 
distributed computing resources as well as a 
sufficient amount of memory typically nz >> 
1. The statistics computed during the global test 
of congruence are required as input data for the 
individual tests of host-parasite associations, 
hence there is a sequential dependency: global 
test → nz local tests. Thus, in the MPI-based 
parallel implementation we only parallelized 
these nz local tests which can be computed 
independently of each other via a straight-
forward master-worker scheme. The master 

simply distributes the nz individual host-parasite 
association tests to the worker processes.

The potential bottleneck induced by 
the sequential part of the computations can 
be alleviated by using, e.g., the respective 
shared-memory implementations of BLAS. 
With respect to a gridification, this sequential 
dependency actually has advantages. Since the 
inference time as well as memory footprint of 
the global test of congruence are nearly identical 
(same type of operation, identical matrix sizes, 
permuted input data) to each of the individual nz 
tests, the information on run-times and memory 
requirements collected during the global tests 
can be used for scheduling decisions, as well as 
to determine an optimal level of granularity and 
to assess respective resource requirements.

FIT FOR THE GRID

In the following section, we describe how 
CopyCat(AxParafit) has been adapted and 
modified for use in a Grid environment. The 
overall architecture of the client tool will be 
explained as well as the integration with an 
existing middleware toolkit.

An important design goal of the Grid-based 
system for co-phylogenetic analyses was to 
re-use the current graphical user interface of 
CopyCat such that the deployment of Grid 
resources is hidden from the end-user. One 
fundamental difference between the standard 
and Grid-enabled versions of CopyCat (Ax-
Parafit) is that specific Grid credentials are 
required (an X.509 user certificate) since Grid 
jobs can only be submitted by authenticated 
and authorized users. 

Overall Architecture 

The basic workflow of a co-phylogenetic study 
using CopyCat and the AxPcoords/AxParafit 
programs has already been outlined in the above 
section. Here, we will describe the architecture 
and workflow for a gridified analysis in greater 
detail. The input data consists of three files: a 
host tree file, a parasite tree file, and a host-
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parasite association list. In the reminder of this 
article, the following terminology is used:

•	 Individual test (job): an individual test 
is the minimal “work unit” or processing 
entity that has to be conducted by AxParafit 
to calculate a single host-parasite associa-
tion. In the context of AxParafit this is also 
referred to as job. In total, nz individual 
tests have to be computed to achieve the 
final result.

•	 Task: a task consists of a fraction (subset) 
of the nz individual tests that have to be 
conducted by AxParafit.

•	 Grid job: a Grid job is an executable that 
is scheduled by the Grid middleware to 
be executed on a Worker Node of a Grid 
computing resource (also referred to as 
Computing Element). In our model, a single 
Grid job can execute one or several such 
tasks.

The overall workflow is depicted in Figure 
2. The most important Grid-enhancement is 
the interface to the Grid (represented by the 
Perl program AxParafit.pl in Figure 2). Once 
the input files are validated, CopyCat uses Ax-
Parafit.pl to determine a specific set of tasks (to 
be registered with a Task Server as indicated 
in Figure 3) and Grid jobs which are then 
submitted to Grid computing resources using 
the gLite middleware. Each individual Grid 
job then requests tasks from the Task Server, 
processes them, and stores the result on a Grid 
Storage Element.

AxParafit.pl will constantly monitor the 
overall Grid job status and presents intermedi-
ate results in a CopyCat control window. Once 
all results are obtained and merged, CopyCat 
indicates where the final result can be obtained. 
Further details about AxParafit.pl, AxWorker.pl 
etc. will be given in the other section.

Implementation Details

In the following section we describe the nec-
essary modifications and adaptations of the 
existing CopyCat and AxParafit tools as well 

as additional components that were necessary 
to implement the system outlined in Section 
3.1.

CopyCat 

Previous versions of CopyCat already provided 
straight-forward GUI-based functionality for 
the preparation and analysis of co-phylogenetic 
datasets. The CopyCat GUI is implemented in 
Java using the Standard Widget Toolkit (SWT). 
Upon startup, the user can load the host and 
parasite trees (represented in the standard 
Newick tree format: http://evolution.genet-
ics.washington.edu/phylip/newicktree.html), 
together with a host-parasite association list 
in a simple plain-text format that contains one 
host-parasite association per line.

When starting an analysis, the user can now 
utilize a new Grid interface that connects Copy-
Cat to the gridified program AxParafit. Instead 
of directly calling the AxParafit executable, 
the interface invokes a Perl script (AxParafit.
pl) which hides the Grid-related parts from the 
user and CopyCat. By delegating the invoca-
tion process to a script, dependencies between 
the user front-end and the Grid software are 
minimized. Thus, future modifications like the 
development of a Web interface for job submis-
sions (see Conclusion) or the usage of a different 
middleware system are possible.

The AxParafit.pl script entirely manages 
the execution of AxParafit on the Grid and 
provides status updates to the standard output 
stream at the same time. As CopyCat is listening 
to the output stream of the external programs 
it invokes, it also receives the status updates 
generated by the aforementioned Perl-script 
and writes them to the CopyCat log-message 
window, thus keeping the user informed about 
the progress of Grid jobs. Upon termination of 
the script, the output of the Grid jobs (individual 
tests of host-parasite associations), as well as 
the global significance test results, are read by 
CopyCat. The results can then be displayed 
and further analyzed via the CopyCat evalu-
ation window.
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Figure 2. Detailed work- and dataflow for co-phylogenetic analysis on the Grid
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Within the context of an automated Grid-
driven simultaneous analysis of several distinct 
datasets (and other potential script-based ap-
plications, based on CopyCat), the program has 
been extended by a command-line interface. 
As a side-effect, this enables CopyCat users to 
speed-up certain analyses by simply executing 
a specific command-line call with a defined 
set of parameters (please refer to the CopyCat 
manual for detailed information on the com-
mand-line options).

Application-Side Modifications of 
AxParafit

As outlined in other section, the parallel MPI 
implementation of AxParafit uses a simple 
master-worker scheme. In order to devise a 
distributed version of AxParafit we modified 
the code as follows: initially, we appropriately 
modified the global test of congruence in Ax-
Parafit to write an additional file called “grid-
Data.RUN-ID” where RUN-ID is the output 

file name appendix for a specific analysis that 
is passed to AxParafit via a command line pa-
rameter (for details see the AxParafit Manual 
at http://icwww.epfl.ch/~stamatak/). This file 
contains the necessary data to make scheduling 
decisions for the distributed computation of the 
n individual tests of host-parasite associations, 
i.e., the number of jobs nz, e.g. Jobs=2000, 
and the approximate execution time per job 
in seconds, e.g., ComputeTime=10 . This data 
can then be used to determine the level of 
granularity for individual Grid tasks since in 
the current example the scheduling overhead 
induced by distributing 2,000 jobs of 10 seconds 
each, along with the comparatively large input 
datasets on the Grid, would be immense. We 
have, thus, extended the implementation of 
the individual host-parasite association tests 
in AxParafit by two additional command line 
parameters -l (lower limit) and -u (upper limit). 
These parameters allow for computation of 
several host-parasite associations in one single 
program run. The lower and upper limits just 

Figure 3. Interaction of AxParafit.pl with the gLite Grid middleware, a Task Server and a Stor-
age Element. Each submitted Grid job will execute on a Grid Worker Node. 
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refer to the order of the nz non-zero entries in the 
binary association matrix. Thus, in the present 
example, we can schedule larger, in terms of 
execution times, Grid jobs by only distributing 
two Grid jobs with -l 0 -u 1000 and -l 1000 -u 
2000 that would require approximately 10,000 
seconds of execution time each, i.e., Grid job 
0 would compute statistics for the first 1,000 
host-parasite associations and Grid job 1 for the 
remaining 1,000 associations. The result files 
of these distributed Grid jobs only need to be 
recovered and concatenated in the order of the 
associations they computed, and the respective 
result file can then be read and visualized by 
CopyCat.

Grid-Side Adaptation

Parafit.pl provides the actual link between 
CopyCat and the gridified version of AxParafit. 
First, it reads the file “gridData.RUN-ID” to 
determine the number of tasks to be created 
(registered) for execution on the Grid (Step 1 
in Figure 3). As outlined in Section 3.2.1, the 
basic idea consists of combining appropriate 
fractions (subsets) of the nz individual tests into 
a single task, i.e., a set of individual tests k < 
nz are executed by a Grid job. In order to make 
efficient use of the Grid and to reduce schedul-
ing overhead, a task contains a minimum of k 
individual tests, such that the respective job 
requires at least 30 seconds on an average CPU. 
After the number of tasks has been determined, 

a certain number of Grid jobs (approximately 
nz/k) needs to be submitted (Step 3 in Figure 
3) which then ask for tasks to be executed, 
i.e., issue work requests. An individual Grid 
job can request and execute several tasks, as 
long as the Task Server can provide more work 
(Steps 5 and 6 in Figure 3). The protocol used 
for the Task Server is HTTP which allows for 
fast communication between the client and the 
server. For additional background and fault 
tolerance features of this processing model 
with a Task Server please refer to Stockinger 
et al. (2006).

Before Grid jobs can be submitted, Ax-
Parafit.pl creates the Grid job specification, 
i.e. the job description file to decide which 
files (data and/or executables) to send to Grid 
computing resources. A typical job description 
file looks as follows:(See Box 1).

The wrapper code (identified as “Execut-
able” in the JDL file above) is AxWorker.pl 
using the command line arguments specified by 
“Arguments”. Once AxParafit.pl is running on a 
Grid Worker Node, it is responsible for request-
ing tasks from a Task Server and executing Ax-
ParafitBLAS. The two programs (AxWorker.pl 
and AxParafitBLAS) are transferred to the Grid 
Worker Node as specified in the InputSandbox 
in the example above, i.e. gLite provides the 
means to transfer data from the client machine 
to the actual computing resource.

In parallel to the execution of Grid jobs, 
the script AxParafit.pl monitors the status and 

Executable = “AxWorker.pl”; 
Arguments = “-j ax-May1319-41-28 -p 100 -1 2048 -2 2048 -3 2025 -4 2031 \
–A gsiftp://example.org/dpm/home/biomed/heinz/selection_2048.mat-ax-May1319-41-28 \
-B gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_P.pco-ax-May1319-41-28 \
-C gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_H.tra-ax-May1319-41-28 -i 

1”; 
Stdoutput = “output.txt”; 
InputSandbox = {“/home/stockinger/AxWorker.pl”, “/home/stockinger/AxParafitBLAS”}; 
OutputSandbox = {“output.txt”} 

Box 1.
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is responsible for providing and assembling the 
final result (Steps 8 and 9 in Figure 3). 

In particular, when tasks have been pro-
cessed successfully, they are downloaded from 
the Storage Element and transferred to the client. 
Note that an alternative implementation option 
is to transfer the output of individual tasks via 
the gLite middleware (using the OutputSand-
box). However, because of performance and 
reliability considerations, it has turned out to be 
more efficient to store files at an external Stor-
age Element and retrieve them from there: one 
reason is that the actual job output can only be 
retrieved if gLite indicates that a job has been 
finished. However, because of update latencies 
in the Grid-wide information and motoring 
system, jobs might have finished already several 
dozens of seconds or even a few minutes ago 
while the job status is still indicated as pending 
or running.

As a final remark: since the gLite services 
can only be accessed by authorized users, the 
execution of the AxParafit.pl script requires the 
usage of a valid X.509 proxy certificate.

EXPERIMENTAL RESULTS

The main goal of the gridified version of 
CopyCat(AxParafit) is to accelerate and fa-
cilitate large-scale analyses. We present two 
experiments with large computational demands 
and study their performance on the Grid. The 
performance improvement is outlined with 
respect to running the application sequentially 
on a single machine. Moreover, we conduct a 
performance comparison between a dedicated 
compute cluster and the Grid.

Test Environment

The Grid platform that is supported by our ap-
plication is gLite 3. Tests are conducted using 
gLite on the EGEE production infrastructure. In 
particular, we use the Virtual Organization (VO) 
that is dedicated to biomedical applications: 
“biomed”. Members of this VO have access 
to about 50 Computing Elements (acting as 

front-ends to computing clusters), each having 
between 2 and a few hundred processing cores. 
The exact number of processing cores avail-
able to a single user at a given time cannot be 
easily obtained since it depends on the current 
system load as well as the general availability 
of a Computing Element at a certain point in 
time. Currently, gLite does not support resource 
reservation nor job priorities, which means that 
experimental results can not be fully reproduced. 
However, once one is correctly registered with 
the Virtual Organization, one can use it any 
time of the day.

On the client side, we used gLite on 
GNU/Linux on an AMD Opteron machine (2 
GB RAM, 2.2 GHz CPU) located in Lyon, 
France – previous tests (in particular with the 
installation of CopyCat and the Grid interface 
have been conducted on a machine located in 
Lausanne, Switzerland). The gLite components 
used are the workload management system (for 
job submission and status monitoring) as well 
as data management clients for file transfer. Ad-
ditionally, we deployed and used a Task Server 
that is located in Lausanne, using resources pro-
vided by the Vital-IT group of the Swiss Institute 
of Bioinformatics. In the second experiment, 
we used a dedicated compute cluster with 128 
CPUs. In contrast to the Grid, the cluster had 
to be reserved in advance.

Experiment with Real-world Data

In the first experiment we are interested in the 
raw performance (response time) of AxParafit.
pl, i.e., how long does it take to fully process 
a set of tasks on the Grid. In this experiment, 
we do not include CopyCat but directly invoke 
AxParafit.pl as follows:(See Box 2).

The parameters -1, -2, -3 and -4 specify the 
number of rows and columns in the association 
matrix as well as the number of rows and col-
umns in the parasite and host matrices; -p rep-
resents the number of permutations conducted 
by the statistical test; -A, -B, and -C are used to 
read the plain-text input files; -n specifies a run 
ID that is appended to all output files (for details 
on the AxParafit program parameters please 



International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009   49

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

refer to the AxParafit manual at http://icwww.
epfl.ch/~stamatak/). The dataset we used is the 
aforementioned (Section 2) dataset for the study 
of smut-fungi, that was used to demonstrate per-
formance of the stand-alone AxParafit code by 
Stamatakis et al. (2007). As already mentioned, 
this dataset represents the largest real-world 
co-phylogenetic study conducted to date. While 
the sequential execution time for this dataset 
still appears to be acceptable, such studies were 
previously not feasible with Parafit which is 
between 1-2 orders of magnitude slower than 

AxParafit. Since the host-parasite association 
list contains nz=2,362 entries, 2,362 individual 
tests need to be performed. The execution of 
AxParafit to compute global congruence of 
the trees returned an estimated run time of 3 
seconds per job, i.e., an overall expected run 
time of almost two hours (2,362 x 3 seconds). 
The main goal of the first test is therefore to 
minimize the expected response time. We also 
executed the full test, as specified above, on a 
single machine and observed that the estimated 
run time of about 2 hours (7,000 seconds) is 

Figure 4. Comparison of smut-fungi dataset on a single CPU and on a Grid using 124 Grid jobs 
and 150 tasks. Note that there is a rather high redundancy in Grid jobs and not all 124 jobs re-
ally participate in the overall calculation because of start-up latencies. In fact, a few Grid jobs 
(AxWorker.pl) started, requested tasks and found out that there were no more tasks available 
and gracefully finished.

AxParafit.pl -p 10 -1 413 -2 1400 -3 1390 -4 
411 \

       -A smuts010907.mat -B smuts010907_P.pco 
-C smuts010907_H.tra -n RUN_1

Box 2.
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almost identical to the measured run time (7,200 
seconds). Therefore, we deduce that the run time 
prediction mechanism is sufficiently accurate 
for our application. In our experiments, we 
varied the number of tasks (in the range between 
60 and 162) as well as the number of parallel 
Grid jobs (in the range between 24 to 124) to 
experimentally determine the minimal response 
time. However, because of varying response 
times of the Grid (i.e. the various Computing 
Elements and their job queues etc.) it was not 
possible to determine an optimal number of 
Grid jobs and tasks. Finally, in the experiment 
we used 124 Grid jobs and 150 tasks which 
have been proposed by the work distribution 
algorithm outlined in aforementioned section. 
The overall response time to produce the final 
output was 11 minutes and 15 seconds (cf. Figure 
4). Consequently, we observe a clear runtime 
improvement with respect to a single, sequential 
run. Note that the AxParafit.pl program had to 
be adapted to allow for parallel downloads of 
the individual results: originally, results were 
downloaded sequentially, which increased the 
overall response time by several minutes. By 

overlapping communication with computation, 
this problem was resolved.

Experiment with Synthetic Data

In another experiment, we used a larger (syn-
thetic) test dataset that had been extracted from 
a larger empirical dataset to test scalability of 
AxParafit and compared the runtime of the 
Grid with the infiniband cluster at the Techni-
cal University of Munich equipped with 128 
AMD Opteron 2.4 GHz CPUs. In the associa-
tion list, there were nz=2,048 non-zero entries 
(equivalent to 2,048 tasks) and we used 100 
permutations. The expected runtime of a single 
task was 568 seconds, i.e., about 10 minutes. As 
a result, the expected sequential response time 
to finish all 2,048 tasks is about 13.4 days. We 
used the wrapper as follows: (See Box 3).

Note that the input files are bigger than 
in the previous experiment: they cannot be 
directly submitted with the Grid job but they 
are uploaded to a Storage Element and then 
dynamically downloaded by Grid jobs when 
needed.

Figure 5. Performance comparison of a 128 CPU cluster with a Grid using between 90 and 175 
parallel jobs. Note that the number of Grid job varied and was never constant.



International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009   51

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

A direct performance comparison between 
the cluster and a Grid is not feasible since the 
cluster we used had several favorable features 
that a multi-institutional Grid does not have: a 
shared file system between all processing nodes 
which minimizes the data transfer time; homo-
geneous hardware infrastructure; pre-defined 
number of CPUs that are available which does 
not require an automatic task assignment, no 
overhead for job submission etc. However, the 
cluster needed to be reserved in advance (larger 
slots can only be obtained overnight) which 
means that it was only available at a specific 
time, whereas Grid resources are available on 
demand at any time. Intuitively, one expects a 
cluster to provide a better response time to a 
large size application but it has a considerable 
“reservation latency”, a fact that should not be 
underestimated.

The final performance results of the experi-
ments are depicted in Figure 5. For the Grid 
execution, we used between 90 and 175 paral-
lel jobs (the number varied during the overall 
execution time). Given the number of parallel 
jobs used in the Grid, the cluster performed 
better. However, if the number of jobs is in-
creased on the Grid, the cluster can actually be 
out-performed. Note that, the Grid response time 
comprises the sequential run time that is neces-
sary to determine the number of tasks and jobs 
and compute the test for global congruence that 
is then used as input data for the nz individual 
tests. This initial part of the analysis also needs 
to be executed sequentially on the cluster. In 
addition, the Grid response time also includes 
the job submission overhead that is imposed 
by the gLite workload management systems. 

In order to avoid congestion problems at the 
submission server, only a certain number of 
jobs are submitted at a given time by AxParafit.
pl. The actual processing time of the 2,048 
AxParafit tests can then be better compared to 
the cluster performance. Another interesting 
observation is the average processing time of 
13.3 min per single task on the Grid compared 
to the local execution time of 11 min on the 
Grid client machines. This indicates that distinct 
Computing Elements have CPUs with rather 
different CPU speeds and latencies.

Overall, our Grid-based approach requires 
computing times that are in the same order 
of magnitude as those of a dedicated cluster. 
Consequently, the gridified version provides 
an easier to use alternative to a compute cluster 
with comparable performance.

CONCLUSION

We have demonstrated how a compute-intensive 
application for a statistical test of congruence 
between host and parasite phylogenies can 
efficiently be distributed on the Grid. The pro-
posed Grid-based implementation can greatly 
contribute to the reduction of response times for 
large-scale analyses and to the computation of 
a larger number of test permutations, which in 
turn improve upon accuracy. Moreover, we have 
integrated the access to Grid resources into an 
easy-to-use Graphical User Interface (CopyCat) 
which entirely hides the technical details related 
to the exploitation of Grid resources from the 
user. Note that in particular for non-expert 

AxParafit.pl -p 100 -1 2048 -2 2048 -3 2025 -4 
2031 -A selection_2048.mat \

 -B selection_2048_P.pco -C selection_2048_H.tr 
a -n RUN_2

Box 3.
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users, easy accessibility and usability of HPC 
resources represents a major criterion for the 
selection of software and systems. We thus be-
lieve that the proposed architecture will greatly 
facilitate access to HPC resources for real-world 
biological studies on host-parasite evolution. 
Nonetheless, the requirement to obtain access 
and accreditation to use Grid resources (valid 
X.509 proxy certificate) will possibly hinder a 
large amount of potential users to exploit these 
new possibilities offered by the Grid. Based 
on previous experience with the development 
of the freely accessible RAxML Web servers 
for phylogenetic reconstruction (Stamatakis 
et al., 2008, over 8,000 job submissions in the 
first 8 months of operation) that are however 
scheduling jobs to dedicated clusters instead 
of the Grid, we believe that a freely accessible 
Web server for this Grid-enabled system for 
co-phylogenetic analyses can contribute to the 
generation of biological insights, by further 
simplifying the access to HPC resources. Thus, 
future work will concentrate on the development 
of such a Web server, as well as the integration 
with the aforementioned RAxML servers such 
as to provide a comprehensive phylogenetic and 
co-phylogenetic analysis pipeline. 
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