
International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 39

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ABSTRACT

Phylogenetic data analysis represents an extremely compute-intensive area of Bioinformatics and thus
requires high-performance technologies. Another compute- and memory-intensive problem is that of host-
parasite co-phylogenetic analysis: given two phylogenetic trees, one for the hosts (e.g., mammals) and
one for their respective parasites (e.g., lice) the question arises whether host and parasite trees are more
similar to each other than expected by chance alone. CopyCat is an easy-to-use tool that allows biologists
to conduct such co-phylogenetic studies within an elaborate statistical framework based on the highly
optimized sequential and parallel AxParafit program. We have developed enhanced versions of these tools
that efficiently exploit a Grid environment and therefore facilitate large-scale data analyses. Furthermore,
we developed a freely accessible client tool that provides co-phylogenetic analysis capabilities. Since the
computational bulk of the problem is embarrassingly parallel, it fits well to a computational Grid and
reduces the response time of large scale analyses.

Keywords:	 bioinformatics; co-phylogenetic analysis; Grid computing; phylogeny

INTRODUCTION

The generation of novel insights in many
scientific domains such as biology, physics, or
chemistry increasingly relies on compute-inten-
sive applications that require high-performance
or large-scale, distributed high-throughput
computing technology and infrastructure. In the
discipline of bioinformatics, biological insight
is typically generated via data analysis pipelines

that use a plethora of distinct and highly special-
ized tools. Most commonly, bioinformaticians
and biologists collaborate to analyze data ex-
tracted from large databases containing DNA
and/or protein data in order to study, e.g., the
function of living beings, the effect and influence
of diseases and defects, or their evolutionary
history. Early “classic” bioinformatics tools,
such as CLUSTALW (Thompson et al., 1994)
or BLAST (Altschul et al., 1997) that have

Large-Scale Co-Phylogenetic
Analysis on the Grid
Heinz Stockinger, Swiss Institute of Bioinformatics, Switzerland

Alexander F. Auch, University of Tübingen, Germany

Markus Göker, University of Tübingen, Germany

Jan Meier-Kolthoff, University of Tübingen, Germany

Alexandros Stamatakis, Ludwig-Maximilians-University Munich, Germany

IGI PUBLISHING

This paper appears in the publication, International Journal of Grid and High Performance Computing, Volume 1, Issue 1
edited by Emmanuel Udoh © 2008, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 4537

40 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

been ported to Grid computing environments
deal with biological sequence search, analysis,
and comparison. Typically, these programs are
embarrassingly parallel and therefore represent
ideal candidate applications for Grid computing
environments (Stockinger et al., 2006).

The study of the genome represents a
way to obtain new insight and extract novel
knowledge about living beings. In particular,
stand-alone phylogenetic analyses have many
important applications in biological and medi-
cal research. Applications range from predict-
ing the development of emerging infectious
diseases (Salzberg et al., 2007), over the study
of Papillomavirus evolution that is associated
with cervical cancer (Gottschling et al., 2007),
to the determination of the common origin of
Caribbean frogs (Heinicke et al., 2007).

Recent years have witnessed significant
progress in the field of stand-alone phylogeny
reconstruction algorithms, which represent an
NP-complete optimization problem (Chor and
Tuller, 2005), with the release of programs such
as TNT (Goloboff, 1999), RAxML (Stamatakis,
2006), MrBayes (Ronquist and Huelsenbeck,
2003) or GARLI (Zwickl, 2006). Because of the
continuous explosive accumulation and avail-
ability of molecular sequence data coupled with
advances in phylogeny reconstruction methods,
it has now become feasible to reconstruct and
fully analyze large phylogenetic trees compris-
ing hundreds or even thousands of sequences
(organisms). However, current meta-analysis
methods for phylogenetic trees such as programs
that conduct co-phylogenetic tests can currently
not handle such large datasets.

To alleviate this bottleneck in the meta-
analysis pipeline, we recently parallelized, and
released the highly optimized co-phylogenetic
analysis program AxParafit (Axelerated Parafit
- Stamatakis et al., 2007) that implements an
elaborate statistical test of congruence between
host and parasite trees (Legendre et al., 2002).
AxParafit is a typical stand-alone Linux/Unix
command line program. AxParafit has been
integrated and can be invoked via a user-
friendly graphical interface for co-phylogenetic
analyses called CopyCat (Meier-Kolthoff et al.,

2007). In this article, we present an enhanced
version of this tool suite (henceforth denoted
as CopyCat(AxParafit)) for co-phylogenetic
analyses, that is packaged into a client tool
which makes use of a world-wide Grid environ-
ment and thereby allows for large-scale data
analysis. In the current version, the underlying
Grid middleware is gLite (Laure et al., 2006)
that is coupled with an efficient submission and
execution model called Run Time Sensitive
(RTS) scheduling and execution (Stockinger
et al., 2006).

The remainder of this article is organized
as follows: initially, we provide a brief intro-
duction to the field of phylogenetic inference,
co-phylogenetic analyses, and related soft-
ware packages in Section 2. Next, we discuss
the implementation and architecture of our
new approach for efficient adaptation of the
CopyCat(AxParafit) tool-suite to a Grid envi-
ronment. Finally, we provide detailed perfor-
mance results on the EGEE (Enabling Grids
for E-SciencE, http://www.eu-egee.org) Grid
infrastructure (where the gLite middleware is
deployed in production mode) and demonstrate
the performance as well as scalability of our
proposed bioinformatics tool.

BACKGROUND

Phylogenetic (evolutionary) trees are used to
represent the evolutionary history of a set of s
currently living organisms, roughly comparable
to a genealogical tree of species rather than indi-
vidual organisms. Phylogenetic trees or simply
phylogenies are typically unrooted binary trees.
The s organisms, which are represented by their
DNA or AA (Amino Acid/Protein) sequences
that are used as input data for the computation,
are located at the leave nodes (tips) of the tree
while the inner nodes of the topology represent
common extinct ancestors. There exist various
methods and models to reconstruct such trees
which differ in their computational complex-
ity and also in the accuracy of the final results,
i.e., there exists a “classic” trade-off between
speed and accuracy. As already mentioned in

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 41

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the introduction, phylogenetic analysis has
many important applications in medical and
biological research. In Figure 1, we provide
a simple example for the phylogenetic tree of
monkeys.

In the context of this article, however,
we will not address stand-alone phylogenetic
inference, but consider the problem of co-
phylogenetic analysis. Given two phylogenetic
trees that represent the evolutionary histories of
hosts and their respective parasites, the “classic”
example being mammals and lice, and given
the extant associations between the former
and the latter, we want to determine whether
the parasite phylogeny is more similar to the
phylogeny of the respective hosts than expected
by chance alone. The main interpretation of
such a congruence between the trees is that
parasites have been associated with respect to
their evolutionary history and mostly speciated
in parallel (co-speciated) with their hosts (Page,
2002). Given a parasite tree with n organisms
and a host tree with m organisms (sequences),
their associations can be represented as a n times
m binary matrix, that contains information of the

type: does parasite x (x=1...n) occur or live on
host y (y=1...m)? In addition to the question of
global congruence, one may also be interested
in whether individual associations significantly
increase the agreement between the phylog-
enies. Such associations can be interpreted as
being caused mainly by co-speciation.

As previously mentioned, recent advances
in stand-alone phylogenetic inference methods
in combination with the increasing availability
of appropriate sequence data, allow for large-
scale phylogenetic analyses with several hun-
dred or thousand sequences (Stamatakis, 2006).
Thus, large-scale co-phylogenetic studies have,
in principle, become feasible. However, most
common co-phylogenetic tools or methods such
as BPA, Component, TreeMap, TreeFitter (cf.
review in Charleston, 2006) or Tarzan (Merkle,
2006) are not able to handle datasets with a large
number of organisms or have not been tested in
this regard with respect to their statistical prop-
erties and scalability. Faster methods based on
topological distances between trees, like, e.g.,
Icong (de Vienne, 2007) are even limited to the
analysis of bijective associations only. In this

Figure 1. Phylogenetic tree of monkeys

Millions of
Years Ago

Common Ancestor

Pr
os

em
ia

ns
Ne

w
W

or
ld

M
on

ke
ys

Ch
im

pa
nz

ee
s

Hu
m

an
s

G
or

illa
s

O
ra

ng
ut

an
s

G
ib

bo
ns

O
ld

 W
or

ld
M

on
ke

ys

5

10

15

20

25

30

35

40

45

50

55

42 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

context bijectivity means that each parasite can
only be associated to one single host, and vice
versa. Therefore, there is a performance and
scalability gap between tools for phylogenetic
analysis and meta-analysis. The capability to
analyze large datasets is important to infer
“deep co-phylogenetic” relationships which
can otherwise not be assessed (Meier-Kolthoff
et al., 2007; Stamatakis et al., 2007). Deep re-
lationships are relationships that determine the
extant associations between parasite and host
organisms at a high taxonomic level, such as,
e.g., families and orders.

Parafit (Legendre, 2002) and the analo-
gous highly optimized AxParafit (Stamatakis
et al., 2007) program implement a statistical
test to assess hypotheses of global congruence
between trees as well as the impact of indi-
vidual associations. This test is based on the
permutation of the entries in the association
matrix. The null hypothesis is that the global
similarity between the trees, or the respective
impact of an individual local association on the
similarity, is not larger than expected by pure
chance. Extensive simulations have shown that
the Parafit test is statistically well-behaved
and yields acceptable error rates. The method
has been successfully applied in a number of
biological studies (Hansen et al., 2003; Ricklefs
et al., 2004; Meinilä et al., 2004).

In addition, the type-II statistical error of
Parafit decreases with the size of the dataset
(see Legendre, 2002), i.e., this approach scales
well on large phylogenies of hosts and parasites
in terms of accuracy. The AxParafit program
is a highly optimized version of Parafit which
yields exactly the same results. The sequential
version of AxParafit is up to 67 times faster than
the original Parafit implementation, while the
speedup increases with increasing input size,
caused by higher cache efficiency. The speedup
of AxParafit has been achieved via low-level
optimizations in C, re-design of the algorithm,
omission of redundant code, reduction of
memory footprint, and integration of highly
optimized BLAS (Basic Linear Algebra Subrou-
tines, http://www.netlib.org/blas/) routines.

Earlier work describes these optimizations
together with a respective performance study.
Moreover, the program was used to conduct
the largest co-phylogenetic analysis on real-
world data to date. The underlying data were
smut fungi and their respective host plants
(Stamatakis et al., 2007). Smut fungi are para-
sitic mushrooms that cause plant diseases. For
economically important hosts, such as barley
and other cereals, smut fungi can for instance
cause considerable yield losses (Thomas and
Menzies, 1997).

Workflow of a Co-Phylogenetic
Analysis with CopyCat and
AxParafit

In this section, we provide an outline of the
work-flow for a full co-phylogenetic analysis
using CopyCat(AxParafit). The input for a co-
phylogenetic analysis with CopyCat(AxParafit)
are the host and parasite phylogenies, that might
have branch lengths, depending on which meth-
od/model was used to calculate the trees. The
aforementioned associations are represented as
a plain text file containing a list of sequence (or-
ganism) name pairs of hosts and parasites, i.e., an
adjacency list. This input data representation is
henceforth also referred to as list of host-parasite
associations. Initially, these files are parsed and
transformed into the appropriate file format by
CopyCat. In a first step, a principal coordinate
analysis is conducted on the respective tree-
based distance matrices induced by the host and
parasite trees. This analysis is carried out by the
AxPcoords (Axelerated Principal Coordinates)
program (Stamatakis et al., 2007), which is an
optimized version of the analogous DistPCoA
program (Legendre and Anderson, 1998). The
output of AxPcoords for the host and parasite
trees is then parsed and appropriately prepared
for the AxParafit analysis which takes the two
principal coordinates matrices and the binary
matrix with the associations as input. The output
of this computation is a list of probabilities for
the individual null hypotheses that a certain
association does not improve the fit between
host and associate phylogenies. In addition,

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 43

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a probability for the global null hypothesis of
the absence of congruence between host and
parasite trees is computed. Upon termination
of AxParafit the output files are read by the
CopyCat tool and presented in a human-read-
able format. It is important to note that the
computations with AxParafit represent the by
far largest part (over 95%) of the computational
effort required to conduct such a co-phyloge-
netic analysis. Therefore, the AxPcoords and
CopyCat parts of the workflow can be handled
sequentially and executed locally. We will,
thus, mainly focus on the parallel and gridified
versions of AxParafit in the next sections. The
basic workflow is outlined in Figure 2 (at the
end of the article).

Parallel AxParafit

The most compute-intensive operation (95%
of execution time) conducted by AxParafit to
compute the statistics is a dense matrix-matrix
multiplication of double precision floating point
numbers. This is the rationale for integration
of highly optimized BLAS routines. In the
remainder of this article, we thus always refer
to the BLAS-based version of AxParafit.

Initially, the program will compute the sta-
tistics for the global congruence of the complete
list of host-parasite associations. This part of
the computation is significantly less expensive
than the individual tests for each host-para-
site association, which take nz times longer,
where nz is the number of non-zero entries in
the binary association matrix, i.e., number of
entries in the original host-parasite association
list. For large datasets that require parallel and
distributed computing resources as well as a
sufficient amount of memory typically nz >>
1. The statistics computed during the global test
of congruence are required as input data for the
individual tests of host-parasite associations,
hence there is a sequential dependency: global
test → nz local tests. Thus, in the MPI-based
parallel implementation we only parallelized
these nz local tests which can be computed
independently of each other via a straight-
forward master-worker scheme. The master

simply distributes the nz individual host-parasite
association tests to the worker processes.

The potential bottleneck induced by
the sequential part of the computations can
be alleviated by using, e.g., the respective
shared-memory implementations of BLAS.
With respect to a gridification, this sequential
dependency actually has advantages. Since the
inference time as well as memory footprint of
the global test of congruence are nearly identical
(same type of operation, identical matrix sizes,
permuted input data) to each of the individual nz
tests, the information on run-times and memory
requirements collected during the global tests
can be used for scheduling decisions, as well as
to determine an optimal level of granularity and
to assess respective resource requirements.

FIT FOR THE GRID

In the following section, we describe how
CopyCat(AxParafit) has been adapted and
modified for use in a Grid environment. The
overall architecture of the client tool will be
explained as well as the integration with an
existing middleware toolkit.

An important design goal of the Grid-based
system for co-phylogenetic analyses was to
re-use the current graphical user interface of
CopyCat such that the deployment of Grid
resources is hidden from the end-user. One
fundamental difference between the standard
and Grid-enabled versions of CopyCat (Ax-
Parafit) is that specific Grid credentials are
required (an X.509 user certificate) since Grid
jobs can only be submitted by authenticated
and authorized users.

Overall Architecture

The basic workflow of a co-phylogenetic study
using CopyCat and the AxPcoords/AxParafit
programs has already been outlined in the above
section. Here, we will describe the architecture
and workflow for a gridified analysis in greater
detail. The input data consists of three files: a
host tree file, a parasite tree file, and a host-

44 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

parasite association list. In the reminder of this
article, the following terminology is used:

•	 Individual test (job): an individual test
is the minimal “work unit” or processing
entity that has to be conducted by AxParafit
to calculate a single host-parasite associa-
tion. In the context of AxParafit this is also
referred to as job. In total, nz individual
tests have to be computed to achieve the
final result.

•	 Task: a task consists of a fraction (subset)
of the nz individual tests that have to be
conducted by AxParafit.

•	 Grid job: a Grid job is an executable that
is scheduled by the Grid middleware to
be executed on a Worker Node of a Grid
computing resource (also referred to as
Computing Element). In our model, a single
Grid job can execute one or several such
tasks.

The overall workflow is depicted in Figure
2. The most important Grid-enhancement is
the interface to the Grid (represented by the
Perl program AxParafit.pl in Figure 2). Once
the input files are validated, CopyCat uses Ax-
Parafit.pl to determine a specific set of tasks (to
be registered with a Task Server as indicated
in Figure 3) and Grid jobs which are then
submitted to Grid computing resources using
the gLite middleware. Each individual Grid
job then requests tasks from the Task Server,
processes them, and stores the result on a Grid
Storage Element.

AxParafit.pl will constantly monitor the
overall Grid job status and presents intermedi-
ate results in a CopyCat control window. Once
all results are obtained and merged, CopyCat
indicates where the final result can be obtained.
Further details about AxParafit.pl, AxWorker.pl
etc. will be given in the other section.

Implementation Details

In the following section we describe the nec-
essary modifications and adaptations of the
existing CopyCat and AxParafit tools as well

as additional components that were necessary
to implement the system outlined in Section
3.1.

CopyCat

Previous versions of CopyCat already provided
straight-forward GUI-based functionality for
the preparation and analysis of co-phylogenetic
datasets. The CopyCat GUI is implemented in
Java using the Standard Widget Toolkit (SWT).
Upon startup, the user can load the host and
parasite trees (represented in the standard
Newick tree format: http://evolution.genet-
ics.washington.edu/phylip/newicktree.html),
together with a host-parasite association list
in a simple plain-text format that contains one
host-parasite association per line.

When starting an analysis, the user can now
utilize a new Grid interface that connects Copy-
Cat to the gridified program AxParafit. Instead
of directly calling the AxParafit executable,
the interface invokes a Perl script (AxParafit.
pl) which hides the Grid-related parts from the
user and CopyCat. By delegating the invoca-
tion process to a script, dependencies between
the user front-end and the Grid software are
minimized. Thus, future modifications like the
development of a Web interface for job submis-
sions (see Conclusion) or the usage of a different
middleware system are possible.

The AxParafit.pl script entirely manages
the execution of AxParafit on the Grid and
provides status updates to the standard output
stream at the same time. As CopyCat is listening
to the output stream of the external programs
it invokes, it also receives the status updates
generated by the aforementioned Perl-script
and writes them to the CopyCat log-message
window, thus keeping the user informed about
the progress of Grid jobs. Upon termination of
the script, the output of the Grid jobs (individual
tests of host-parasite associations), as well as
the global significance test results, are read by
CopyCat. The results can then be displayed
and further analyzed via the CopyCat evalu-
ation window.

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 45

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 2. Detailed work- and dataflow for co-phylogenetic analysis on the Grid

46 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Within the context of an automated Grid-
driven simultaneous analysis of several distinct
datasets (and other potential script-based ap-
plications, based on CopyCat), the program has
been extended by a command-line interface.
As a side-effect, this enables CopyCat users to
speed-up certain analyses by simply executing
a specific command-line call with a defined
set of parameters (please refer to the CopyCat
manual for detailed information on the com-
mand-line options).

Application-Side Modifications of
AxParafit

As outlined in other section, the parallel MPI
implementation of AxParafit uses a simple
master-worker scheme. In order to devise a
distributed version of AxParafit we modified
the code as follows: initially, we appropriately
modified the global test of congruence in Ax-
Parafit to write an additional file called “grid-
Data.RUN-ID” where RUN-ID is the output

file name appendix for a specific analysis that
is passed to AxParafit via a command line pa-
rameter (for details see the AxParafit Manual
at http://icwww.epfl.ch/~stamatak/). This file
contains the necessary data to make scheduling
decisions for the distributed computation of the
n individual tests of host-parasite associations,
i.e., the number of jobs nz, e.g. Jobs=2000,
and the approximate execution time per job
in seconds, e.g., ComputeTime=10 . This data
can then be used to determine the level of
granularity for individual Grid tasks since in
the current example the scheduling overhead
induced by distributing 2,000 jobs of 10 seconds
each, along with the comparatively large input
datasets on the Grid, would be immense. We
have, thus, extended the implementation of
the individual host-parasite association tests
in AxParafit by two additional command line
parameters -l (lower limit) and -u (upper limit).
These parameters allow for computation of
several host-parasite associations in one single
program run. The lower and upper limits just

Figure 3. Interaction of AxParafit.pl with the gLite Grid middleware, a Task Server and a Stor-
age Element. Each submitted Grid job will execute on a Grid Worker Node.

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 47

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

refer to the order of the nz non-zero entries in the
binary association matrix. Thus, in the present
example, we can schedule larger, in terms of
execution times, Grid jobs by only distributing
two Grid jobs with -l 0 -u 1000 and -l 1000 -u
2000 that would require approximately 10,000
seconds of execution time each, i.e., Grid job
0 would compute statistics for the first 1,000
host-parasite associations and Grid job 1 for the
remaining 1,000 associations. The result files
of these distributed Grid jobs only need to be
recovered and concatenated in the order of the
associations they computed, and the respective
result file can then be read and visualized by
CopyCat.

Grid-Side Adaptation

Parafit.pl provides the actual link between
CopyCat and the gridified version of AxParafit.
First, it reads the file “gridData.RUN-ID” to
determine the number of tasks to be created
(registered) for execution on the Grid (Step 1
in Figure 3). As outlined in Section 3.2.1, the
basic idea consists of combining appropriate
fractions (subsets) of the nz individual tests into
a single task, i.e., a set of individual tests k <
nz are executed by a Grid job. In order to make
efficient use of the Grid and to reduce schedul-
ing overhead, a task contains a minimum of k
individual tests, such that the respective job
requires at least 30 seconds on an average CPU.
After the number of tasks has been determined,

a certain number of Grid jobs (approximately
nz/k) needs to be submitted (Step 3 in Figure
3) which then ask for tasks to be executed,
i.e., issue work requests. An individual Grid
job can request and execute several tasks, as
long as the Task Server can provide more work
(Steps 5 and 6 in Figure 3). The protocol used
for the Task Server is HTTP which allows for
fast communication between the client and the
server. For additional background and fault
tolerance features of this processing model
with a Task Server please refer to Stockinger
et al. (2006).

Before Grid jobs can be submitted, Ax-
Parafit.pl creates the Grid job specification,
i.e. the job description file to decide which
files (data and/or executables) to send to Grid
computing resources. A typical job description
file looks as follows:(See Box 1).

The wrapper code (identified as “Execut-
able” in the JDL file above) is AxWorker.pl
using the command line arguments specified by
“Arguments”. Once AxParafit.pl is running on a
Grid Worker Node, it is responsible for request-
ing tasks from a Task Server and executing Ax-
ParafitBLAS. The two programs (AxWorker.pl
and AxParafitBLAS) are transferred to the Grid
Worker Node as specified in the InputSandbox
in the example above, i.e. gLite provides the
means to transfer data from the client machine
to the actual computing resource.

In parallel to the execution of Grid jobs,
the script AxParafit.pl monitors the status and

Executable = “AxWorker.pl”;
Arguments = “-j ax-May1319-41-28 -p 100 -1 2048 -2 2048 -3 2025 -4 2031 \
–A gsiftp://example.org/dpm/home/biomed/heinz/selection_2048.mat-ax-May1319-41-28 \
-B gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_P.pco-ax-May1319-41-28 \
-C gsiftp://example.org/dpm/home/biomed/heinz/selection_2048_H.tra-ax-May1319-41-28 -i

1”;
Stdoutput = “output.txt”;
InputSandbox = {“/home/stockinger/AxWorker.pl”, “/home/stockinger/AxParafitBLAS”};
OutputSandbox = {“output.txt”}

Box 1.

48 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is responsible for providing and assembling the
final result (Steps 8 and 9 in Figure 3).

In particular, when tasks have been pro-
cessed successfully, they are downloaded from
the Storage Element and transferred to the client.
Note that an alternative implementation option
is to transfer the output of individual tasks via
the gLite middleware (using the OutputSand-
box). However, because of performance and
reliability considerations, it has turned out to be
more efficient to store files at an external Stor-
age Element and retrieve them from there: one
reason is that the actual job output can only be
retrieved if gLite indicates that a job has been
finished. However, because of update latencies
in the Grid-wide information and motoring
system, jobs might have finished already several
dozens of seconds or even a few minutes ago
while the job status is still indicated as pending
or running.

As a final remark: since the gLite services
can only be accessed by authorized users, the
execution of the AxParafit.pl script requires the
usage of a valid X.509 proxy certificate.

EXPERIMENTAL RESULTS

The main goal of the gridified version of
CopyCat(AxParafit) is to accelerate and fa-
cilitate large-scale analyses. We present two
experiments with large computational demands
and study their performance on the Grid. The
performance improvement is outlined with
respect to running the application sequentially
on a single machine. Moreover, we conduct a
performance comparison between a dedicated
compute cluster and the Grid.

Test Environment

The Grid platform that is supported by our ap-
plication is gLite 3. Tests are conducted using
gLite on the EGEE production infrastructure. In
particular, we use the Virtual Organization (VO)
that is dedicated to biomedical applications:
“biomed”. Members of this VO have access
to about 50 Computing Elements (acting as

front-ends to computing clusters), each having
between 2 and a few hundred processing cores.
The exact number of processing cores avail-
able to a single user at a given time cannot be
easily obtained since it depends on the current
system load as well as the general availability
of a Computing Element at a certain point in
time. Currently, gLite does not support resource
reservation nor job priorities, which means that
experimental results can not be fully reproduced.
However, once one is correctly registered with
the Virtual Organization, one can use it any
time of the day.

On the client side, we used gLite on
GNU/Linux on an AMD Opteron machine (2
GB RAM, 2.2 GHz CPU) located in Lyon,
France – previous tests (in particular with the
installation of CopyCat and the Grid interface
have been conducted on a machine located in
Lausanne, Switzerland). The gLite components
used are the workload management system (for
job submission and status monitoring) as well
as data management clients for file transfer. Ad-
ditionally, we deployed and used a Task Server
that is located in Lausanne, using resources pro-
vided by the Vital-IT group of the Swiss Institute
of Bioinformatics. In the second experiment,
we used a dedicated compute cluster with 128
CPUs. In contrast to the Grid, the cluster had
to be reserved in advance.

Experiment with Real-world Data

In the first experiment we are interested in the
raw performance (response time) of AxParafit.
pl, i.e., how long does it take to fully process
a set of tasks on the Grid. In this experiment,
we do not include CopyCat but directly invoke
AxParafit.pl as follows:(See Box 2).

The parameters -1, -2, -3 and -4 specify the
number of rows and columns in the association
matrix as well as the number of rows and col-
umns in the parasite and host matrices; -p rep-
resents the number of permutations conducted
by the statistical test; -A, -B, and -C are used to
read the plain-text input files; -n specifies a run
ID that is appended to all output files (for details
on the AxParafit program parameters please

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 49

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

refer to the AxParafit manual at http://icwww.
epfl.ch/~stamatak/). The dataset we used is the
aforementioned (Section 2) dataset for the study
of smut-fungi, that was used to demonstrate per-
formance of the stand-alone AxParafit code by
Stamatakis et al. (2007). As already mentioned,
this dataset represents the largest real-world
co-phylogenetic study conducted to date. While
the sequential execution time for this dataset
still appears to be acceptable, such studies were
previously not feasible with Parafit which is
between 1-2 orders of magnitude slower than

AxParafit. Since the host-parasite association
list contains nz=2,362 entries, 2,362 individual
tests need to be performed. The execution of
AxParafit to compute global congruence of
the trees returned an estimated run time of 3
seconds per job, i.e., an overall expected run
time of almost two hours (2,362 x 3 seconds).
The main goal of the first test is therefore to
minimize the expected response time. We also
executed the full test, as specified above, on a
single machine and observed that the estimated
run time of about 2 hours (7,000 seconds) is

Figure 4. Comparison of smut-fungi dataset on a single CPU and on a Grid using 124 Grid jobs
and 150 tasks. Note that there is a rather high redundancy in Grid jobs and not all 124 jobs re-
ally participate in the overall calculation because of start-up latencies. In fact, a few Grid jobs
(AxWorker.pl) started, requested tasks and found out that there were no more tasks available
and gracefully finished.

AxParafit.pl -p 10 -1 413 -2 1400 -3 1390 -4
411 \

 -A smuts010907.mat -B smuts010907_P.pco
-C smuts010907_H.tra -n RUN_1

Box 2.

50 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

almost identical to the measured run time (7,200
seconds). Therefore, we deduce that the run time
prediction mechanism is sufficiently accurate
for our application. In our experiments, we
varied the number of tasks (in the range between
60 and 162) as well as the number of parallel
Grid jobs (in the range between 24 to 124) to
experimentally determine the minimal response
time. However, because of varying response
times of the Grid (i.e. the various Computing
Elements and their job queues etc.) it was not
possible to determine an optimal number of
Grid jobs and tasks. Finally, in the experiment
we used 124 Grid jobs and 150 tasks which
have been proposed by the work distribution
algorithm outlined in aforementioned section.
The overall response time to produce the final
output was 11 minutes and 15 seconds (cf. Figure
4). Consequently, we observe a clear runtime
improvement with respect to a single, sequential
run. Note that the AxParafit.pl program had to
be adapted to allow for parallel downloads of
the individual results: originally, results were
downloaded sequentially, which increased the
overall response time by several minutes. By

overlapping communication with computation,
this problem was resolved.

Experiment with Synthetic Data

In another experiment, we used a larger (syn-
thetic) test dataset that had been extracted from
a larger empirical dataset to test scalability of
AxParafit and compared the runtime of the
Grid with the infiniband cluster at the Techni-
cal University of Munich equipped with 128
AMD Opteron 2.4 GHz CPUs. In the associa-
tion list, there were nz=2,048 non-zero entries
(equivalent to 2,048 tasks) and we used 100
permutations. The expected runtime of a single
task was 568 seconds, i.e., about 10 minutes. As
a result, the expected sequential response time
to finish all 2,048 tasks is about 13.4 days. We
used the wrapper as follows: (See Box 3).

Note that the input files are bigger than
in the previous experiment: they cannot be
directly submitted with the Grid job but they
are uploaded to a Storage Element and then
dynamically downloaded by Grid jobs when
needed.

Figure 5. Performance comparison of a 128 CPU cluster with a Grid using between 90 and 175
parallel jobs. Note that the number of Grid job varied and was never constant.

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 51

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

A direct performance comparison between
the cluster and a Grid is not feasible since the
cluster we used had several favorable features
that a multi-institutional Grid does not have: a
shared file system between all processing nodes
which minimizes the data transfer time; homo-
geneous hardware infrastructure; pre-defined
number of CPUs that are available which does
not require an automatic task assignment, no
overhead for job submission etc. However, the
cluster needed to be reserved in advance (larger
slots can only be obtained overnight) which
means that it was only available at a specific
time, whereas Grid resources are available on
demand at any time. Intuitively, one expects a
cluster to provide a better response time to a
large size application but it has a considerable
“reservation latency”, a fact that should not be
underestimated.

The final performance results of the experi-
ments are depicted in Figure 5. For the Grid
execution, we used between 90 and 175 paral-
lel jobs (the number varied during the overall
execution time). Given the number of parallel
jobs used in the Grid, the cluster performed
better. However, if the number of jobs is in-
creased on the Grid, the cluster can actually be
out-performed. Note that, the Grid response time
comprises the sequential run time that is neces-
sary to determine the number of tasks and jobs
and compute the test for global congruence that
is then used as input data for the nz individual
tests. This initial part of the analysis also needs
to be executed sequentially on the cluster. In
addition, the Grid response time also includes
the job submission overhead that is imposed
by the gLite workload management systems.

In order to avoid congestion problems at the
submission server, only a certain number of
jobs are submitted at a given time by AxParafit.
pl. The actual processing time of the 2,048
AxParafit tests can then be better compared to
the cluster performance. Another interesting
observation is the average processing time of
13.3 min per single task on the Grid compared
to the local execution time of 11 min on the
Grid client machines. This indicates that distinct
Computing Elements have CPUs with rather
different CPU speeds and latencies.

Overall, our Grid-based approach requires
computing times that are in the same order
of magnitude as those of a dedicated cluster.
Consequently, the gridified version provides
an easier to use alternative to a compute cluster
with comparable performance.

CONCLUSION

We have demonstrated how a compute-intensive
application for a statistical test of congruence
between host and parasite phylogenies can
efficiently be distributed on the Grid. The pro-
posed Grid-based implementation can greatly
contribute to the reduction of response times for
large-scale analyses and to the computation of
a larger number of test permutations, which in
turn improve upon accuracy. Moreover, we have
integrated the access to Grid resources into an
easy-to-use Graphical User Interface (CopyCat)
which entirely hides the technical details related
to the exploitation of Grid resources from the
user. Note that in particular for non-expert

AxParafit.pl -p 100 -1 2048 -2 2048 -3 2025 -4
2031 -A selection_2048.mat \

 -B selection_2048_P.pco -C selection_2048_H.tr
a -n RUN_2

Box 3.

52 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

users, easy accessibility and usability of HPC
resources represents a major criterion for the
selection of software and systems. We thus be-
lieve that the proposed architecture will greatly
facilitate access to HPC resources for real-world
biological studies on host-parasite evolution.
Nonetheless, the requirement to obtain access
and accreditation to use Grid resources (valid
X.509 proxy certificate) will possibly hinder a
large amount of potential users to exploit these
new possibilities offered by the Grid. Based
on previous experience with the development
of the freely accessible RAxML Web servers
for phylogenetic reconstruction (Stamatakis
et al., 2008, over 8,000 job submissions in the
first 8 months of operation) that are however
scheduling jobs to dedicated clusters instead
of the Grid, we believe that a freely accessible
Web server for this Grid-enabled system for
co-phylogenetic analyses can contribute to the
generation of biological insights, by further
simplifying the access to HPC resources. Thus,
future work will concentrate on the development
of such a Web server, as well as the integration
with the aforementioned RAxML servers such
as to provide a comprehensive phylogenetic and
co-phylogenetic analysis pipeline.

ACKNOWLEDGMENT

This work was funded in part by the EU
project EMBRACE Grid which is funded
by the European Commission within its FP6
Program, under the thematic area “Life sci-
ences, genomics and biotechnology for health”,
contract number LUNG-CT-2004-512092. The
Exelixis lab (AS) is funded under the auspices
of the Emmy-Noether program by the German
Science Foundation (DFG).

REFERENCES
Altschul, S.F., Madden, T.L., Schaffer, A.A., et al.
(1997). ���������������������������������� Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.
Nucleic Acids Research, 25(17):3389-3402.

Chor, B., & Tuller, T. (2005). Maximum likelihood
of evolutionary trees: hardness and approximation.
Bioinformatics, 21(1):97-106.

Goloboff, P. (1999). Analyzing Large Data Sets in
Reasonable Times: Solutions for Composite Optima.
Cladistics 15(4): 415-428.

Charleston, M.A., & Perkins L. (2006). Traversing
the tangle: Algorithms and applications for cophylo-
genetic studies. Journal of Biomedical Informatics,
39 (2006):62-71.

Gottschling, M., Stamatakis, A., Nindl, I., et al.
(2007). Multiple Evolutionary Mechanisms Drive
Papillomavirus Diversification. Molecular Biology
and Evolution, 24(5):1242-1258.

Hansen, H., Bachmann, L., & Bakke, T.A. (2003).
Mitochondrial DNA variation of Gyrodactylus spp.
Monogenea, Gyrodactylidae populations infect-
ing Atlantic salmon, grayling, and rainbow trout
in Norway and Sweden. International Journal of
Parasitology, 33(13): 1471-1478.

Heinicke, M.P., Duellman, W.E., & Hedges, S.B.
(2007). From the Cover: Major Caribbean and
Central American frog faunas originated by ancient
oceanic dispersal. Proceedings of the National
Academy of Sci

Laure, E., Fisher, S., Frohner, A., et al. (2006).
Programming the Grid with gLite. 	 Computa-
tional Methods in Science and Technology, 12(1):33-
45.

Legendre, P., Anderson, M.J. (1998). DistPCOA
program description, source code, executables, and
documentation: http://www.bio.umontreal.ca/Cas-
grain/en/labo/distpcoa.html

Legendre, P., Desdevises, Y., & Bazin, E. (2002).
A Statistical Test for Host-Parasite Coevolution.
Systematic Biology, 51(2):217-234.

Meier-Kolthoff, J.P, Auch, A.F., Huson, D.H., &
Göker, M.(2007). COPYCAT: Co-phylogenetic
Analysis tool. Bioinformatics, 23(7):898-900.

Meinilä, M., Kuusela, J., Zietara, M.S., & Lumme,
J. (2004). Initial steps of speciation by geographic
isolation and host switch in salmonid pathogen Gy-
rodactylus salaris (Monogenea: Gyrodactylidae).
International Journal of Parasitology, 34(4):515-
526

International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009 53

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Merkle, D., & Middendorf. M. (2005). Reconstruc-
tion of the cophylogenetic history of related phylo-
genetic trees with divergence timing information.
Theory in Biosciences, 123(4):277-299.

Ricklefs, R.E., Fallon, S.M., & Birmingham, E.
(2004). Evolutionary relationships, cospeciation, and
host 	 switching in avian malaria parasites. System-
atic Biology, 53(1):111-119.

Ronquist, F., & Huelsenbeck, J. (2003). MrBayes
3: Bayesian phylogenetic inference under mixed
models. Bioinformatics, 19(12): 1572-1574.

Salzberg, S.L., ����������������������������������� Kingsford, ������������������������ C., �������������������� Cattoli, G., et al.
(2007). Genome analysis linking recent European
and African influenza (H5N1) viruses. Emerg Infect
Dis,. 13(5):713-8.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum
likelihood-based phylogenetic analyses with thou-
sands of taxa and mixed models. Bioinformatics,
22(21): 2688-2690.

Stamatakis, A., Hoover, P., & Rougemont, J. (2008).
A Rapid Bootstrapping Algorithm for the RAxML
Web Servers. Systematic Biology, in press.

Stamatakis, A., Auch, A.F., Meier-Kolthoff, J., &
Göker, M. (2007). AxPcoords & parallel AxParafit:

Heinz Stockinger has been working in Grid projects in Europe (CERN, etc.) and in the USA (Stanford
Linear Accelerator Center) in various technical, scientific and management functions. Heinz is affiliated
with the Swiss Institute of Bioinformatics where he works on diverse Grid subjects. He has been appointed
“Privatdozent” at the University of Vienna - leading the Research Lab for Computational Technologies
and Applications in 2005. Currently, he is also a lecturer at the Swiss Federal Institute of Technology in
Lausanne (EPFL). Heinz holds a PhD degree in computer science and business administration from the
University of Vienna, Austria.

Alexander Auch works as freelance software developer and consultant for industry as well as academia.
He has received a master’s degree in bioinformatics from the University of Tübingen in 2005 and is cur-
rently working on his doctoral thesis.

Markus Göker received his diploma in biology in July 1999 from the University of Heidelberg. In Decem-
ber 2003 he received his PhD for research on “Molecular and light microscopical investigations into the
phylogeny of the obligate biotrophic Peronosporales” from the University of Tübingen. Since then he has
been working as a postdoctoral researcher at the Institute of Organismic Botany/Mycology in Tübingen.
His research interests include evolution, taxonomy and co-phylogenetic analyses of plant-parasitic fungi
with a focus on downy mildews and smut fungi, and phylogenetic inference with alignment-free approaches

statistical co-phylogenetic analyses on thousands of
taxa. ������������������ BMC Bioinformatics 2007, 8:405.

Stockinger, H., Pagni, M., Cerutti, L., & Falquet,
L. (2006). �������������������������������������� Grid Approach to Embarrassingly Paral-
lel CPU-Intensive Bioinformatics Problems. 2nd
IEEE International Conference on e-Science and
Grid Computing (e-Science 2006), IEEE Computer
Society Press, Amsterdam, The Netherlands.

Thomas, P.L., & Menzies, J.G. (1997). Cereal smuts
in Manitoba and Saskatchewan, 1989-95. Canadian
Journal of Plant Pathology, 19(2):161-165.

Thompson, J.D., Higgins, D.G.,, & Gibson, T.J.
(1994). CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Research,
22(22):4673-4680.

de Vienne, D.M., Giraud, T., & Martin, O.C. (2007).
A congruence index for testing topological similarity
between trees. Bioinformatics, 23(23):3119-3124.

Zwickl, D. (2006). Genetic algorithm approaches for
the phylogenetic analysis of large biological sequence
datasets under the maximum likelihood criterion.
PhD Thesis, The University of Texas at Austin.

54 International Journal of Grid and High Performance Computing, 1(1), 39-54, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and from sequences with intra-individual variability. He has been particularly interested in compiling very
large host-parasite datasets to conduct co-phylogenetic tests.

Jan Meier-Kolthoff is employed as a software developer in bioinformatics at a medium-sized biotech
company in Bavaria, Germany. In March 2007 Jan received a master’s degree in bioinformatics from
Eberhard Karls Universität Tübingen. Despite his job-related occupation he is still highly interested and
involved in scientific challenges.

Alexandros Stamatakis received his diploma in computer science in March 2001 from the Technical University
of Munich. In October 2004 he received his PhD for research on “Distributed and Parallel Algorithms and
Systems for Inference of Huge Phylogenetic Trees based on the Maximum Likelihood Method” also from the
Technical University of Munich. From January 2005 to June 2006 he worked as postdoctoral researcher
at the Institute of Computer Science in Heraklion, Greece. In July 2006 he joined Bernard Moret’s group
at the Swiss Federal Institute of Technology at Lausanne as a PostDoc. In January 2008 he moved back to
Munich to set up a junior research group, that is funded under the auspices of the Emmy-Noether program
by the German Science Foundation (DFG), at the bioinformatics department of the Ludwig-Maximilians
University of Munich. His main research interest are: technical and algorithmic solutions for inference of
huge phylogenetic trees, applications of high performance computing techniques in bioinformatics, and
challenging phylogenetic analyses of real-world datasets in collaboration with biologists.

