

Why you should swear more!!

Exploring the Correlation between the Use of Swearwords and Code Quality in Open Source Code

Disclaimer: Naughty Language Ahead!!

Karlsruhe Institute of Technology

Contents

Idea and Approach

Methods

- Data Gathering
- Data Evaluation
- Data Analysis
- Results
- Conclusion

Idea and Approach

Idea

Source

Approach

- Initial Hypothesis:
 - There is no difference in code quality with regards to the of swearwords in open-source code

4 Questions

- How do we gather our data?
- How do we identify Swearwords?
- How do we measure Code Quality?
- How do we compare the two samples?

Data Gathering

Star-repos: repositories \geq 4 stars

Swear-repos: repositories \geq 1 swearword

Heidelberg Institute for Theoretical Studies - HITS

Heidelberg Institute for Theoretical Studies - HITS

Why we chose the Git-API?

Pro

- Easy to learn and use
- Already existing code search functionality

Fast

Contra

- "Only" 1000 results per searchquery
- Primary and secondary rate limit
- Timeout

Restrictions

Repository

- Size ≤ 625MB
- Execution time of SoftWipe < 1h</p>

Swearwords

- No swearwords that can be misinterpreted e.g.:
 - Ass and Asses
 - Iswearword > 3

Crawling flowchart

12 June 26, 2023 Jar

Data Evaluation

SoftWipe

- Benchmark for scientific software in C / C++
- Uses static and dynamic code analysers
 - Number of compiler warnings / assertions / tests
 - Code style violations
 - Modularity of the software
- returns a score between 0 (low adherence) and 10 (good adherence)

Counting Swearwords

How?

- NLP vs. regex
 - ► → regex due to time constraints

Regex:

- \b\S*(-|_|[0-9]) swearword ((-|_|[A-Z]][0-9])\S*)?\b
 - what_the_fuck
 - fuck10
 - fuckThis
- \b\S*(-|_|[0-9]))? swearword_first_cap ((-|_|[A-Z]][0-9])\S*)?\b
 - whatTheFuck
 - Fuck
 - this_Fuck-ingOddity
- b(\S*(-|_|[0-9]))? swearword_caps ((-|_|[0-9])\S*)?\b
 - WHAT_THE_FUCK
 - FUCK
 - FUCK_MY-badExamples

Evaluation flowchart

titute for Theoretical Studies - HITS

Runtime Bottlenecks and their Optimisation

Execution time of SoftWipe → Parallelisation

- Using multiprocessing library
- Creating a process pool
- 6 times faster due to 6 cores being utilised

Swearword counting

- → re2 library
- guarantees execution in linear time
- NFA → DFA
- 579s re → 8s re2

Data Analysis

Data Analysis Goals

Defining our goals:

- Find inferences of sample \rightarrow underlying population
- Find a relationship between the two samples → relationship of the target and the general population

To determine if swear-repos do have a higher/lower code quality than the general population.

Statistical tests based on a single sample

- How accurate is the sample mean \overline{X} ?
- Instead of a point estimator → confidence interval = interval of plausible values
- Accuracy can be determined by its width
- Requires:
 - The population has to be normally distributed
 - The true value of the population standard deviation is known.

■ Given a large enough sample the requirements can be assumed to be true → Central limit theorem

Bootstrapping

- re-sampling method that returns measures of accuracy for a given sample statistic
 - confidence interval, standard error
- does not assume any underlying distributions
- The basic idea behind bootstrapping:
 - It is generally done by re-sampling the original sample with replacement
 - calculate a point estimate of that newly generated sample
 - repeat x amount of times (x=9999 usually)

Analysis Methods

- Kolmogorov-Smirnov test
 - Determines whether two samples are from different distributions
- Welch's t-test
 - Approximates whether the means of two population are different without assuming equal variances

Results

Scatterplots

Star-repos

Swear-repos

Q-Q plot for the distribution of the SoftWipe score of swear-repos

28 June 26, 2023 Jan Strehmel Heidelberg Institute for Theoretical Studies - HITS

Karlsruhe Institute of Technology

Test results

KS-test

■ statistic \approx 0.20 and p-value \approx 3.17 * 10-89

Welch's t-test.

■ statistic ≈ 16.71 and p-value ≈ 2.04 * 10-61

\bullet \rightarrow correlation between swearing and an improvement in code quality

	mean	confidence interval
star-repos	5.41	[5.38 - 5.45]
swear-repos	5.87	[5.81 - 5.93]

Conclusion?

Initial Hypothesis:

There is no difference in code quality with regards to the of swearwords in open-source code

- Swear-repos exhibit a statistically significant higher average code-quality
 5.87 compared to 5.41
- But what about the clusters??

Cluster-Analysis

- Manual look at repositories in Cluster 1 and 2 to identify common denominator
- Cluster 1 (PintOS):
 - Introduction to OS at Stanford [2]
- Cluster 2 (OS/161)
 - Teaching OS used by University of Toronto and others

Q-Q plot for the distribution of the SoftWipe score of swear-repos

Test results

KS-test

- statistic \approx 0.042 and p-value \approx 0.0006
- Welch's t-test.
 - statistic \approx -0.54 and p-value \approx 0.59

$\blacksquare \rightarrow NO$ correlation between swearing and an improvement in code quality

	mean	confidence interval
star-repos	5.41	[5.38 - 5.45]
swear-repos	5.40	[5.34 - 5.46]

Conclusion

Conclusion and Outlook

- Swear-repos exhibit do not exhibit a statistically significant higher average code-quality
- Look at the Code Quality of repositories with a lot of swearwords

- Preferably:
 - It does not matter whether you swear or not so you might as well do it
- Publish a Paper

Questions?

Sources:

- "Central Limit Theorem". In: The Concise Encyclopedia of Statistics. New York, NY: Springer New York, 2008, pp. 66–68. isbn: 978-0-387-32833-1. doi: 10.1007/978-0-387-32833-1_50. url: https://doi.org/10.1007/978-0-387-32833-1_50.
- [2] https://en.wikipedia.org/wiki/Pintos