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Abstract— The small animal PET scanner MADPET-II, cur-
rently under development, is characterized by a small diameter
(71 mm), two radial layers of detectors and by small LSO
crystal elements read out individually by avalanche photodiodes.
To exploit this configuration, aimed at achieving high resolution
and high sensitivity, we intend to reconstruct a FOV almost as
large as the opening of the device. However, parallax errors
may hinder this task. To overcome this problem, our objective
was to implement fully 3D reconstruction techniques (MLEM
and OSEM) based on an accurate description of the system
response. The main feature of our method is the calculation of the
probability system matrix by means of Monte-Carlo simulations.
This approach requires the sorting of the simulated data into
the matrix, a computationally expensive procedure hindered by
the huge size of the matrix. In order to handle this problem, we
have employed a database management system (DB2), which has
proven to be a practical solution. In this work we also studied the
effect of applying the underlying symmetries within the matrix
to reduce statistical noise affecting the matrix elements and to
save disk space. The results showed that this procedure increases
the SNR and contrast. The transaxial resolution calculated from
a phantom consisting of 7 point sources degraded slowly towards
the edges of the FOV: for a source at r = 0 the FWHM was
1.0 mm, while for a source at r = 30 mm, the FWHM was 2.0
mm. The use of the symmetries allowed us to reduce the resolution
degradation (FWHM = 1.4 mm for r = 30 mm). Despite the gaps
between modules and between detectors, rotation of the scanner
was not needed. For the 3D case, an important issue is to improve
the accuracy and the statistical quality of the matrix. This is the
objective of our future work.

Index Terms— small animal PET, iterative reconstruction,
Monte Carlo simulations, system probability matrix.

I. INTRODUCTION

PET studies of mice and rats need high resolution, high
sensitivity scanners. However, these properties usually exclude
each other. The new scanner MADPET-II, currently under
development [1], has been conceived to fulfill both of these
requirements. A small diameter and two radial layers will result
in high sensitivity and the use of small crystals will enable
us to achieve high spatial resolution [2]. However, the size of
the animals compels us to reconstruct a FOV with a diameter
almost as large as the diameter of the system. This implies
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that a large part of the FOV is affected by parallax errors as a
consequence of crystal penetration.

Statistical iterative methods may help to reduce the impact
of the parallax effect in the image, since they can incorporate a
model of the system response. In the absence of noise, the
imaging process can be described as ȳ = Af , where A

is the system probability matrix, the vector f corresponds to
the voxelized image and ȳ to the measured data. The matrix
elements Aij (probability weights) are defined as the probability
of detecting an annihilation event emitted from image pixel j by
a detector pair i. They are usually calculated by computing the
intersection of the line–of–response (LOR) defined by a pair of
detectors with each pixel [3] [4]. More accurate approaches take
into account the position of the voxel relative to the detectors
[5] or use analytical models or empirical kernels to compensate
for crystal penetration effects [6] [7] [8].

Our approach relies on employing Monte Carlo (MC) sim-
ulated data to model the detector response, as suggested for
clinical PET by Veklerov et al. [9]. Our group has proven that
for 2D reconstruction of small animal data, the combination of
iterative algorithms with a MC based probability matrix results
in an almost constant spatial resolution across the whole FOV,
for RFOV = 93%Rscanner [10].

Nevertheless, the random processes involved in a MC simu-
lation result in matrix elements that are affected by statistical
noise. The impact of noise propagation from the matrix into
the image depends on the reconstruction method and on the
number of simulated events, as we have shown in [11] for 2D
acquisitions of a small animal sector PET tomograph.

The aim of the present study was to calculate the probability
matrix of MADPET-II using Monte Carlo simulations and to
implement statistical iterative reconstruction algorithms for a
fully 3D reconstruction of MADPET-II data. The probability
matrix should account for the geometric response of the system
and scatter within the detector. When compared to the calcu-
lation of 2D weights for the sector tomograph MADPET [11],
the execution of this objective was hindered by the following
issues:

• 3D Monte Carlo simulations are much less effective than
2D simulations. In the latter, to speed up the computations,
pairs of photons were emitted within a plane [10]. How-
ever, a realistic description of the behavior of MADPET-II
requires isotropic emission of photons in 3D.

• Due to the increased number of possible LORs and image
voxels for MADPET-II, the size of the corresponding



probability matrix A will be very large.
Given these constraints, our first objective was to implement

fast sorting algorithms to create A from the simulations. The
final goal of this work was to check if the available simulations
were sufficient to guarantee good image quality. We considered
the role of system symmetries to improve the statistical quality
of the matrix.

II. METHODS

A. The system: MADPET-II

MADPET-II is a high resolution small animal positron emis-
sion tomograph, currently under development [12] [1]. The
prototype is based on the individual readout of LSO crystals
by monolithic APD matrices. The main geometrical feature of
MADPET-II is its dual layer configuration [2]: 1152 crystals
will be distributed into 18 modules, each one consisting of two
radial layers and 8 axial slices. The inner radius of the scanner
is 71 mm, and the size of the crystals is 2× 2× 6 mm3 (front
layer) and 2 × 2 × 8 mm3 (back layer). The spacing between
crystals is 0.3 mm.

B. Monte Carlo simulations

The geometry and components of MADPET-II, including
non-sensitive materials (APDs, housing, lead shielding, optical
coupling, etc.) have been described in Monte Carlo (MC) code
[2] by means of GEANT 3.0 [13]. Positron range and non–
collinearity were not included to speed up the computations.

To calculate the probability matrix, a phantom consisting of
a radioactive cylinder (∅ = 70 mm, L = 18.7 mm) homoge-
neously filled with activity was simulated. Neither scattering
nor attenuation media within the phantom was considered.
Instead of running a unique, long simulation, we preferred to
perform sequential, shorter simulations. A total of 1.95× 1010

events were randomly generated within the cylinder volume
and two gamma rays were isotropically emitted in 3D, but
those trajectories not intersecting the scanner volume were
not tracked. A photon was considered detected if it deposited
energy within a single crystal by one or more interactions. In
this study, due to the low detection efficiency of 3D simulations,
no energy threshold was applied. This implied that photons that
were scattered in the non-sensitive materials were also included.

The output of the simulations was a binary list–mode
file (.geant) including the following information for each
recorded event in a structure of 36 bytes: LOR number, energy
deposited by each photon, and their emission vertex.

C. Calculation of the probability matrix

We assumed that Nij (number of detected events generated
within a certain image voxel j and detected by a certain
pair i in the simulations), is proportional to the detection
probability Aij . A non–normalized probability matrix Ã could
be thus calculated by assigning Nij to the element Ãij . This
procedure allows us to keep the accuracy without increasing
storage, because the elements of Ã are stored as short integers.

Normalizing the matrix to have absolute detection probabilities
would have implied the storage of Aij as floating or double
precision numbers, thus losing accuracy in the first case or
increasing storage in the latter.

To determine Nij , we first ”voxelized” the FOV. For that
purpose we chose a 3D array of 140× 140× 40 cubic voxels
of size (0.5 mm)3. During this process, an energy threshold can
be applied so that the binary file corresponding to the voxelized
data (.index file) only contains information about i and j for
each detected event (a structure of 8 bytes per event).

The sorting of the voxelized data according to ordered values
for j (voxel) and i (LOR) is a computationally expensive
procedure because of the range of values taken by i and j:
i ∈ [0, 1152 × 1152) and j ∈ [0, 140 × 140 × 40). This
implies a matrix dimension of 1.04 × 1012 (≈ 11 terabytes).
A sorting technique based on increasing by one the elements
of a vector stored on the memory, as employed for the 2D
case [10], was thus not possible. To overcome this problem,
we used the database management system DB2 from IBM (see
next section).

DB2

data.geant import.txt

export.txt

bin2ascii

load
generate
view

exportascii2bin

data.index

matrix.bin

Fig. 1. Outline of the data process.

D. The database system

We decided to use DB2 [14] [15] instead of e.g. MySQL [16]
since at the time of the implementation DB2 provided the
capability to store extremely large individual tables. Currently,
the data acquisition process is performed in a pipeline-like
fashion as outlined in figure 1. Initially, all .geant files
are converted into .index binary files (see last section II-
C) which in turn are transformed into the required plain ASCII
input file for DB2. Thereafter, the text files are loaded into
the database via a simple load operation, where each table
entries is of type (i, j, w), with w = 1 (i.e., one table entry per
simulated event). At this point, the number of table entries is the
same as the number of simulated events. The most important
step of the data preparation process consists of merging table
entries for each (i, j) combination, such that (i, j, w1) and
(i, j, w2) are merged into (i, j, w1 +w2), where the third index
is frequency of appearance of each (i, j) combination. This step
is carried out by invoking a view operation on the database,
and once performed, we get Nij , the elements of the matrix.
The table can be easily updated if additional simulations are
run by loading the new data and invoking a view operation



Fig. 2. Frontal view of MADPET-II (only LSO crystals). The probability weight
corresponding to the black pixel and the LOR represented as a solid line is
the same as the one corresponding to the dashed line and the top left pixel,
the dotted line and the bottom right pixel, and to the dashed–dot–dot line and
the bottom left pixel.

again. This kind of operation can be efficiently performed by
database systems such as DB2. Finally, since DB2 does not
allow us to export the data in a binary format, the data created
by the view operation are exported into a plain ASCII text
file, which in turn is transformed into a binary file. This .bin
file contains all non–zero elements of the matrix, storing the
triplet (i, j, Nij) as a structure of 12 bytes.

E. Matrix symmetries

The statistical quality of Ã can be increased by making
use of the symmetries inherent in the MADPET–II matrix (see
Fig. 2); these symmetries also allowed us to save disk space.
Considering the transaxial plane and a centered grid, the value
related to the weight corresponding to voxel j (black square)
and LOR i (solid line) is the same as for Aîĵ , î and ĵ being
the values of the LOR and the pixel after reflections about the
axes. In addition to this, we can find four more identical values
after reflection about the OXY plane.

By using these symmetries, we calculated Ãsym
ij as the sum

over all coincidences Nîĵ for all pairs (̂i, ĵ) related to (i, j).
Since the matrix elements corresponding to the eight pairs (î, ĵ)
should be equal, it was sufficient to store Ãsym

ij .

F. Characterization of the probability matrix

The accuracy of the probability matrix is determined by the
number of simulated events. A high number of simulated co-
incidences is thus desirable to reduce the noise in Ã, however,
it is difficult to know a priori if the simulated data allow
an accurate description of the system response or if further
simulations are needed.

To estimate the accuracy of the probability matrix, we
determined the number of non–zero matrix elements, N non–zero,
and the ”mean relative error”, defined as:

σ̄rel ≡

∑I−1;J−1

i=0;j=0

σÃij

Ãij

N non–zero
, (1)

where σÃij
is the standard deviation relative to Ãij . (Assuming

that the emission and detection of photons are Poisson pro-
cesses, we can write: σÃij

=
√

Nij .) The motivation for using
σÃij

=
√

Nij is the following: Ideally, if we had described
the true probability matrix, new simulations would not imply
an increase of the number of non–zero elements, but rather a
decrease of σ̄rel. We can expect that every time we update the
matrix by processing new simulated data, σ̄rel will diminish,
as we have seen for the 2D case [11], unless the values of
Ã would have converged towards the true values. Hence, the
”evolution” of σ̄rel is related to the accuracy of Ã.

G. Reconstruction techniques

We implemented the reconstruction algorithm MLEM [17]
and its accelerated version OSEM [18], since OSEM proved
to be a very robust technique, even when using probability
matrices generated from noisy simulations [11].

The input data were arranged in list–mode histograms, i.e.,
the total number of counts detected by every pair of channels or-
dered according to the LOR index. Since no sinograms are used
and the indexing of the LORs is not related to the corresponding
projection geometry, the subsets were arranged according to
a random distribution of the LORs. The dimensions of the
reconstructed 3D FOV were R = 35 mm and L = 18 mm. For
a better understanding of the impact of statistical noise from
the simulations on the image, no smoothing was performed.

H. Simulated phantoms

To study image quality, a centered radioactive cylinder (R =
25 mm, L = 18.7) was simulated. Neither scattering nor
attenuation media within the phantom were considered. Within
the cylinder, two rods (R = 6 mm) with different activity were
placed at ±12 mm from the center. One of the rods contained no
activity (”cold”), while the concentration within the rest of the
disc (background) was 0.3 times lower than within the active
rod (”hot”). The number of detected coincidences originating
within the phantom was 7.5× 106.

To study the impact of crystal penetration on the resolution,
a phantom consisting of 7 point sources located at intervals of 5
mm at z = 0 was simulated (5.1× 106 detected coincidences).
The location of the first source corresponds to the center of the
scanner, and the plane containing the sources lies between the
two central rings of detectors, thus not directly faced by any
one ring.

I. Figures–of–merit

Three different regions–of–interest (ROI) were considered
when dealing with transaxial images of the first simulated
phantom: two circular ROIs (R = 5 mm), corresponding to the
active and non–active rods, and the cylinder without rod inserts.
The image quality was quantified by means of the following
figures–of–merit:

• Signal–to–noise ratio (SNR): For the ”cold” and ”hot”
ROIs we calculated: SNRROI ≡ |µROI − µcyl|/σcyl, with



µROI being the average concentration within the chosen
ROI, and µcyl the average concentration within the disc
(without rods); σcyl is the standard deviation of the active
background. Ideally, µcold is 0.

• Contrast: For a certain ROI related to the active disc, the
contrast was defined as: CROI ≡ |µROI − µcyl|/µcyl. (Ideal
values: Ccold = 1 and Chot = 2.3).

• Mispositioned events: The ratio of events within the cold
rod relative to the total number of counts within the image
was calculated.

• Spatial resolution: The FWHM of the radial and tangential
profiles of the point sources was determined by interpola-
tion.

III. RESULTS

A. Database performance

In Table I we briefly summarize the execution times for
loading and adding experimental data to the database. The
first two rows correspond to the process of converting two
binary .index files of 131 MB and 349 MB into ASCII
format. The 131–MB .index file was loaded into a table,
and this table was updated using the data from the 349–MB
.index file. The updated table was exported as an ASCII
file. For comparison purposes, in Table I we also show the
processing time required to export the table related to the 131–
MB .index file. Finally, these data were converted into binary
files by executing ascii2bin. The column on the far left
shows, for reference, the size of the related input .index files,
and the column right–most shows the size required by the files
obtained after the operation described in the second column.
The disk space required to store the files in the database (383
MB for the 131–MB file, 1020 MB for the 349–MB file,
and 1403 MB for the table obtained after loading both files),
is related to the tables before merging those entries sharing
identical values of i and j. For all cases, additional 29 MB
were required by the database for internal management.

All these operations were carried out with an AMD Athlon
processor, 900 MHz. It can be seen that the size of the exported
ASCII data are inferior to the size of the imported ASCII data
due to the merging operation described in Section II-D. The
size of the output binary file (the matrix) is larger than the size
of the corresponding .index files. This is due to two facts: On
one hand, for this example, not many pairs (i, j) were found
more than once; on the other hand, each simulated event was
represented in the input file as an 8–byte structure, while every
element of the matrix file corresponds to a 12–byte structure.

B. Characteristics of the system matrices

A total of 2.22 × 108 detected coincidences were sorted to
create the system matrix. For Ã, this represented a mean of
374 detected events per voxel (considering only those voxels
in which a detected coincidence originated), and a mean of 890
detected events per LOR (considering only those LORs having
detected at least one coincidence). The use of symmetries

TABLE I

DATABASE PERFORMANCE.

Input data size Command Time (min:secs) File size
131 MB bin2ascii 0:22 238 MB
349 MB bin2ascii 1:12 635 MB
131 MB load 5:12 383 MB
349 MB load 13:03 1020 MB

349 MB to 131 MB add data 17:12 1403 MB
131 MB export 10:12 213 MB
480 MB export 46:55 612 MB
131 MB ascii2bin 0:43 175 MB
480 MB ascii2bin 2:07 504 MB

implied an increase of the statistical quality of the matrix, Ãsym,
which related to an average of 2994 coincidences per voxel, and
7118 coincidences per LOR.

For Ã, while the maximum number of detected events per
LOR and per voxel, Nmax, was found to be 21, the average N̄ ,
calculated over the number of non–zero matrix elements, was
1.37, as a consequence of the fact that about 76% of the non–
zero matrix elements were related to only one detected pair of
photons per LOR and per voxel, i.e., Nij = 1.

For Ãsym, the values obtained for N̄ and Nmax were 2.2,
and 41, respectively. The number of matrix elements related to
Nij = 1 was reduced to 61%.

About 76% of the total number of voxels were represented
in Ã, and the number of LORs having detected at least one
event was 249,938. These values increased slightly for Ãsym,
the matrix calculated using the symmetries.

Table II shows the main properties of the system matrices
(with and without symmetries). The disk space corresponds to
the matrix stored as a binary file. It can be seen, as expected,
that the statistical quality of the matrix was improved when
using symmetries: the mean relative error, σ̄rel, decreased from
91.6% to 82.6% and whereas the number of non–zero elements1

increased by a factor of 5, the disk space required was 0.63
times smaller.

TABLE II

PROPERTIES OF THE CALCULATED PROBABILITY MATRICES.

Sym. Nnon–zero σ̄rel disk space disk space

(DB2 table) (binary)

no 1.62 × 108 91.6% 3.6 GB 1.9 GB

yes 8.07 × 10
8 82.6% 2.2 GB 1.2 GB

In table II it can be seen that the space required to store the
matrix as a table in the database is larger that the size obtained
after exporting the table values and posterior conversion into a
binary file. In both cases, the space required for the database
was ≈ 1.8 times larger that for the binary files. To save disk
space, the tables can be removed. If required, values of the
matrix as a binary file can be reloaded into a new table. For
Ãsym, this process took 39 minutes, and for Ã, 67 minutes.

1For comparison purposes, the number of non–zero weights for Ãsym was
multiplied by the number of symmetries to get the same size as for Ã.



C. Image quality

As will be shown in the following subsections, the use
of Ãsym instead of Ã slightly improved SNR and contrast.
However, when using OSEM, the reconstruction process was
slowed by the fact that, for each non–zero element of Ãsym,
the corresponding eight ”symmetric” elements could belong to
different subsets.

The random grouping of the LORs for OSEM reconstruction
proved to be adequate. For N iterations and S subsets, the
reconstructed images were almost identical as those obtained
using MLEM and N×S iterations. For this reason, only MLEM
images are shown in this paper.

1) SNR, contrast and mispositioned events: In figure 3 the
reconstructed data from the simulated cylindrical phantom with
two rod inserts are shown (MLEM, 60 iterations). The image
on the left corresponds to the use of Ã for the reconstruction,
while the image on the right was reconstructed after applying
the symmetries of the matrix to improve its statistical quality
(Ãsym). In both cases, the images in figure 3 as well as the the
values in table III were obtained after adding all the transaxial
planes. It can be seen that using Ãsym resulted in a less noisy
image (see also table III).

TABLE III

SNR AND CONTRAST FOR A SIMULATED CYLINDRICAL PHANTOM WITH

TWO ROD INSERTS RECONSTRUCTED BY MEANS OF MLEM AND 60

ITERATIONS.

Sym. SNRhot SNRcold Chot Ccold Mispos. evts.

no 6.7 2.5 2.1 0.8 0.80%

yes 7.2 2.7 2.3 0.8 0.64%

In figure 4, the values of SNR and contrast are plotted as a
function of the axial plane. It can be observed that when using
Ãsym, contrast and SNR were increased. The improvement of
SNR was particularly large for the active rod, in agreement
with the results presented in [11]. While the contrast remained
almost constant over the whole axial FOV, the values for
SNR fluctuated. In both cases, for the extern slices (|dz| > 8
mm) SNR and contrast worsened. The obtained values for the
contrast were less than the ideal ones, but this difference was
reduced when Ãsym was utilized.

The mispositioning within the cold rod as a function of the
axial plane can be seen in figure 5. The observed trend is similar
to the one observed for the SNR: more accurate values when

Fig. 3. Transaxial view of a simulated phantom reconstructed by means
of MLEM (60 iterations). Left: reconstruction using Ã. Right: reconstruction
using Ã
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using Ãsym, and a worsening towards the axial edges of the
FOV.

2) Spatial resolution: The reconstructed point sources using
Ã (thick line) and Ãsym (thin line) are shown in figure 6.
The corresponding FWHM of these profiles is depicted in
figure 7 (bottom). The plot at the top represents the FWHM
for the tangential profiles of each source. Since the sources
were located within a plane at z = 0 (gap between the two
central rings of detectors), the two central reconstructed planes
(z = ±0.5 mm) were added. For comparison, the FWHM
obtained when using FBP (applied to dedicated simulations for
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Fig. 5. Percentage of mispositioned events within the cold rod. The filled
symbols correspond to using Ã, while the open ones refer to Ãsym .
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every source position with rotation of the scanner in 20 steps2)
are also plotted.

The variations in the system response as a function of the
radial position (see figure 6) might be a consequence of the
inaccuracy of the probability matrix, which does not compen-
sate correctly for the non–homogeneous sensitivity across the
transaxial FOV. The system response was more homogeneous
regarding the source position after enhancing the statistics of
the matrix (Ãsym).

MLEM combined with a Monte–Carlo based probability
matrix proved to reduce the impact of crystal penetration in
the resolution: the FWHM degraded slowly, from 1.0 mm at
the center to 2.0 mm at r = 30 mm (average over the tangential
and the radial values). The use of Ãsym instead of Ã improved
the spatial resolution (except at the center, due to the presence
of some artifacts). For a source at r = 30 mm, the FWHM
was 1.4 mm at 30 mm. When compared to the results obtained
by means of FBP and 20 rotation steps, (symbol (∗) in graphs
of figure 6), we can observe that our approach reduces the
degradation of resolution resulting from crystal penetration.

IV. DISCUSSION & CONCLUSIONS

For iterative reconstruction, the system response (geomet-
rical efficiency, crystal penetration, etc.) needs to be modeled
appropriately. The corresponding matrix is object–independent,
since it only depends on the characteristics of the tomograph.
Our approach proposes the off–line computation of the related
matrix by means of Monte–Carlo simulations.

The issue of scatter and attenuation has not been addressed
in this work. These effects could be compensated by including
an additional matrix in the reconstruction algorithm [20]. An
alternative technique could be to run dedicated MC simulations
of every object under study, assuming that the attenuation
properties of the object under study are known. This method,
developed for SPECT, models attenuation and scatter into the
probability matrix (see [21]).

The present study shows that fully 3D statistical image
reconstruction using a Monte–Carlo based system probability

2The FBP data belong to the work described in [19].
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matrix is feasible. The database management system proved to
a very practical framework to handle, sort, store and access
the large amounts of data related to the MC simulations and
to the probability matrix in an efficient manner. Furthermore,
the deployment of a database scheme facilitated the addition of
supplementary MC simulation data.

Our approach allowed us to reconstruct a larger FOV without
compromising the resolution, despite the high statistical noise
affecting the probability matrix. We have seen that a small
reduction of statistical noise within the matrix, achieved by
applying the matrix symmetries, improved SNR, contrast and
spatial resolution. From these results, and from our study of
the 2D case [11], we can thus expect that image quality could
be further improved if less noisy, more accurate matrices were
used.

For that purpose, in addition to performing new simulations,
different strategies have been considered for future work, such
as applying symmetry considerations directly to the simulated
data, instead of to the probability matrix: since the exact
emission vertex of each coincidence is known, for each detected
event we can generate 36×2 new events by considering the 36
symmetry axes of the scanner, and its symmetry regarding the
OXY –plane. This approach, however, implies the increase of
the size of the simulated data by a factor of 72. To avoid the
storage of the new ”symmetrical” events, we have implemented
a procedure that allows direct access to the database tables
during the calculation of the ”symmetrical” coincidences. This
routine also allows us to to sort the events from the .geant file
directly into a database table. Another objective of our group
is to investigate the feasibility of accessing the elements of the



database tables during the reconstruction process. This step also
comprises the optimization of database performance.
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