Tool Environments in CORBA-based Medical
High Performance Computing *

Thomas Ludwig, Markus Lindermeier, Alexandros Stamatakis, Giinther Rackl

Technische Universitdt Miinchen (TUM), Informatik
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR-TUM)
Arcisstr. 21, D-80333 Miinchen
email: {ludwig|linderme|stamatak|rackl}@in.tum.de

Abstract. High performance computing in medical science has led to
important progress in the field of computer tomography. A fast calcula-
tion of various types of images is a precondition for statistical comparison
of big sets of input data. With our current research we adapted parallel
programs from PVM to CORBA. CORBA makes the integration into
clinical environments much easier. In order to improve the efficiency and
maintainability we added load balancing and graphical on-line tools to
our CORBA-based application program.

1 Introduction

Imaging in medical science is an important issue that shows an increasing con-
nection with high performance computing. Relevant picture series from imag-
ing hardware like magnetic resonance tomographs or positron emission tomo-
graphs are usually computed on powerful servers and stored in specialized picture
archiving systems.

Recently, workstation clusters became more and more popular as they pro-
vide a good price-performance ratio. Furthermore, many operations that are
performed on these picture series exhibit a maximum parallelism. In many cases
no interprocess communication is required and the parallelization is handled at
the granularity level of the individual pictures.

As soon as the parallel imaging servers are used in production mode we
are faced with two more problems. One is the load of the individual nodes of
the cluster. It should be balanced in order to guarantee an optimal use of the
computational power of the cluster. Second, the imaging software has to interact
with other software components in a medical environment and thus has to meet
certain standards of reliability and interoperability.

The paper will present an approach where we base our parallelization of the
imaging software on a distributed object-oriented middleware system (in our case
CORBA) to take advantage of component integration. A load balancing mecha-
nism is integrated into a specific CORBA ORB to provide optimal performance
to the application programs.

* This work is partly funded by the Deutsche Stifterverband, Kurt-Eberhard-Bode
Stiftung

Load Management System

Load Monitoring Load Distribution

Runtime Environment

Fig. 1. The components of a load management system

2 The Load Management System

Load management systems can be classified according to their implementation.
They may be integrated into the application, the runtime system, or a separate
service. The first case is called application level, the second one system level,
and the third one service level load management. We decided to make a system
level implementation because it provides maximum flexibility and transparency
to the user.

In general, load management systems can be split into three components:
The load monitoring, the load distribution, and the load evaluation component.
They fulfill different tasks and work at different abstraction levels. This eases
the design and the implementation of the overall system. Figure 1 shows the
components of a load management system and a runtime environment containing
some application objects.

The load monitoring component provides both, information on available com-
puting resources and their utilization, and information on application objects
and their resource usage. This information has to be provided dynamically, i.e.
at runtime, in order to obtain knowledge about the runtime environment and its
objects. The computing resources in distributed environments may be shared by
middleware based applications and legacy applications.

Load distribution provides the functionality for distributing workload. Load
distribution mechanisms for system level load management are initial placement,
migration, and replication.

Initial placement stands for the creation of an object on a host that has
enough computing resources in order to efficiently execute an object. Ini-
tial placement may be applied to all kinds of objects because it is done at
creation time.

Migration means the movement of an existing object to another host that
promises a more efficient execution. It may be applied to all kinds of objects,
too. However, migration is applied to existing objects, so the object state
has to be considered. The object’s communication has to be stopped and its

state has to be transferred to the new object. Finally, all communication has
to be redirected to the new object.

Replication is similar to migration but the original object is not removed, so
some identical objects called replicas are created. Further requests to the
object are divided up among its replicas in order to distribute workload
(requests) among the replicas. Replication is restricted to replication safe
objects. This means that an object can be replicated without applying a
consistency protocol to the replicas. A precise definition of the term replica-
tion safe can be found in [7].

Finally, the load evaluation component makes decisions about load distribu-
tion based on the information provided by load monitoring. The decisions can
be reached by a variety of strategies. The aim of the diverse strategies is to
improve the overall performance of the distributed application by compensating
load imbalance. There are two main reasons for load imbalance in distributed
systems. First, background load can substantially decrease the performance of
a distributed application. Second, request overload that is caused by too many
simultaneously requesting clients increases the request processing time and thus,
decreases the performance of the overall application. Both sources of load im-
balance have to be considered by a load management system.

Distributed object oriented environments like CORBA [10] or DCOM [2] are
based on some kind of object model. In general, the object models imply some
transparency requirements [8]. Location transparency demands that the loca-
tion of an object is unknown to its user. The middleware transparently connects
client and server. Access transparency postulates that all objects in a distributed
system are accessed in the same way. The middleware is responsible for providing
uniform access to all objects, independent of their implementation or runtime
environment. These transparency requirements have to be fulfilled by load man-
agement systems, too. Therefore, load distribution has to be transparent to the
user. Our load management system provides full migration and replication trans-
parency which means that migration and replication are completely transparent
to the user.

The load management concepts described so far are universal and may be
applied to diverse distributed object-oriented environments. The implementation
of these concepts strongly depends on the underlying middleware architecture.
We decided to make an implementation for CORBA because it is the most
popular middleware architecture.

In CORBA, objects are connected to the middleware by the POA (Portable
Object Adapter). The object adapter provides the functionality for creating and
destroying objects, and for assigning requests to them. The POA is configured
by the developer via so called policies. The ORB (Object Request Broker) pro-
vides the functionality for creating object adapters and for request handling. A
request to an object arrives at the ORB which transmits it to the appropriate
POA. Subsequently, the object adapter starts the processing of the request by
an implementation of the object (Servant).

The load management functionality, especially load monitoring and load dis-
tribution, have to be integrated into the ORB and the POA because we decided
to make a system level implementation. Therefore, we added some policies and
interfaces to the POA in order to enable state transfer and the creation of repli-
cas. The monitoring of the runtime environment is performed via the Simple
Network Management Protocol (SNMP) [11] which is a well established stan-
dard in network management.

A new policy called ControlFlowPolicy that controls the creation and de-
struction of CORBA objects is added to the POA. The policy value USER indi-
cates that objects are created by the programmer. The value SYSTEM indicates
that objects are created on demand by the CORBA runtime environment. This
enables the transparent creation of new objects in case of migration and repli-
cation. Therefore, the programmer has to provide a ServantFactory interface
that enables the creation and destruction of Servants analogous to the Factory
design pattern [4]. The POA’s RequestProcessingPolicy is extended with the
value USE_SERVANT FACTORY that causes the POA to use the ServantFactory
for object creation and destruction.

Migration and replication of objects that hold state require state transmis-
sion as described before. Therefore, some persistence mechanism has to be pro-
vided. A new policy, the PersistencePolicy is added to the POA. The pol-
icy value USE_PERSISTENT_SERVANT_FACTORY indicates that an extension of the
ServantFactory interface, the PersistentServantFactory, is used in order to
create and destroy objects. Additionally, the PersistentServantFactory pro-
vides the functionality to extract an object’s state and to recreate objects from
that state. This approach enables the application of various persistence mecha-
nisms like the Persistent State Service [9] or proprietary mechanisms like Java
serialization.

Finally, request redirection is performed by the CORBA Location Forward
mechanism [5]. It enables to hand over object references to clients by raising an
ForwardRequest exception. The client runtime transparently reconnects to the
forwarded reference. This guarantees migration and replication transparency.

3 The Medical Image-Processing Application

A medical image-processing application is chosen for exploration of concept pur-
poses. The realignment process forms part of the Statistical Parametric Mapping
(SPM) application developed by the Wellcome Department of Cognitive Neurol-
ogy in London [6]. SPM is used for processing and analyzing tomograph image
sequences, as obtained for example by functional Magnetic Resonance Imaging
(fMRI) or Positron Emission Tomography (PET). Such image sequences are used
in the field of neuroscience, for the analysis of activities in different regions of
the human brain during cognitive and motoric exercises.

Realignment is a cost intensive computation performed during the prepara-
tion of raw image data for the forthcoming statistical evaluation. It computes a
4 x 4 transformation matrix for each image of the sequence, for compensating the

effect of small movements of the patient, caused e.g. by his breath. The images
are realigned relatively to the first image of the sequence.

The realignment algorithm for image sequences as obtained by fMRI will
briefly be presented. One has to distinguish two cases.

First Case: Realignment of one sequence of images: The reference data set
and the first matrix is obtained by performing a number of preparatory
computations using the image data of the first image. The matrices for all
remaining images are calculated using the reference data set.

Second Case: Realignment of multiple sequences of images: The reference data
set and the first matrix of the first sequence are calculated. Thereafter, the
first images of all remaining sequences are realigned relatively to the first im-
age of the first sequence and its reference data set. Finally, the realignment
algorithm as described in the first case is applied to all sequences indepen-
dently.

At this point the only precondition for the calculation of the transformation
matrix is the availability of the reference data set, which is calculated only once
for each sequence. Once the reference data set(s) is(are) available, the matrices
of the sequence(s) can be computed independently.

The manually parallelized realignment application is already available as se-
quential C++, C++/CORBA and C++/PVM program. Previous work shows,
that the overhead induced by CORBA is not prohibitive for its deployment in
clinical environments.

For the following steps it is necessary to transform the sequential C++ pro-
gram into a Java program because some components of our tool environment
only provide Java interfaces. This program transformation is performed using
the Java Native Interface (JNT). An interesting intermediate result is that the
deployment of JNI does not lead to any performance decrease for the specific
program [12].

4 Integrating the Application into the Tool Environment

In order to improve performance and scalability of the image-processing appli-
cation we decided to integrate it into our load management system.

As already mentioned in section 3 the availability of a Java program is a nec-
essary prerequisite for the integration into the load management system, since it
only provides services for Java/CORBA programs. The sequential Java realign-
ment application is transformed into a distributed Java/CORBA application.

Figure 2 depicts the structure of the CORBA application. The service offered
by the server object is the compute () service, which calculates the transforma-
tion matrix for an image. The state of a server object consists of a reference data
queue (cache). Therefore it is replication safe since it can be replicated without
applying a consistency protocol to its replicas, i.e. the required cache data can
easily be reestablished. A getReferenceData() service is offered by each client
and provides the specific reference data to the server if it is not already cached.

ocomputg()

Client Server
getRef erenceDa ()
”””””””””””””””””””” Cache

Fig. 2. The structure of the medical image-processing application

The basic adaptation of the Java/CORBA application to the load balancer
is straightforward. Minor chnages to the code are necessary in order to add the
ServantFactory and PersistantServantFactory methods to the server object.
In addition to those modifications the system is extended by various additional
components for testing particular aspects of the load management system. The
mechanism itself was integrated into the Java-based JacORB [1].

The second part of our tool environment consists of the Middleware Moni-
toring Tool (MIMO) [3] and the graphical on-line visualization tool MiVis (Mid-
dleware Visualization). The integration of these tools is straight forward, too.
MIMO provides some standard events like object creation, object deletion, ob-
ject interactions, and additionally defines generic events. Furthermore, MIMO
provides the infrastructure for designing active tools, i.e. tools that manipulate
the monitored application. Initially we specify the data to be monitored, for
example client and server hosts, client and server objects, server object load,
server host load, application object interactions, and load balancing actions like
migration and replication. This information is provided by a MIMO adapter that
is used to instrument the application and the load management system.

MiVis is a graphical on-line visualization tool that is based on the MIMO
monitoring system. It provides a framework that enables the development of
new display types which can be plugged into the tool core. We developed a new
display that is used for the visualization of the new monitoring events described
before. Figure 3 presents the basic layout of the graphical on-line tool. Client and
server objects are located within the respective rectangles representing the client
and server hosts. In addition, server object load (numerical representation) and
server host load values are depicted (numerical and graphical representation).
The CORBA method compute() is represented as blue arrow (black in Fig. 3)
with a counter and getReferenceData() as offset turquoise arrow. Replications
and Migrations are represented as yellow (white in Fig. 3) and red arrows re-
spectively. Replication and Migration actions can be initiated manually too, by
a drag and drop function.

The combination of MIMO and MiVis provides a flexible and extensible
infrastructure for the development and the maintenance of large scale distributed
applications. Together with our monitoring system performance and scalability
of applications can be substantially improved.

[lBean pisplay 1: ScraliDisplayBean

sunboded.infomatilctu-muenchende
" v

o st O
11—+ 1—g72—
sunbodda.infomatictu-musnchende g sunbodeS.inforratik.tu-muenchen.de
1 1—a-g2—

\
|

/sunbade15.informatik tu-rnuenchen.de

Fig. 3. Visualization of a replication and of object interactions

5 Evaluation

In order to evaluate the efficiency of the presented load management concept
and its implementation, a test case is shown.

The hardware consists of three machines with equal configuration. There is
no background load on the machines. The examined CORBA application is the
medical image-processing application described in section 3 with two simultane-
ously requesting clients. The application is replication safe as already mentioned
in section 4. Thus, migration and replication can be applied to this application.

Figure 4 shows the processing time per image against the number of the
processed image for both clients. At the beginning, one server object is created
and placed on a machine (initial placement) and the clients start requesting the
server. The image processing time is equivalent for both clients now because the
server alternately processes their requests. After a while the load management
system recognizes that the server is overloaded because both clients permanently
request the server. Accordingly, replication is performed, i.e. a second server ob-
ject (replica) is created and each client gets a replica on its own. In consequence
of the replication, the image processing time of each client decreases about 50%.
Some time later background processor load is generated on the machine that
is used by the second client’s replica. Hence, the image processing time of the
second client substantially increases. Again, the load management system rec-
ognizes the processor overload and migrates the affected replica to the third

Processing Time/ Image [Sec.]

20 T T T T T T T
Replication Clientl ——

18} T Clinet2 - --- 4

16} { -

|
/~| Background Load

14

12

10

Fig. 4. The load managed medical image-processing application

machine which was not used so far. The consequence is that the image process-
ing time returns to its normal level.

The test case shows how the load management system is able to deal with dif-
ferent kinds of overload. Request overload is compensated by replication, whereas
background load is compensated by migrating an object to a less loaded host.
Consequently, the load management systems improves the performance and the
scalability of the medical image-processing application.

6 Conclusion and Future Work

The combination of load balancing and graphical user interface provides a pow-
erful environment for the production oriented image processing in medical en-
vironments. Workstation clusters can be used as high performance servers for
reconstruction and statistical analysis of tomography pictures. Our CORBA-
based approach allows the integration of image processing into the workflow of
clinical routine. Future steps in this field will cover aspects of fault tolerance,
where the computing environment will have integrated mechanisms for fail-soft
and recovery.

References

1.

10.

11.

12.

G. Brose. JacORB: Implementation and Design of a Java ORB. In International
Conference on Distributed Applications and Interoperable Systems (DAIS’97).
Chapman & Hal, 1997.

G. Eddon and H. Eddon. Inside Distributed COM. Microsoft Press, 1998.

G. Rackl. Monitoring and Managing Heterogeneous Middleware. PhD thesis, Tech-
nische Universitdt Miinchen, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, 1994.

M. Henning. Binding, Migration, and Scalability in CORBA. Communications of
the ACM, 1998.

K. Friston. SPM. Technical report, The Wellcome Department of Cognitive Neu-
rology, University College London, 1999.

M. Lindermeier. Load Management for Distributed Object-Oriented Environ-
ments. In International Symposium on Distributed Objects and Applications
(DOA’2000), Antwerp, Belgium, 2000. IEEE Press.

OMG (Object Management Group). A Discussion of the Object Management
Architecture. Technical report, http://www.omg.org, 1997.

OMG (Object Management Group). CORBAServices: Common Object Services
Specification. Technical report, http://www.omg.org, 1998.

OMG (Object Management Group). The Common Object Request Broker: Archi-
tecture and Specification — Revision 2.3.1. Technical report, http://www.omg.org,
1999.

W. Stallings. SNMP, SNMPv2, SNMPuv3, and RMON 1 and 2. Addison Wesley,
1998.

A. Stamatakis. Interoperable Tool Deployment for the Late Development Phases
of Distributed Object-Oriented Programs. Master’s thesis, Technische Universitit
Miinchen, 2001.

