DAxML: A Program for Distributed
Computation of Phylogenetic Trees Based on
Load Managed CORBA *

Alexandros P. Stamatakis!, Markus Lindermeier!, Michael Ott!, Thomas
Ludwig?, and Harald Meier!

! Technical University of Munich, Department of Computer Science
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany
{stamatak, linderme, ottmi, meierh}@in.tum.de
wwwbode. cs.tum.edu
2 Ruprecht-Karls University, Department of Computer Science
Im Neuenheimer Feld 348, 69120 Heidelberg, Germany
thomas.ludwig@informatik.uni-heidelberg.de
pvs.iwr.uni-heidelberg.de

Abstract. High performance computing in bioinformatics has led to im-
portant progress in the field of genome analysis. Due to the huge amount
of data and the complexity of the underlying algorithms many problems
can only be solved by using supercomputers. In this paper we present
DAxML, a program for the distributed computation of evolutionary
trees. In contrast to prior approaches DAXML runs on a cluster of
workstations instead of an expensive supercomputer. For this purpose we
transformed PAxML, a fast parallel phylogeny program incorporating
novel algorithmic optimizations, into a distributed application. DAxML
uses modern object-oriented middleware instead of message-passing com-
munication in order to reduce the development and maintenance costs.
Our goal is to provide DAxML to a broad range of users, in particular
those who do not have supercomputers at their disposal. We ensure high
performance and scalability by applying a high-level load management
service called LMC (Load Managed CORBA). LMC provides transpar-
ent system level load management by integrating the load management
functionality directly into the ORB. In this paper we demonstrate the
simplicity of integrating LMC into a real-world application and how it
enhances the performance and scalability of DAxML.

1 Introduction

Within the framework of the ParBaum project at the TUM (Technische Univer-
sitdt Miinchen) work is conducted in the area of high performance bioinformatics

* This work is partially sponsored under the project ID ParBaum, within the
framework of the ”Competence Network for Technical, Scientific High Perfor-
mance Computing in Bavaria”: KONWIHR (Kompetenznetzwerk fiir Technisch-
Wissenschaftliches Hoch- und Hochstleistungsrechnen in Bayern). KONWIHR is
funded by means of ” High-Tech-Offensive Bayern”.



in order to design novel parallel and distributed systems as well as algorithms
for large-scale phylogenetic (evolutionary) tree computations based on the max-
imum likelihood method.

Phylogenetic trees describe the relative evolutionary distances between or-
ganisms and are calculated using information from their genetic sequences. The
rRNA (ribosomal RiboNucleic Acid) is a distinguished, highly conserved region
of an organisms genetic sequence and is therefore apt for determining evolution-
ary relationships.

Our work relies on sequence data provided by the ARB [16] (Latin, “arbor”
= tree) rRNA-sequence database, which provides a huge amount of high quality
sequence data and is a joint development of the LRR (Lehrstuhl fiir Rechn-
ertechnik und Rechnerorganisation) and the ”Department of Microbiology” of
the TUM. The ARB software is a graphically oriented package comprising vari-
ous tools for sequence database handling and data analysis. A central database
of processed (aligned) sequences and any type of additional data linked to the
respective sequence entries is structured according to phylogenetic or other user
defined criteria.

The maximum likelihood method renders evolutionary trees of high quality.
A recent result by Korber et al. that times the evolution of the HIV-1 virus [3]
demonstrates that maximum likelihood techniques can be effective and impor-
tant for solving scientific problems in medicine and biology. However computing
evolutionary trees based on this model is extremely computationally expensive.
Thus, only relatively small trees (= 500 sequences [14],[15]), compared to the
huge amount of data available (~ 20000 sequences in today’s databases), have
been calculated on supercomputers so far.

Within this context we investigate different approaches for handling the com-
plexity of the problem. In this paper we focus on the distributed computation
of large phylogenetic trees.

An important property of existing parallel phylogeny programs, such as par-
allel fast DNAml [14] or PAXML [8], [10], [11], [12], [13], is that they are well
suited for distributed computation, since the largest part of computation time
is consumed by the workers during tree evaluation and comparatively small
amounts of data are communicated in a simple string format. Furthermore, at
each step of the computation there is a large amount of independent tasks that
can easily be distributed among the workers.

For handling the complexity and heterogeneity of todays computing envi-
ronments and to exploit the vast amount of unused resources one can typically
find in organizations, such as universities or research laboratories the distributed
object-oriented programming paradigm is the most adequate mechanism, espe-
cially coupled with a powerful load balancing tool. With DAxML (Distributed
A (x)ccelerated Maximum Likelihood) we present a new approach for the cal-
culation of large phylogenetic trees exploiting the advantages of the distributed
object-oriented programming paradigm through the integration of the powerful
load management tool LMC paired with the very fast tree evaluation function
of PAxML [10], [13], which is based on novel algorithmic optimizations.



2 The Load Management System

Nowadays applications do not reside on a single host anymore - they are dis-
tributed all over the world and interact through well defined protocols. Global
interaction is accomplished by so called middleware architectures. The most
common middleware architectures for distributed object-oriented applications
are the CORBA (Common Object Request Broker Architecture) and the DCOM
(Distributed Component Object Model). Environments like CORBA and DCOM
cause new problems because of their distribution. A significant problem is load
imbalance. As application objects are distributed over multiple hosts, the slowest
host determines the overall performance of an application. Load management
services intend to compensate load imbalance by distributing workload. This
guarantees both, high performance, as well as scalability of distributed applica-
tions.

Our load management, concept uses objects as load distribution entities and
hosts as load distribution targets. Workload is distributed by initial placement,
migration, and replication.

— Initial Placement stands for the creation of an object on a host that has
sufficient computing resources in order to efficiently execute the object.

— Migration means moving an existing object to another host that promises a
more expeditious execution.

— Replication is similar to migration but the original object is not removed,
such that identical objects called replicas are created. Further requests to
the object are split up among its replicas in order to distribute the workload
(requests) among them.

There are two kinds of overload in distributed object-oriented systems - back-
ground overload and request overload. Background load is caused by applications
that are not controlled by the load management system. Request overload means
that an object is not capable to efficiently process all requests it receives. Migra-
tion is an adequate technique for handling background load but the scalability
attained by migration is limited. Replication helps to break this limitations and
is an adequate technique for handling request overload.

We implemented these concepts in the LMC system [5]. LMC is a load
management system for CORBA. The main components of LMC are shown in
Figure 1. These components fulfill different tasks and work at different abstrac-
tion levels. The load monitoring component offers both, information on available
computing resources and their utilization, as well as information on application
objects and their resource usage. This data has to be provided dynamically, i.e.
at runtime, in order to obtain information about the runtime environment and
the respective objects. Load distribution provides the functionality for distribut-
ing workload by initial placement, migration, or replication of objects. Finally,
the load evaluation component decides about load distribution based on informa-
tion provided by load monitoring. Those decisions can be attained by a variety
of strategies, which are discussed in detail in [6].



Load Management System

Load Monitoring Load Distribution

Runtime Environment

Fig. 1. The components of the Load Management System LMC

LMC is completely transparent on the client-side because it uses CORBA’s
Location Forward mechanism to distribute requests among replicas. On the
server-side minor changes to the existing code are necessary for integrating load
management functionality into the application. These changes mainly affect the
configuration of the Portable Object Adapter (POA). All extensions are seam-
lessly integrated into the CORBA programming model. Thus, only a minor ad-
ditional effort is required by the application programmer for the integration of
the services provided by LMC.

For a detailed description of the load managment system as well as the initial
placement, migration and replication policies used see [6].

3 The Application

DAxML is based on PAxML, which is in turn a derivative of the latest release
of parallel fast DN Aml (version 1.2.2). The essential difference between par-
allel fast DN Aml and PAxML are several novel algorithmic optimizations of
the topology evaluation function, which, depending on the input data set and
the processor architecture, lead to global run time improvements between 27%
and 65% [11], [13]. Note that PAxML scales particularly well on PC processor
architectures, which are the main target platforms for DAxML. Since our op-
timizations are purely algorithmic PAXML/DAxML render exactly the same
results as parallel fast DN Aml.

The attained level of run time improvement attained by our algorithmic opti-
mizations is significant (see Figure 3), because our work focuses on computations
of huge phylogenetic trees.

Since the algorithmic optimizations introduced by DAxML are on a fine
granularity level and do not affect the parallelization concept, we will restrain
our analysis to a brief description of the sequential “stepwise addition algorithm”
which was introduced by J. Felsenstein [2] and implemented with some modi-
fications in fast DNAml [7]. Furthermore, we will shortly outline the parallel
algorithm of parallel fast DNAmIl and PAxML.



The calculation of the optimal phylogenetic tree for a set of rRNA input
sequences based on the maximum likelihood method is NP-complete, due to the
exponential growth in the number of possible tree topologies (e.g. there exist
over 2 million possible topologies for 10 sequences). Thus, heuristics have to be
introduced, in order to reduce the search space, i.e. the number of evaluated tree
topologies. Suppose we have a set of n input sequences. A phylogenetic tree is
an unrooted binary tree with the sequences at its leaves and with 2n — 3 inner
nodes (each node of the tree has either degree 3 or degree 1).

The sequential algorithm, works as follows:

Suppose we have found the best tree tj of size k, i.e. with k sequences at its
leaves, according to the heuristics. Sequence k + 1 consisting of a new branch
with a new inner node and the sequence at either end, is then inserted into
all 2k — 3 branches of t; and the likelihood of the in that manner generated
topologies t41,1,---, tk+1,5, 8 = 2k — 3 is calculated. After this step, local and/or
global rearrangements of the best tree drawn from the set tjy11,...,tk+1,5 are
performed and evaluated, if the respective program option is set, in order to
further improve the quality of the tree. The tree with the best likelihood of size
k + 1 is then used for insertion of sequence k + 2. We call all tree topologies of
size k, that are evaluated by the algorithm: “topology class of size k”.

The algorithm starts with the only possible tree topology of size 3 using
the first 3 sequences of the input data set and subsequently adds the remaining
sequences as described above.

Since the most cost intensive part of the computation is the calculation of
the likelihood value for each tree topology analyzed (~ 95% of total computation
time in the sequential program), the parallelization is straight-forward.

The parallel algorithm consists of a master, which is responsible for initializa-
tion, distribution of the input data, generation of tree topologies and gathering
results.

The worker component simply performs the evaluation of a specific tree topol-
ogy obtained by the master, i.e. computes its likelihood value. The topology to be
evaluated is transformed into a simple, relatively short, string representation by
the master and sent to a worker. Thus, especially since topology evaluation times
increase with tree size k, k = 4, ...,n, the communication overhead is neglectible
for the calculation of huge phylogenetic trees and the problem is well-suited for
distributed computation (see Figure 4).

In parallel fast DN Aml an additional foreman component has been inserted
between master and workers for error-handling.

4 Implementation

For designing DAxML we initially simplified PAxML by removing the foreman
component entirely from the system, since error handling can more easily be
handled directly by LMC.

Furthermore, we changed the program structure, such as to create all tasks
of size k, i.e. all topologies with k leaves, that can be evaluated independently



at once, and queue them in their string representation. This transformation
was performed, in order to provide a means for issuing simultaneous topology
evaluation requests (see below). Note, that several sets of trees of topology class

replicated Worker Object

C-code
via JNI
Master Object
Work Queue
calculateTree()
calculateTree()
Thread 1 LMC
e N
VR AR N o L .
calculateTree() + calculateTree()
Thread 2 N .
Worker Object
C-code
via JNI

Fig. 2. System architecture of DAxML

k, that have to be evaluated in sequential order, may be generated, depending
on the selected program options of DAxML.

Those sets are sufficiently large, such that they do not create a synchroniza-
tion problem at the respective transition points.

The overhead induced by first creating and storing all topologies before in-
voking the evaluation function is neglectible, since the invocation of the topology
evaluation function consumes by far the greatest portion of execution time.

Because LMC is based on a modified JacORB [1] version and only provides
services for JAVA/CORBA applications, we initially transformed the simplified
code into a sequential JAVA program using JNI (JAVA Native Interface). We
designed two JAVA classes Master and Worker providing analogous functionali-
ties as their counterparts in PAXML. The basic service provided by the Worker
class is a method called calculateTree (), for evaluating a specific tree topology,
which in turn invokes the fast native C evaluation function via JNI.

The Master component loads and parses the sequence file, passes the input
data to the Worker, generates tree topologies and gathers results.



The transformation of the sequential JAVA code into a LMC-based applica-
tion was straight-forward, since its class layout already complied with the struc-
ture of the distributed application. The Worker class is encapsulated as CORBA
worker object, and provides its topology evaluation function as CORBA service.
The state of the CORBA Worker object consists only of the sequence data, which
can be loaded via NFS or directly from the Master when the Worker object is
created either by initial placement, migration or replication.

Thus, since the sequence data is not modified during tree calculation, replica-
tions and migrations of worker objects do not induce any consistency problems.

In the main work-loop of the Master, a number of threads corresponding to
the number of available hosts controlled by LMC is created, in order to perform
simultaneous topology evaluation requests. This enables LMC to correctly dis-
tribute tree evaluation requests among worker objects on distinct hosts and to
ensure optimal distribution granularity. The system architecture of DAXML is
outlined in Figure 2 for a simple configuration with two worker objects.

5 Results

&
=]

I I I
[ optimized evaluation function
[ standard evaluation function ] B

8

g
T
|

8
|

250 |- — ] J

8
T
]

|

150 - ] 4

8

(o1

o o
© ==

|

average evaluation time per topology class [ms]

20 30 40
\ \ \ \ \
500 1000 1500 2000 2500 3000 3500 4000

number of evaluated trees ——

Fig. 3. Average evaluation time improvement per topology class: DAXxML vs. parallel
fastDNAml evaluation function



—_—

average evaluation time per topology class [ms]

evauation time per tree [ms]

300
[ tree evaluation time (C-code) 275
[ tree evaluation time (JNI/C)
250 — B tree evaluation time (CORBA/INI/C) - 244 -
204
200 - b
ﬂ174
150 - b
134
101 105
100 - b
73 7
50 a8 41 7
9 10
0
4 10 20 30 40

topology class —=

Fig. 4. JNI and CORBA-communication overhead

300~ -~ testrunl B
— testrun2 S

250

200

150

100

50 [~

Migration of worker object —

0 500 1000 1500 2000

Fig. 5. Worker object migration after creation

2500 3000 3500 4000

number of evaluated trees —

of background load on its host



g

T T T T T
T [0 without replication 3rd replication -
O with replication 2nd replication / e
g 250 - 777 N
@ 1st replication
& L
& 200 — |
o ——
o
Q. _
g o
2 150 - T ] .
(0]
£ _
= ]
S - - — .
g 100 |- gan= . ]
= —
3]
g
g X i
0 | 20 | | 30 | | | | 40
0 500 1000 1500 2000 2500 3000 3500 4000

number of evaluated trees ——=

Fig. 6. Impact of 3 subsequent automatic worker object replications

We conducted performance analysis tests on 4 Ethernet connected Sun-
Blade-1000 machines of the SUN cluster at the LRR using sufficiently large
test sets of 20, 30, 40 and 50 sequences, extracted from the ARB database, in
order to evaluate the behavior of DAxML and LMC in terms of CORBA /JNI
overhead, impact of the algorithmic optimizations, and automatic worker object
replication/migration.

In Figure 3 we demonstrate the impact of the algorithmic optimizations on
the speed of the tree evaluation function including JNI and CORBA overhead.
We conducted two DAxML test runs with a single worker object, using the
standard and optimized tree evaluation function and measured the average tree
evaluation time per topology class (see section 3) for a test set of 40 sequences.
The algorithmic optimizations show analogous performance improvements as
measured for the parallel and sequential program [11]. All subsequent tests were
performed using our novel optimized evaluation function.

Another important aspect is the overhead induced by the integration of
CORBA and JNT into DAxML. As previously mentioned the communication
overhead decreases with increasing tree size, due to the fact, that average eval-
uation time per tree increases during the computation as depicted in Figure 3,
whereas the amount of communicated data per topology class remains practi-
cally constant. For the same reasons and despite the fact, that we have used
some heavy-weight JNI mechanisms such as JAVA callbacks from C, the JNI



overhead becomes neglectible as the tree grows, since only small amounts of
data are passed through JNI.

We measured average C, JNI, and CORBA tree evaluation times for selected
topology classes of size 4, 10, 20, 30 and 40. As can be seen in Figure 4 during
the initial phase of the computation, i.e. for size 4 and 10, the CORBA overhead
is relatively high but decreases significantly for increasing topology size.

In order to demonstrate the efficiency and soundness of LM C we performed
test runs using worker object replication and migration.

Figure 5 depicts the correct response of LMC to an increase of background
load on a worker object host. We performed two test runs with 40 sequences and
a single worker object, i.e. the replication mechanism was switched off, located on
the same initially unloaded node and measured the evaluation time per topology.

Around the evaluation of the 1750th tree topology during the first test run
we produced external load on the worker object host, which lead to a significant
increase in topology evaluation time. The unfavorable situation is correctly re-
solved by the load balancer and a migration of the worker object to an unloaded
host is performed.

Finally, Figure 6 demonstrates how the average evaluation time per topology
class is progressively being improved by 3 subsequent automatic worker object
replications performed by LMC, compared to a run with automatic replication
switched off.

6 Future Work

Current work focuses mainly on building a seti@home-like [9] distributed phy-
logeny program based on the http protocol and the novel randomized /distributed
tree inference algorithm described in [13]. A parallel MPI-based prototype is al-
ready being evaluated. Within this context we plan to run big distributed phylo-
genetic tree calculations with data sets from the ARB database, using the avail-
able resources at the TUM. Furthermore, we will work on further improving our
randomized tree inference algorithm, by extracting additional information from
the set of trees calculated during the initial phase of the algorithm. Within this
context we have already integrated the consensus tree program CONSENSE [4]
into our parallel prototype.

References

1. Brose, G.: JacORB: Implementation and Design of a Java ORB. International Con-
ference on Distributed Applications and Interoperable Systems (DAIS’97). Chap-
man & Hal (1997)

2. Felsenstein, J.: Evolutionary trees from DNA sequences: A maximum likelihood
approach. J. Mol. Evol., Vol. 17. (1981) 368-376

3. Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn,
B.H., Wolinsky, S., Bhattacharya, T.: Timing the ancestor of the HIV-1 pandemic
strains. Science, Vol. 288. (2000) 1789-1796



10.

11.

12.

13.

14.

15.

16.

Jermiin, L.S., Olsen, G.J., Mengersen, K.L., Easteal, S.: Majority-rule consensus
of phylogenetic trees obtained by maximum-likelihood analysis. Mol. Biol. Evol.,
Vol. 14. (1997) 1297-1302

Lindermeier, M.: Load Management for Distributed Object-Oriented Environ-
ments. Proceedings of 2nd International Symposium on Distributed Objects and
Applications (DOA’00). IEEE Computer Society, (2000) 59-68

Lindermeier, M.: Ein Konzept zur Lastverwaltung in verteilten objektorientierten
Systemen (A concept for load managment in distributed object-oriented systems).
Ph.D. thesis. Technical University of Munich (2002)

Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: A tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci., Vol. 10. (1994) 41-48

ParBaum homepage, PAxML download:
http://wwwbode.in.tum.de/"stamatak/research.html

Search for Extraterrestrial Intelligence at Home:
http://setiathome.ssl.berkeley.edu/

Stamatakis, A.P., Ludwig, T., Meier, H., Wolf, M.J.: AxML: A Fast Program for
Sequential and Parallel Phylogenetic Tree Calculations Based on the Maximum
Likelihood Method. Proceedings of 1st IEEE Computer Society Bioinformatics
Conference (CSB 2002). IEEE Computer Society (2002)

Stamatakis, A.P., Ludwig, T., Meier, H., Wolf, M.J.: Accelerating Parallel Max-
imum Likelihood-based Phylogenetic Tree Computations using Subtree Equality
Vectors. Proceedings of Supercomputing Conference (SC2002). IEEE Computer
Society (2002)

Stamatakis, A.P., Ludwig, T., Meier, H.: Adapting PAxML to the Hitachi
SR8000-F1 Supercomputer. Proceedings of 1. Joint HLRB and KONWTIHR Work-
shop. (2002)

Stamatakis, A.P., Ludwig, T.: Phylogenetic Tree Inference on PC Architectures
with AxML/PAxML. Proceedings of IPDPS2003, High Performance Computa-
tional Biology Workshop (HICOMB). IEEE Computer Society (2003)

Stewart, C.A., Hart, D., Berry, D.K., Olsen, G.J., Wernert, E., Fischer, W.: Par-
allel implementation and performance of fastDNAml - a program for maximum
likelihood phylogenetic inference. Proceedings of Supercomputing Conference 2001
(SC2001). IEEE Computer Society (2001)

Stewart, C.A., Tan, T.W., Buchhorn, M., Hart, D., Berry, D., Zhang, L., Wernert,
E., Sakharkar, M., Fisher, W., McMullen, D.: Evolutionary biology and compu-
tational grids. IBM CASCON 1999 Computational Biology Workshop: Software
Tools for Computational Biology. (1999)

The ARB project: http://wuw.arb-home.de



