
Accuracy and Performance of Single versus

Double Precision Arithmetics for Maximum

Likelihood Phylogeny Reconstruction

Simon A. Berger and Alexandros Stamatakis⋆

The Exelixis Lab, Dept. of Computer Science, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

{bergers,stamatak}@in.tum.de

http://wwwkramer.in.tum.de/exelixis/

Abstract. The multi-core revolution and the biological data flood that
is generated by novel wet-lab techniques pose new technical challenges
for large-scale inference of phylogenetic trees from molecular sequence
data. We present the first assessment of accuracy and performance trade-
offs between single and double precision arithmetics and the first SSE3
vectorization for computing the Phylogenetic Likelihood Kernel (PLK)
which forms part of many state-of-the art tools for phylogeny reconstruc-
tion and consumes 90-95% of the overall execution time of these tools.
Moreover, the PLK also dominates memory consumption, which means
that deploying single precision is desirable to accommodate increasing
memory requirements and to devise efficient mappings to GPUs. We find
that the accuracy provided by single precision is sufficient for conduct-
ing tree searches, but that the increased amount of scaling operations
to prevent numerical underflow, even when using SSE3 operations that
accelerate the single precision PLK by 60%, generates run-time penal-
ties compared to double precision on medium-sized datasets. However,
on large datasets, single precision can yield significant execution time
savings of 40% because of increased cache efficiency and also reduces
memory footprints by 50%.

Key words: Phylogenetic inference, single versus double precision arith-
metics, RAxML, Maximum Likelihood, SSE3 instructions

1 Introduction

The emergence of many-core architectures and accelerator devices as well as the
molecular data flood generated by novel high-throughput sequencing techniques
require new approaches for orchestrating compute-intensive Bioinformatics ker-
nels.

Within this context, we assess speed and accuracy trade-offs between sin-
gle precision (henceforth abbreviated as SP) and double precision (henceforth

⋆ This work is funded under the auspices of the Emmy-Noether program by the Ger-
man Science Foundation (DFG).

2 Berger and Stamatakis

abbreviated as DP) floating point arithmetics for the Phylogenetic Likelihood
Kernel (PLK [1]) that is used to reconstruct phylogenetic (evolutionary) trees
from molecular sequence data.

A phylogenetic tree is an unrooted binary tree that represents the evolu-
tionary relationships among species. The input of a phylogenetic analysis is a
multiple sequence alignment comprising nucleotide or protein sequence data from
organisms that are alive today. The alignment is an n × m data matrix, that
contains, e.g., n DNA sequences which all have a length of m nucleotide charac-
ters (columns/sites). The output is an unrooted binary tree that represents the
evolutionary history of those organisms. The tips (also called leaves or taxa) of
the tree represent species alive today in contrast to internal (ancestral) nodes
that represent species that have become extinct.

The PLK is one of the most widely used optimality criteria to score and
thus chose among distinct evolutionary scenarios (phylogenetic trees). Many
program packages are available that implement the PLK, either for standard
Maximum Likelihood analyses (RAxML [2], GARLI [3]) or to conduct Bayesian
phylogenetic inference (MrBayes [4], BEAST [5]). All PLK-based phylogenetic
inference programs spend the largest part of overall run time (90-95%) in the
computation of the likelihood function [6]. The aforementioned tools are widely
used by biologists and have accumulated over 20,000 citations. Therefore, it is
important to assess and devise HPC solutions for this important Bioinformatics
kernel.

We present the first accuracy assessment between SP and DP arithmetics for
the PLK and also exploit the usage of SSE3 instructions in the PLK. SP arith-
metics can also solve memory bottlenecks in analyses of large-scale phylogenomic
datasets that can already require up to 120GB of main memory under DP. The
deployment of SP for the PLK can reduce memory requirements by almost 50%.
SP arithmetics are also required to map the PLK onto GPUs, since at present
SP arithmetics are approximately one order of magnitude faster than DP arith-
metics on GPUs. We find that SP arithmetics are sufficiently accurate to conduct
ML-based tree searches on trees with less than approximately 2,000 taxa and
hence can be used for accelerating the kernel on Graphics Processing Units.
We also achieve performance improvements of more than 40% (DP) and 60%
(SP) via deployment of SSE3 instructions on general purpose CPUs. Finally, we
demonstrate that SP can be used to significantly accelerate PLK computations
on large phylogenomic datasets because of increased cache efficiency.

The remainder of this paper is organized as follows: In Section 2 we briefly
describe how the likelihood is calculated on phylogenetic trees. Thereafter, we
cover related work on floating point implementations and usage of accelerators
for the PLK (Section 3). In Section 4 we describe the SSE3 and SP implementa-
tions and provide experimental results in the subsequent Section 5. We conclude
in Section 6.

Single versus Double Precision for Phylogeny Reconstruction 3

2 Computing the Likelihood of a Tree

The input of a standard phylogenetic analysis consists of a multiple sequence
alignment with n sequences (taxa/tips) and m alignment columns. The output
is an unrooted binary tree; the n taxa are located at the leaves of the tree and the
inner nodes represent common extinct ancestors. The branch lengths essentially
represent the relative time of evolution between nodes in the tree. To compute
the likelihood on a fixed tree topology several additional ML model parameters
are required: the instantaneous nucleotide substitution matrix Q which contains
the transition probabilities for time dt between nucleotide (4 × 4 matrix) or
Amino Acids (20 × 20 matrix) characters. Additionally, the prior probabilities
of observing the nucleotides, e.g., πA, πC , πG, πT (for DNA data), and the α
shape parameter that forms part of the Γ model [7] of rate heterogeneity need
to be determined. The Γ model accounts for the fact that different sites evolve
at different speeds. Finally, one also requires the 2n − 3 branch lengths in the
unrooted tree topology.

To compute the likelihood of a fixed unrooted binary tree topology given
these parameters, initially one needs to compute the entries for all internal
probability vectors (located at the inner nodes) that contain the probabilities
P (A), P (C), P (G), P (T), of observing an A,C,G, or T at each site/column c of
the input alignment at the specific inner node. Those probability vectors are
computed bottom-up from the tips towards a virtual root that can be placed
into any branch of the tree using a procedure known as the Felsenstein pruning
algorithm [1]. Under certain standard model restrictions (time-reversibility of
the model) the likelihood score will be the same, regardless of the placement of
the virtual root.

Every probability vector entry L(c) at a position c (c = 1...m) of the tips and
the inner nodes of the tree topology, contains the four probabilities P (A), P (C),
P (G), P (T) of observing a nucleotide A, C, G, T, at a specific column c of the
input alignment. The probabilities at the tips (leaves) of the tree for which ob-
served data is available are set to 1.0 for the observed nucleotide character at the
respective position c, e.g., for the nucleotide A: L(c) = [1.0, 0.0, 0.0, 0.0]. Given
a parent node k, and two child nodes i and j (with respect to the virtual root),
their probability vectors L

(i) and L
(j), the respective branch lengths leading

to the children bi and bj, and the transition probability matrices P (bi), P (bj),
the probability of observing an A at position c of the ancestral (parent) vector

L
(k)
A (c) is computed as follows:

L
(k)
A (c) =

“

T
X

S=A

PAS(bi)L
(i)
S (c)

”“

T
X

S=A

PAS(bj)L
(j)
S (c)

”

(1)

The transition probability matrix P (b) for a given branch length is obtained
from Q via P (b) = eQb. Once the two probability vectors L

(i) and L
(j) to the

left and right of the virtual root (vr) have been computed, the likelihood score
l(c) for an alignment column c (c = 1...m) can be calculated as follows, given

4 Berger and Stamatakis

the branch length bvr between nodes i and j:

l(c) =
T

X

R=A

“

πRL
(i)
R (c)

T
X

S=A

PRS(bvr)L
(j)
S (c)

”

(2)

The overall score is then computed by summing over the per-column log likeli-
hood scores: LnL =

∑m

c=1 log(l(c)).

An important property of the likelihood function is the assumption, that
sites evolve independently, i.e., all entries c of the probability vectors L can be
computed independently. This property represents the main source of fine-grain
parallelism in the PLK [6].

In order to compute the Maximum Likelihood value for a fixed tree topology
all individual branch lengths, as well as the parameters of the Q matrix and
the α shape parameter, must also be optimized via an ML estimate. For the Q
matrix and the α shape parameter the most common approach consists in using
Brent’s algorithm. In order to evaluate changes in Q or α the entire tree needs
to be re-traversed, i.e., a full tree traversal needs to be conducted in order to
correctly re-compute the likelihood. For the optimization of branch lengths, the
Newton-Raphson method is commonly used. In order to optimize the branches
of a tree, the branches are repeatedly visited and optimized one-by-one until the
achieved branch length change is smaller than some pre-defined ǫ. The bulk of
all of the likelihood computations consists of for-loops over the length m of the
vectors L. These for-loops require for instance 95% of total execution time in
RAxML.

Avoiding Numerical Underflow: The methods deployed for avoiding nu-
merical underflow represent an important implementation and performance is-
sue. As can be derived from Formula 1, the values in the probability vectors L at
the inner nodes of the tree will progressively become smaller as we approach the
virtual root, since we are conducting successive multiplications with the proba-
bility values in the transition probability table P . Especially for trees with many
taxa, measures need to be taken to avoid numerical underflow in the probability
vectors.

The scaling in RAxML is conducted as follows: At a column c of an ancestral
probability vector L we scale the entries if LA(c) < ǫ ∧ LC(c) < ǫ ∧ LG(c) <
ǫ ∧ LT (c) < ǫ, where ǫ = 1/2256 for DP and ǫ = 1/232 for SP. If probability
vector column c at vector L needs to be scaled, we simply multiply all entries
LA(c), LC(c), LG(c), LT (c) by 2256 (DP) and 232 (SP) respectively. In order to
annihilate the scaling events at the virtual root we keep track of the total number
of scaling events conducted per column by using integer vectors U that maintain
the scaling events and correspond to the respective probability vectors. At the
virtual root, given L

(i), L(j) and the corresponding scaling vectors U
(i), U (j) we

compute the likelihood as follows:

l(c) =
1

2256

U(i)(c)+U(j)(c)“ T
X

R=A

“

πRL
(i)
R (c)

T
X

S=A

PRS(bvr)L
(j)
S (c)

””

(3)

Single versus Double Precision for Phylogeny Reconstruction 5

If we take the logarithm of l(c) and ǫ = 1/2256 this can be re-written as:

log(l(c)) = (U (i)(c)+U
(j)(c))log(ǫ)+ log

“

T
X

R=A

“

πRL
(i)
R (c)

T
X

S=A

PRS(bvr)L
(j)
S (c)

””

(4)

Memory Requirements: The memory requirements for ML-based phy-
logeny programs are dominated by the space required for the inner probability
vectors L and the inner scaling vectors U . Depending on the memory organiza-
tion and data structures used, we need to assign at least one probability vector
and one scaling vector to each of the n − 2 inner nodes of the tree. Since for
the values at the leaves we only have 15 alternative probability vector entries
using ambiguous DNA character encoding, we only need to store one vector L

of length 15 which can then be accessed using the input sequences as index.
The input sequences can be stored as simple char arrays. Hence, the memory
requirements for computing the likelihood on a DNA alignment (without accom-
modating for rate heterogeneity) with n taxa and m columns requires n · m · 1
bytes for the input sequences, (n− 2) ·m · 4 · 8 bytes for the probability vectors
and (n − 2) · m · 4 bytes for the scaling vectors. If we use the standard Γ model
of rate heterogeneity the space requirements for the probability vectors increase
to (n − 2) · m · 16 · 8 bytes. Hence, the memory requirements are dominated
by the space required for the inner probability vectors and can be reduced by
factor 2 using SP arithmetics. This is an important issue since we are receiv-
ing an increasing number of reports from RAxML users that encounter memory
shortages.

3 Related Work

We are not aware of any related work that assesses accuracy and speed trade-
offs between SP and DP floating point arithmetics for the PLK. However, such
analyses have been conducted for standard numerical linear algebra kernels,
e.g., systems of linear equations [8] where the authors propose a mixed precision
approach, i.e., an initial optimization under SP and a final refinement under
DP. Such a procedure that dynamically switches from SP to DP, could also
be applied to phylogenetic inference, i.e., one could initially infer a rough tree
structure (the big picture) under SP and then refine it under DP. However, we
find that this is not necessary and that the loss of accuracy is insignificant with
respect to the tree topology (see Section 5).

Nonetheless, there is some on-going work to port GARLI [3] to SP (Derrick
Zwickl, personal communication) for the same reasons as RAxML. Surprisingly,
no efforts have been undertaken and published with respect to deploying SSE
instructions to improve performance of the PLK on new-generation x86 archi-
tectures. The only documented usage of SIMD instructions for the PLK on the
CELL processor is described in [9].

MrBayes [4], which is a program for Bayesian phylogenetic inference, has
been ported down to SP five years ago, mainly to better accommodate the sig-
nificantly larger memory requirements caused by the multiple heated and cold

6 Berger and Stamatakis

Markov Chains in the Metropolis-Coupled search procedure. Bayesian floating
point implementations are more straight-forward since no iterative procedures
(Newton-Raphson, Brent’s algorithm) are required to optimize ML model pa-
rameters. We are also not aware of any study that deals with the accuracy
trade-offs regarding tree topologies in MrBayes following the transition from DP
to SP. In addition, the MrBayes source code also contains SSE3 instructions, but
potential performance gains have not been documented and SSE3 does not form
part of the standard distribution. Finally, increased scaling events for SP also oc-
cur in MrBayes. According to profiling runs of MrBayes using gprof within the
framework of an OpenMP parallelization, we found that the scaling procedure
requires approximately 20% of overall execution time.

The Bayesian program BEAST [5] has also recently been ported to SP in
order to be mapped to a GPU (Bioinformatics, in press, preprint at http:

//tree.bio.ed.ac.uk/publications/390/). The porting to SP was mainly
conducted for efficiently computing 60-state Codon models on GPUs for which
impressive speedups of two orders of magnitude are achieved. However, the
speedup obtained in comparison to a DP C implementation for DNA data be-
tween CPU and GPU is only around factor 4 since the mathematical operations
that are required for a 4-state transition matrix can not be mapped as efficiently
to a GPU. Moreover, the performance comparison between GPU and CPU could
be improved in favor of the CPU. The code on the multi-core CPU, an Intel Core
2 Extreme with a total of 4 cores, is run sequentially and not using an OpenMP
or Pthreads-based fine-grained parallelization of the PLK, i.e., a speedup of fac-
tor 4 could be achieved via multi-threading. If SSE3 instructions were deployed
for the PLK, an additional two-fold speedup over the GPU could be achieved. Fi-
nally, the performance analysis is only conducted using a single 63 taxon dataset.
Hence, a potential performance degradation caused by increased scaling events
as more taxa are added to the alignment is not assessed.

4 Implementation

Single Precision Version: The SP version of RAxML was implemented us-
ing a similar strategy as in MrBayes. We still conduct a large portion of the
numerically sensitive operations, like base frequency computations or Eigen-
value/Eigenvector decomposition that are required to compute P (t) = eQt in
DP and then cast the P (t) matrix to SP. We also compute the derivatives of
P (t) that are required for conducting the Newton-Raphson procedure for branch
length optimization in DP and then cast them to SP. Thus, only the main bulk
of operations as outlined in Equations 1 and 2 is actually conducted under SP.
Based on prior experience with several unsuccessful attempts to port RAxML to
SP, this approach seems to yield the numerically most stable implementation.

Finally, we also empirically adapted (increased) various ǫ settings that deter-
mine the number of iterations in the Newton-Raphson as well as in the iterative
procedures for optimization of the remaining ML model parameters Q and α.
The convergence parameters were adapted in such a way that the SP version

Single versus Double Precision for Phylogeny Reconstruction 7

carries out approximately as many iterations for branch length and ML model
parameter optimization as the DP version. These increased settings yield slightly
worse likelihood scores than the DP version, but we find that this has no signif-
icant impact on the relative likelihood-based order of trees (see Section 5).

SSE3 for Likelihood Computations: We vectorize computations that are
special cases of a general dense matrix multiplication; the computations on L

(i)

and L
(j) in Formula 1 over all sites c and all nucleotides A, C, G, T are matrix

products of the form P · L
(i) and P · L

(j). We assessed the usage of highly
optimized ATLAS-BLAS routines [10], but because of the unfavorable matrix
dimensions (multiplication of the 4 × 4 matrix P with the 4 × m matrix L) we
even observed a slowdown. We also deploy the horizontal addition instructions
in SSE3 for the reduction operations that are required to efficiently complete
the scalar product as indicated in Formula 1.

SSE3 for Likelihood Scaling: We also vectorized the scaling procedure
as outlined in Section 2 using SSE3. This is particularly important for the SP
implementation, since the number of scaling events increases by one order of
magnitude (see Figure 2). SSE3 instructions are used to efficiently determine the
maximum value of LA(c), LC(c), LG(c), LT (c) (see Section 2) and then compare
the maximum to the ǫ value, thereby eliminating several conditional statements.
SSE3 vectorization was implemented by inserting SSE3 intrinsics into the C code,
rather than via inline assembly. This leaves room for further optimizations of the
instruction schedule and register allocation by the compiler. It is important to
note that, the Intel icc compiler (v 11.1) is not able to vectorize the for-loops
of the PLK, despite numerous attempts to re-write the loops for facilitating
auto-vectorization.

5 Experimental Setup & Results

To assess accuracy of the SP versus the DP version we initially generated collec-
tions of “good” trees that are encountered during a tree search under DP on 9
single-gene real-world DNA datasets containing 150 up to 1,908 taxa. Thereafter,
we applied the RAxML function for scoring a set of trees (-f n option, for de-
tails please refer to the RAxML Manual) under the standard GTR+Γ model of
nucleotide substitution to score the respective tree collections under SP and DP.
The absolute likelihood values are not important for a tree search, but only the
relative scores, i.e., how well can our SP implementation discriminate between
alternative trees via the likelihood value. To this end, we computed the Spear-
man rank correlation coefficient ρ between the likelihood-based tree rankings
obtained via DP and SP tree evaluations to assess if SP provides a sufficient de-
gree of accuracy. We also used the above experiments to obtain execution times
for the SP and DP versions, as well as for the SSE3-based and standard versions
of the code. As test platform we used a SUN x4600 multi-core system equipped
with 32 AMD Opteron cores running at 2.7GHz and a total of 64GB of RAM.
We used gcc (v. 4.3.2) to compile all versions of the code.

8 Berger and Stamatakis

-167520

-167500

-167480

-167460

-167440

-167420

-167400

-167380

-167520 -167500 -167480 -167460 -167440 -167420 -167400 -167380

Li
ke

lih
oo

d
(f

lo
at

)

Likelihood (double)

Fig. 1. Scatter plot of SP and DP tree scores for a datasets with 1,604 sequences.

In Table 1 we provide the number of taxa in the test datasets (column: #
taxa), the number of trees in the respective tree collections (column: # trees), the
Spearman correlation between SP and DP likelihood-based tree orders (column:
ρ), the speedup between the standard SP and DP versions (column: S/D), be-
tween the SSE3-based SP and DP versions (column: S-SSE3/D-SSE3), between
the standard and SSE3-based SP versions (column: S-SSE3/S) and between the
standard and SSE3-based DP versions (column: D-SSE3/D). Overall, the order
of trees induced by SP and DP likelihood scores is highly correlated and hence
SP suffices to conduct full tree searches. In Figure 1 we provide a scatter plot
of SP versus DP likelihood scores for the worst-case Spearman coefficient of
0.95 on the alignment with 1,604 taxa. The average slowdown of SP over DP
is approximately factor 2, but improves to 1.5 for the respective SSE3 imple-
mentations. This improvement is due to the higher speed gains of approximately
60% in the SP SSE3 implementation compared to about 40% in the DP SSE3
implementation.

taxa # trees ρ SP/DP SP-SSE3/DP-SSE3 SP-SSE3/SP DP-SSE3/DP

150 200 0.99 1.39 0.83 0.36 0.61
218 260 0.99 2.58 1.71 0.42 0.64
354 160 0.97 1.44 0.78 0.36 0.67
500 300 0.99 2.31 1.62 0.44 0.63
628 180 0.95 1.39 0.80 0.36 0.62
714 320 0.99 2.41 1.70 0.43 0.61

1,512 520 0.99 2.63 1.82 0.44 0.63
1,604 220 0.95 2.38 1.69 0.40 0.63
1,908 360 0.99 1.29 0.78 0.40 0.66

Table 1. Test datasets, number of trees in tree collections, Spearman coefficients, and
speedup values between all code versions

Single versus Double Precision for Phylogeny Reconstruction 9

In Figure 2 we outline the number of scaling events over the number of
taxa (note the log scale on the y-axis) for the evaluation of a single tree. As
mentioned before, the SP version requires about one order of magnitude more

scaling operations. In Figure 3 we provide corresponding execution times (note
the log scale on the y-axis) for the evaluation of a single tree using the standard
SP and DP versions of the code. The similar shapes of the two curves clearly
show that scaling operations dominate SP run times.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

sc

al
in

g
ev

en
ts

taxa

single precision
double precision

Fig. 2. Number of scaling events for SP
and DP versions over the number of taxa.

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(s
)

taxa

single precision
double precision

Fig. 3. Execution times in seconds for SP
and DP versions over the number of taxa.

In a second set of experiments we measured execution times and inference
accuracy for the Pthreads-based RAxML code on a large-scale phylogenomic
protein dataset with 321,145 distinct alignment patterns and 232 taxa which
requires approximately 40GB of RAM under DP and the Γ model of rate het-
erogeneity. On a 16-core SUN x4600 system (code without SSE3) we found that
an inference under SP is 40% faster and yields an equally good final tree, when
scored under DP, while reducing the memory requirements to 20GB. On a 32-
core SUN x4600 system (code with SSE3) we found that the SP-based code using
the CAT approximation of rate heterogeneity [11] is three times faster than a
standard Γ -based inference under DP, yields a slightly better final likelihood
score, and only requires 5GB of main memory.

Finally, we also assessed numerical stability on alignments containing ≥ 2,000
taxa and found that the code encounters problems with numerical stability
on such large alignments under SP. Similar observations were made by Der-
rick Zwickl (personal communication) on his SP implementation of GARLI, i.e.,
problems with numerical stability on many-taxon datasets seems to be a general
problem.

6 Conclusion

We have presented the first thorough assessment of accuracy and speed trade-offs
with respect to using SP versus DP floating-point arithmetics for the Phyloge-
netic Likelihood Kernel in a Maximum Likelihood framework. In addition, we

10 Berger and Stamatakis

have conducted the first SSE3-based vectorization of the PLK. Our results indi-
cate that SP can be deployed to accurately infer phylogenetic trees with less than
2,000 taxa. In addition, SP arithmetics significantly reduce memory requirements
of large phylogenomic analyses and substantially improve inference times via in-
creased cache efficiency. Thereby, in combination with the CAT approximation
of rate heterogeneity, we can design tools that enable large-scale phylogenomic
inference “for the masses” by significantly reducing computational resource re-
quirements. We also find that, SSE3 yields significant run time improvements;
we achieve 60% for SP and approximately 40% for DP. Thus, users can chose
between the DP-SSE3 and SP-SSE3 versions for DNA or protein data in the
current RAxML release (v. 7.2.3), depending one their memory and CPU time
constraints as well as on the alignment shape.

Future work, will cover a more detailed analysis of the numerical stability on
many-taxon datasets as well as work on a GPU version of RAxML.

References

1. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17 (1981) 368–376

2. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models. Bioinformatics 22(21) (2006)
2688–2690

3. Zwickl, D.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large
Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD the-
sis, University of Texas at Austin (April 2006)

4. Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19(12) (2003) 1572–1574

5. Drummond, A., Rambaut, A.: BEAST: Bayesian evolutionary analysis by sampling
trees. BMC Evol Biol 7(214) (2007) 1471–2148

6. Ott, M., Zola, J., Aluru, S., Stamatakis, A.: Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene/L. In: Proc. of IEEE/ACM
Supercomputing Conference 2007 (SC2007). (2007)

7. Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites. J. Mol. Evol. 39 (1994) 306–314

8. Kurzak, J., Dongarra, J.: Implementation of mixed precision in solving systems
of linear equations on the Cell processor. Concurrency and Computation 19(10)
(2007) 1371

9. Blagojevic, F., Nikolopoulos, D.S., Stamatakis, A., Antonopoulos, C.D.: RAxML-
Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband Engine. In: Proc.
of International Parallel and Distributed Processing Symposium (IPDPS2007).
(2007)

10. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software (ATLAS).
In: Proc. Supercomputing. Volume 98. (1998)

11. Stamatakis, A.: Phylogenetic Models of Rate Heterogeneity: A High Performance
Computing Perspective. In: Proc. of IPDPS2006. HICOMB Workshop, Proceedings
on CD, Rhodos, Greece (April 2006)

