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The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques
such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and
emerging multi-core processor architectures that face problems of cache congestion, poses new
challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML)
function. Here, we propose two approaches that can significantly speed up likelihood computations
that typically represent over 95 per cent of the computational effort conducted by current ML or
Bayesian inference programs. Initially, we present a method and an appropriate data structure to
efficiently compute the likelihood score on ‘gappy’ multi-gene alignments. By ‘gappy’ we denote
sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real
alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can
accelerate inferences on large and gappy alignments by approximately one order of magnitude.
Moreover, we present insights and initial performance results on multi-core architectures obtained
during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the
ML function.
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1. INTRODUCTION
The accumulation of molecular sequence data coupled

with recent advances in computer architectures, in

particular the availability of multi-core processors on

every new desktop or laptop, poses new challenges for

the efficient computation and parallelization of the

broadly accepted and widely used phylogenetic maxi-

mum-likelihood (ML) function (Felsenstein 1981).

Putting aside the important problem of multi-gene

alignment assembly (Delsuc et al. 2005), the need for

computationally more efficient likelihood calculations

on huge, ‘gappy’, as well as extremely memory-

intensive multi-gene alignments has become apparent.

Current analyses of such datasets require months of

inference time (McMahon & Sanderson 2006; Dunn

2008) or dedicated supercomputer architectures such

as the IBM Blue Gene/L (Ott et al. 2007).

In this paper, we initially present a straightforward

adaptation of the ML function to gappy multi-gene

alignments, which has the potential to accelerate

inferences on such large datasets by one order of

magnitude. At the same time, though not yet

implemented, this adaptation can reduce the memory

footprint, which is mainly due to the space required
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for the partial likelihood arrays (also called likelihood
vectors) and proportional to the gappyness of the re-
spective alignment. With gappyness we refer to the
percentage of gaps that have been inserted into such
an alignment to represent missing per-gene sequences.
It is important to note that this potential reduction in
memory footprint will further accelerate the proposed
method due to an increase in cache efficiency. For
instance, the memory footprint of a large DNA multi-
gene alignment of mammals (Bininda-Emonds 2007)
containing approximately 2200 sequences with a length
of approximately 50 000 bp and a gappyness exceeding
90 per cent has a memory footprint of approximately
9 GB under the standard GTRCG model. With our
new approach, this can be reduced to approximately
1 GB or even significantly less if the GTRCCAT
approximation of rate heterogeneity is used (Stamatakis
2006a). Thus, a full analysis of such a dataset including a
sufficient number of bootstrap (Felsenstein 1985) and
ML searches will not require supercomputers any more
(Ott et al. 2007). In combination with the general
parallelization scheme for ML on multi-core architec-
tures using the low-level Pthreads programming library,
which we present in the second part of this paper,
problems of comparable size can be solved on medium-
sized systems with 8–16 cores within reasonable times.

It is important to emphasize that the concepts
presented in this paper are not RAXML specific. They
can be applied to every Bayesian or ML-based
This journal is q 2008 The Royal Society
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Figure 1. Example of a gappy multi-gene alignment.
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Figure 2. (a,b) Data structures and likelihood computation
for gappy multi-gene alignments.
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phylogenetic inference algorithm, and partially also
apply to the maximum parsimony criterion.

The remainder of this paper is organized as follows:
in §2 we describe the data structures and method to
efficiently compute the likelihood score on gappy multi-
gene alignments. In §3 we discuss the lessons learned
during the Pthreads-based parallelization of RAXML.
In §4, we provide performance results for the new
multi-gene likelihood function implementationand for the
Pthreads-based parallelization of RAXML. We conclude
our paper with a brief outline of current and future work.
2. MAPPING ML TO MULTI-GENE ALIGNMENTS
We will initially outline the basic idea by the example
of a two-gene alignment with five sequences and a
gappyness of 40 per cent as shown in figure 1. The
black areas represent the sequences for which data are
available, i.e. there are data for three sequences avail-
able from gene 1 (Sequence 1, Sequence 2, Sequence 3)
and for three sequences from gene 2 (Sequence 3,
Sequence 4, Sequence 5). The shaded grey regions
represent the areas of gappyness, i.e. those parts of the
multi-gene alignment that have been filled with gaps to
account for the fact that there is simply no sequence data
available for that particular taxon/gene pair. Since for the
sake of the example, we assume that the two genes, gene 1
and gene 2, have the same length, and two out of five
sequences are missing in each gene, this alignment has a
gappyness of 40 per cent. Note that, the ‘true’ alignment
gaps that lie in the black areas offigure 1 are not counted.

We can now consider an assignment of these gappy
sequences to a fixed tree topology as outlined in
figure 2a. The global tree topology that represents the
relationships of all five sequences for both genes is
represented as a black line. In order to compute the
likelihood for this tree, one might, for instance, place a
virtual root in the branch of the global tree that leads to
Sequence 3. In order to appropriately adapt the
computation of the likelihood function, one can now
use distinct sets of branch lengths for every individual
gene, as commonly done in partitioned models for such
multi-gene analyses (e.g. McGuire et al. 2007). In
order to account for the missing data, one can use a
reduced set of branch lengths that only connects those
sequences of genes 1 and 2 (as outlined by the dotted
lines in figure 2a) for which sequence data are available.
This means that for each gene or partition, we reduce
the global tree topology T to a per-gene topology,
Phil. Trans. R. Soc. B (2008)
T jGene1 (read as T restricted to Gene1) and TjGene2 by
successively removing all the branches that lead to
leaves for which there is no sequence data available
for the respective genes or partitions. In our example,

and as outlined in figure 2b, the likelihood of the
tree can then simply be computed as LZLðT jGene1Þ

CLðT jGene2Þ. Note that this approach can significantly
reduce the computational cost since we only have to

compute the likelihood score for two three-taxon trees,
instead of two five-taxon trees. In addition, this also
reduces memory requirements for the inner likelihood
vectors (also called conditional or partial likelihood
arrays) since instead of—depending on the data

structures used—at least three full-length likelihood
arrays over the entire alignment length, we only require
one such vector, since only one inner node is required
for each gene tree. Essentially, this way of computing

the likelihood on a global tree for gappy multi-gene
alignments accounts for the fact that one does not need
to conduct useless computations for data that are not
present. It is important to note that, provided that per-
partition optimization of individual branch lengths is

carried out and disregarding slight numerical
deviations, the procedure to compute the likelihood
introduced here yields exactly the same likelihood
scores as the standard method. This is due to the fact
that missing data as well as gaps are modelled as

undetermined characters in all current ML implemen-
tations (PHYML: Guindon & Gascuel 2003; IQPNNI:
Minh et al. 2005; GARLI: Zwickl 2006), i.e. the
probabilities for observing nucleotides A, C, G, T at the

tips are all set to 1.0 (analogously for protein data).
While the proposed concept is straightforward, the

actual implementation is more complicated, especially
with respect to an efficient mechanism to compute
the topology reduction TjGi for a specific gene Gi

on the global topology T. In addition, tree searches, e.g.
using the commonly used subtree pruning regrafting
(SPR) technique for ML-based optimization of the
tree, need to be appropriately adapted to determine on
the fly which partial likelihood vectors for which genes

need to be updated, i.e. those which are affected by a
certain SPR move. In general, a specific SPR that is
conducted within a subtree, which might for instance
only contain sequences of one single gene, does not
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require any re-computation of likelihood values or
update of likelihood vectors for the remaining genes.
To this end, we have currently implemented only two
basic operations on a fixed tree topology in a proof-
of-concept implementation in RAXML (Stamatakis
2006b) that demonstrates the significant compu-
tational advantages of the method we propose: a full
tree traversal to compute the likelihood score on a fixed
tree topology with fixed per-gene branch lengths and a
full branch length optimization on a fixed tree topology.
In the following, we will outline the procedures to
compute these two basic functions as well as the data
structures used in more detail.
(a) A data structure for the multi-gene likelihood

function

To describe the implementation of the multi-gene
likelihood function method in RAXML, we will initially
review the memory and data-structure organization for
the single-gene case. The amount of memory space
required by current ML implementations is largely
dominated by the length and number of likelihood
vectors. Thus, the memory requirements are of order
O(n!m), where n is the number of sequences and m
essentially the alignment length or, to be more precise,
the number of distinct column patterns. An unrooted
phylogenetic tree for an alignment of dimensions n!m
has n tips or leaves and nK2 inner nodes, such that
nK2 internal likelihood vectors of length m are
required to compute the likelihood bottom up towards
a given virtual root vr. Note that, the computation of
the vectors at the tips of the tree (leaf vectors) is
significantly less expensive and requires less memory
than the computation of inner vectors (for details see
Bader et al. 2006).

In RAXML (fastDNAml (Olsen et al. 2001) and
GARLI (Zwickl 2006) use similar techniques) only one
inner likelihood vector per internal node is allocated,
as opposed to, e.g. IQPNNI (Minh et al. 2005), PAML
(Yang 2007), or PHYML (Guindon & Gascuel 2003).
This vector is relocated to one of the three outgoing
branches of an internal node pointer-to-Tree-
Node next (see data structure below) of the inner
node, which points towards the current virtual root. If
Phil. Trans. R. Soc. B (2008)
the likelihood vector is already located at the correct
branch, i.e. the value of xZTRUE, it must not be
recomputed. The infrastructure to move likelihood
vectors is implemented via a cyclic list of three data
structures of type TreeNode (one per outgoing branch
pointer-to-TreeNode back, see figure 3), which
represents one internal node of the tree. At all times,
two of the entries for x in the cyclic list representing an
inner node are set to xdFALSE; whereas the
remaining one is set to xdTRUE. The actual likelihood
array data are then accessed via the node number.
Finally, the vector z[NUM_BRANCHES] contains the
branch length (branch lengths for analyses with
per-partition branch length optimization) towards the
node that is addressed via the respective back pointer.
Note that, this type of data structure requires each
branch to be stored twice, i.e. for two TreeNode data
structures q and p for which q.backZp and
p.backZq: q.z[0]Zp.z[0].

From the perspective of the likelihood vectors that
are oriented towards the virtual root, based on their
location in the cyclic list of TreeNode, the tree
is always rooted. In addition, at each movement of
the virtual root, e.g. in order to optimize a branch,
a certain amount of vectors must be recomputed. The
same holds for changes in tree topology. However,
there is a trade-off between additional computations
and reduced memory consumption for inner
likelihood vectors.

In the following, we will describe how the data-
structure TreeNode can be extended to accommodate
the global overall tree topology as well as the reduced
per-partition tree topologies (see data structure below).
We extend the data structure by an array of back
pointers backs that point to the neighbouring nodes
for the reduced trees of each individual partition.
In general, the address of the back pointer of partition
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0, for instance, might be located further away,
i.e. backs[0]!Zback. In addition, the array
xs[NUM_BRANCHES] provides analogous information
as x, but for each gene separately. If a certain inner
node represented by a linked cyclic list of three
TreeNode structures does not form part of a
reduced tree for gene i TjGi , all respective entries are
set to NULL-POINTER and FALSE, respectively:
backs[i]:ZNULL-POINTER;, xs[i]:ZTRUE;.
If they do form part of the reduced tree, all three
entries of backs[i] !ZNULL-POINTER and one of
the xs[i] must be set to TRUE.

(b) Computing a tree traversal

Given a starting tree, we initially place virtual roots for
each gene/partition. If there exists one taxon for which
there are sequence data available in every partition, the
virtual roots are all placed in the branch that leads to
this sequence. Otherwise, we assign virtual roots to the
branches leading to the tip/leave node of the first taxon
in the alignment that has data for a specific partition.
Given the virtual root, we then conduct a full tree
traversal to set up the backs[] data structures by
starting at the branch between inner node reference
and tip node p where we placed the virtual root for the
respective partition. To set up the entire data structure,
we loop over all partitions and call the function
outlined below.

Once the above function has been executed for all
partitions, the data structures are set up as outlined for
the five-taxon case in figure 2a. The dotted lines in
figure 2a indicate the reduced tree data structures given
Phil. Trans. R. Soc. B (2008)
by the backs[] arrays, while the straight line
represents the overall tree topology as provided by the
single back pointers. Note that, in the current proof-
of-concept implementation, we do not yet exploit the
potential memory footprint reduction, which can be
achieved by allocating memory space at inner nodes
only for those partitions for which backs[parti-
tion]!ZNULL-POINTER, i.e. the memory allocation
scheme is essentially the same as outlined in figure 3.
The implementation of an appropriately adapted data
structure for inner likelihood vectors requires a
significant amount of re-engineering.

Given the initial determination of the per-partition
pointer meshwork, we can compute the overall
likelihood score for a given tree and fixed branch
lengths by summing over the per-gene log likelihood
scores. The log likelihood for each individual partition
is computed by conducting a full tree traversal based on
the topology induced by the backs[] arrays, i.e. for
example we use backs[0] to navigate to the internal
nodes of the global tree topology that also form part of
the topology for gene 0.

(c) Optimizing branch lengths

The general branch length optimization procedure
in RAXML conducts several iterations (multiple
optimization traversals) over all branches of the tree
until a convergence criterion is reached. Each branch
is individually optimized via a Newton–Raphson
procedure. The adapted procedure for the multi-gene
data structure works in an analogous way. The tree is
traversed individually for each partition via the
backs[] pointer structure. In addition, since
branch-length optimization requires constant virtual
re-rooting of the tree at each branch and re-computa-
tion of partial likelihood arrays due to constant changes
in branch lengths, the xs[] vectors are updated
accordingly to determine which partial likelihood
arrays need to be re-computed. For each partition,
only the corresponding portion of the likelihood array
for that specific partition will be updated. As outlined
by the results in §4a, the overhead induced by setting
up and maintaining additional data structures as well as
conducting multiple tree traversals, one for each
partition, is insignificant compared with the compu-
tational advantages of the method.
3. MAPPING ML TO MULTI-CORE
ARCHITECTURES
A large part of our recent work has focused on
orchestrating and mapping the parallelism inherent
to the phylogenetic ML function to a broad variety
of emerging parallel architectures ranging from
graphics processing units (GPUs; Charalambous et al.
2005), over the IBM CELL (Blagojevic et al. 2007a–c;
Stamatakis et al. 2007) and typical single-core shared-
memory machines (Stamatakis et al. 2005) up to the
SGI ALTIX as well as IBM Blue Gene/L super-
computers (Ott et al. 2007, 2008).

Here we focus on software engineering aspects and
programming paradigms for exploitation of fine-
grained loop-level parallelism on emerging multi-core
architectures such as the AMD Barcelona system.
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While OpenMP (http://www.openmp.org) provides a

generic approach with low programming overhead to
parallelize the ML function (Stamatakis et al. 2005), we

have recently decided to replace it by the significantly
less generic low-level POSIX Threads Programming

(Pthreads) library (available as of RAXML v. 7.0.0,
current release: 7.0.4). One main reason for this

transition is that the usage of Pthreads allows for a
more fine-grained and more complete control over the

computer architecture, which we deem essential for
multi-core architectures, in particular with respect to

cache congestion (see Parkhurst et al. (2006) for on
overview of challenges) and direct enforcement of

memory locality in non-uniform memory access

(NUMA) architectures. Moreover, the explicit
implementation of memory locality and appropriate

synchronization mechanisms facilitates the integration
of the message passing interface (MPI)-based paralle-

lization of the ML function for distributed and
massively parallel machines (see Ott et al. 2007) into

one single piece of software. Apart from increased
efficiency and control due to usage of Pthreads,

OpenMP exhibits some sources of potential non-
determinism. For example, the parallel computation

of the likelihood score, i.e. the sum over all per-column
likelihood values, requires a global reduction oper-

ation. Given an alignment of length 1000 and four
threads, t0, ., t3 the likelihood will be computed as

follows: each thread ti will initially compute its local
likelihood score l(ti) by summing over 250 per-column

likelihoods. Then, the overall likelihood will be
computed by summing over the partial sums, i.e.

lZ lðt0ÞC/C lðt3Þ. However, OpenMP does not guar-
antee that the l(ti) will always be added in the same

order, i.e. an exactly identical numerical operation with

exactly equal results in the sequential version of the
code can yield slightly distinct results for the final

likelihood score (of the order of 10K5–10K6) among
different invocations in the parallel OpenMP version due

to small rounding errors induced by this non-determin-
ism. Thus, when using OpenMP without enforcing a

deterministic addition order for reduction operations,
two successive tree traversals on exactly the same

topology, set of branch lengths, and with the same virtual
root, can yield slightly different scores. This phenomenon

has in fact been observed with the OpenMP-based
version of RAXML on a four-way AMD Opteron

processor for an analysis of a long multi-gene alignment
of mammals. Another important issue is that Pthreads

allows for use of more sophisticated parallelization
concepts than OpenMP which is based on the fork-join

concept that is centred around the parallelization of for
loops. For instance, the more flexible Pthreads approach

allows synchronization points to be reduced in a similar

way as outlined in Ott et al. (2007) by conducting the
descent into a subtree and the update of several

partial likelihood arrays simultaneously with one single
synchronization at the end of such a partial tree traversal.

The main disadvantages of Pthreads are the signifi-
cantly higher programming overhead (four weeks) and

the missing implementation of efficient basic synchron-
ization mechanisms such as a barrier construct, which

have to be implemented using a busy-wait strategy.
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To assess the effects of memory locality on NUMA
architectures, we developed two versions of the
Pthreads-based parallelization, one that uses a single
global data structure for the likelihood arrays and tip
data vectors, and the other that uses local data
structures allocated by the individual threads on their
local core or CPU.

One important lesson learned in terms of software
engineering is that alignment columns and likelihood
array data structures should not be distributed in single
contiguous chunks to the threads, i.e. given an
alignment with 1000 columns, t0 conducts compu-
tations on columns 0–499, and t1 on columns 500–999.
Instead, a modulo distribution should be used, i.e. t0
computes columns 0, 2, 4, ., and t1 columns 1, 3,
5, ., etc. The rationale for this approach is that such a
modulo-based distribution of columns will guarantee a
better load balance in the case of partitioned analyses
with per-partition branch length optimization, since
every thread will be able to work on an approximately
equally large portion of sites per partition. This is also
important for concatenated analyses of DNA and
amino acid alignments, since the computation of the
likelihood score for a protein site is significantly more
compute intensive than for a DNA site.

Finally, Pthreads-based applications are easier to
compile under Linux/Unix than OpenMP-based pro-
grams, which require a dedicated compiler. Despite
the fact that OpenMP has become a standard feature
of the widely used GCC compiler since v. 4.2, this has
led to a significantly higher use of the parallel RAXML
version since the release of the Pthreads-based version
in January 2008.

Moreover, initial tests with the OpenMP implemen-
tation in GCC show that, in contrast to commercially
available OpenMP compilers, the fork-join thread
synchronization mechanism is highly inefficient and
thus GCC is currently not suited for the parallelization
of the phylogenetic likelihood function. Because of the
aforementioned inefficiency of the barrier mechanism
we even observed parallel slowdowns with GCC in
some cases.
4. EXPERIMENTAL SETUP AND RESULTS
(a) Multi-gene alignment method

We tested our approach on three gappy real-world
multi-gene DNA alignments with 59 sequences
(d59_8, 6951 bp, 8 partitions), 404 sequences
(d404_11, 13 158 bp, 11 partitions) and 2177 sequen-
ces (d2177_68, 51 089 bp, 68 partitions) with increas-
ing degree of sampling-induced gappyness due to
missing sequences in individual genes (partitions) of
28, 73 and 91 per cent, respectively.

We implemented the adapted method to compute
the likelihood on such alignments under the GTRCG
model for DNA data in RAXML. The current proof-
of-concept implementation, including the test
datasets, partition files and trees, is available at http://
icwww.epfl.ch/wstamatak/MULTI-GENE.tar.bz2
(use make -f Makefile.MULTIGENE, raxmlHPC -
m GTRGAMMA -M -q partitionFile -s align-
mentFile -t tree -n runID to execute). The
program reads the input tree specified via -t and

http://www.openmp.org
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Table 1. Execution times on an AMD Opteron for standard and fast likelihood computations on gappy multi-gene alignments.

dataset S-Travers F-Travers S-Opt F-Opt gaps (%)

d59_8 1.87 1.19 13.32 2.85 28
d404_11 37.04 8.08 303.18 9.00 73
d2177_68 756.96 68.69 7483.53 165.87 91
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initially conducts 50 complete tree traversals (to
average over the comparatively small traversal times
on dataset d59_8) and a full branch length optimization
under the standard method. Thereafter, the program
will conduct 50 full tree traversals and a complete
branch length optimization using the improved method
presented here.

Computational experiments were conducted on
an unloaded 2.4 GHz 8-way AMD Opteron processor
of the CyberInfrastructure for Phylogenetic
RESEARCH (CIPRES, www.phylo.org) project clus-
ter located at the San Diego Supercomputer Center.
As already mentioned, the log-likelihood scores after
branch-length optimization returned by the standard
and fast method were almost identical: d59_8
-53509.78614 (slow), -53509.78607 (fast); d404_11
-158659.88 (slow), -158659.85 (fast); d2177_
68 -2379892.76 (slow) -2379894.17 (fast). The
insignificant deviations in log-likelihood scores are
due to the significantly lower amount of floating point
operations (and thereby reduced numerical error
propagation) conducted to compute the per-partition
likelihood on the respective reduced gene trees that are
partially up to 10 times smaller, in terms of number of
nodes and branch lengths, than the global tree. Those
small deviations are in the same order of magnitude as
observed for branch length and model parameter
optimizations on fixed tree topologies among different
programs. Those deviations are, for example, due to
differences in the way the tree is traversed to optimize
branch lengths, the method deployed to optimize
individual branch lengths as well as the convergence
criterion or threshold. Finally, log likelihood scores also
vary among binaries generated with different compilers
from the same source code when typical high compiler-
based optimization levels are used.

Table 1 provides the sequential execution times in
seconds for the standard and fast tree traversals
(columns S-Travers and F-Travers) as well as the
standard and fast branch-length optimization proce-
dures (columns S-Opt and F-Opt). Column gaps
provides the percentage of sampling-induced gappy-
ness, i.e. ‘real’ alignment gaps are not counted. As can
be derived from table 1, the speedup for tree traversals
amounts to 1.57 (d59_8), 4.58 (d404_68), 10.98
(d2177_68) and to 4.67 (d59_8), 33.69 (d404_68),
45.11 (d2177_68) for branch-length optimization.

(b) Multi-core platforms

In order to test scalability of the Pthreads-based
parallelization of RAXML, we extracted a DNA dataset
containing 50 taxa and 50 000 bp (loop length: 23 385
unique patterns) from the 2177 taxon 68 gene mamma-
lian dataset mentioned in §4a. To measure the speedup
on various multi-core architectures, we started RAXML
tree searches under the GTRCG model on a fixed
Phil. Trans. R. Soc. B (2008)
maximum parsimony starting tree. As test platforms we
used a two-way quad-core AMDBarcelona system (eight
cores), a two-way quad-core Intel Clovertown system
(eight cores), and an eight-way dual core Sun x4600
system (16 cores) that is based on AMD processors. We
measured execution times for sequential execution, 2, 4,
8 and 16 (applies only to x4600) cores. In addition, we
only report the best speedup values for every number of
cores used with respect to the thread to CPU assignment/
mapping. Note that due to architectural issues, an
execution on two cores that are located on a single socket
can be much slower than an execution with two cores,
located on two distinct sockets (see Ott et al. (2008) for a
more detailed study of thread-to-core mapping effects on
performance). For instance, we observed execution time
differences of approximately 40 per cent on the Intel
Clovertown system for different assignments of two
threads to the eight cores of the system and over 50 per
cent for distinct mappings of four threads.

Figure 4 provides the speedup values on the three
architectures for the respective optimal thread-to-core
mapping on the three systems analysed. The graph
clearly illustrates the performance differences induced
by the distinct memory access architectures in the
AMD (Barcelona, x4600) and Intel (Clovertown)
systems. While both the Barcelona as well as the
x4600 scale well up to the full number of cores due to
the AMD HyperTransport protocol, the Intel system
clearly suffers from the shared bus, which represents
the major bottleneck for memory-intensive appli-
cations such as ML-based phylogenetic inference.
Thus, the performance improvement by doubling the
number of cores only amounts to 20 per cent. However,
Intel is expected to release a NUMA-based memory
access architecture in autumn 2008 (with the introduc-
tion of the QuickPath interconnect), which will help to
solve this problem. Note that the above experiments
have all been conducted with the Pthreads version that
allocates one single global data structure for likelihood
arrays and tip vectors. Our initial experiments with the
Pthreads version that uses local memory assignment
did not show any major performance improve-
ment or degradation (execution times typically vary
around G1%) most probably due to a sufficiently
accurate system-level mechanism that moves cache
lines to the cores that conduct the first write operation
on them.

Finally, in table 2 we provide execution times in
seconds for Pthreads-based, OpenMP-based and
sequential RAXML tree searches on DNA data under
GTRCG on fixed starting trees. Experiments were
conducted on a four-way SMP (four single cores)
AMD Opteron processor. We used three real-world
single-gene datasets of 150, 500 and 714 sequences,
and one multi-gene dataset of 125 sequences with
approximately 30 000 bp and approximately 20 000

http://www.phylo.org


Table 2. Execution times in seconds on a four-way
AMD Opteron for the Pthreads, OpenMP and sequential
RAXML versions.

dataset Pthreads OpenMP sequential
loop
length

d125 3682.30 4722.05 16 604.25 19 436
d150 214.25 216.22 782.47 1130
d500 1282.22 1393.85 4749.67 1193
d714 1675.64 1694.64 6207.23 1231
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Figure 4. Speedup of Pthreads-based parallel RAXML
version on different multi-core architectures. Solid line,
Barcelona; long-dashed line, Clovertown; short-dashed line,
x4600; linear speedup, dotted line.
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distinct column patterns (the actual length of the
compute-intensive for-loops). The table underlines
the performance improvements achieved by using
Pthreads instead of OpenMP, which range between 2
and 23 per cent. Note the significant super-linear
speedup of 4.5 (owing to increased cache efficiency) for
the Pthreads-based version on dataset 125. The
remaining speedup values are sub-linear, because the
computation to communication ratio is less favourable
in the single-gene case, i.e. loop lengths are significantly
shorter. In particular on long multi-gene datasets,
super-linear speedups due to increased cache efficiency
can be frequently observed on a broad variety of
distributed as well as shared memory systems. A recent
paper (Stamatakis & Ott 2008) comparing MPI,
Pthreads and OpenMP to exploit loop-level parallelism
in the phylogenetic ML function provides a more
detailed performance study.
5. CONCLUSIONS AND FUTURE WORK
We have presented an efficient data structure and a
proof-of-concept implementation that has the potential
to accelerate the computation of the ML function on
large and gappy multi-gene alignments by approxi-
mately one order of magnitude. In addition, we have
addressed technical issues and lessons learned regard-
ing the exploitation of loop-level parallelism in the
phylogenetic ML function on multi-core architectures.
We have also conducted an initial parallel performance
study on current multi-core architectures.

Future work will cover the development of appro-
priate rules for conducting SPR-based tree searches
Phil. Trans. R. Soc. B (2008)
on gappy multi-gene alignments, based on the data
structures introduced here.

We are grateful to Nicolas Salamin, Olaf Bininda-Emonds,
Markus Göker and Nikos Poulakakis for providing us their
alignments for performance tests. The Exelixis Lab (A.S.) is
funded under the auspices of the Emmy–Noether programme
by the German Science Foundation (DFG).
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