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ABSTRACT

The computation of large phylogenetic trees with maximum
likelihood is computationally intensive. In previous work we
have introduced and implemented algorithmic optimizations
in PAxML. The program shows run time improvements >
25% over parallel fast DNAml yielding exactly the same
results. This paper is focusing on computations of large
phylogenetic trees (> 100 organisms) with maximum likeli-
hood. We propose a novel, partially randomized algorithm
and new parsimony-based rearrangement heuristics, which
are implemented in a sequential and parallel program called
RAxML.

We provide experimental results for real biological data
containing 101 up to 1000 sequences and simulated data con-
taining 150 to 500 sequences, which show run time improve-
ments of factor 8 up to 31 over PAXML yielding equally
good trees in terms of likelihood values and RF distance
rates at the same time. Finally, we compare the perfor-
mance of the sequential version of RAXML with a greater
variety of available ML codes such as fast DNAml, AxML
and MrBayes. RAxML is a freely available open source
program.
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1. INTRODUCTION

In recent years there has been an astonishing accumula-
tion of genetic information for many different organisms.
This information can be used to infer evolutionary rela-
tionships (called a phylogenetic tree or phylogeny) among
a collection of species. There are a variety of techniques
that are used to compute these relationships, including the
use of maximum likelihood which is considered to be one
of the most sound methods. The number of possible tree
topologies grows exponentially with the number of taxa and
the computational cost of the likelihood function itself is
high. Thus, the introduction of heuristics for reducing the
search space in terms of potential tree topologies evaluated
becomes inevitable for the computation of trees containing
more than 15 to 20 organisms. Heuristics for maximum
likelihood-based phylogenetic tree calculations still remain
computationally intensive, mainly due to the high cost of
the tree likelihood function, which is invoked repeatedly for
each analyzed tree topology.

Thus, only relatively small trees of high quality (150 [17],
228 taxa with genetic algorithms, see Section 2) can be cal-
culated so far, although large data sets containing potential
phylogenetic information are available (e.g. approximately
30.000 sequences in the ARB [8] ssu rTRNA database).

In previous work [15] we have introduced Subtree Equal-
ity Vectors (SEVs) to significantly accelerate the topology
evaluation function of maximum likelihood-based phylogeny
programs. We implemented SEVs in PAXML (Parallel
A(x)ccelerated Maximum Likelihood), which was derived
from parallel fast DNAml [17]. PAxML shows run time
improvements of approximately 25% to 65% compared to
parallel fastDINAml, yielding best accelerations for large
alignments (> 150 sequences) on PC processor architectures.
The algorithmic optimizations of PAxML focus on obtain-
ing ezactly the same result as parallel fast DN Aml in less
time. The goal of current work on RAxML (Randomized
A(x)ccelerated Maximum Likelihood) is to obtain equally
good likelihood values as PAxML in less time using a novel
algorithm. Furthermore, the new algorithm enables the im-
plementation of a more coarse grained parallelism than com-
parable phylogeny programs in order to facilitate the devel-
opment of its distributed version: RAxML@home.



2. RELATED WORK

As already mentioned heuristics, such as e.g. the stepwise
addition algorithm (introduced in [3], modified in [9]), the
advanced stepwise addition algorithm [21] or quartet puz-
zling [18], are required for the tree building process. Quartet
puzzling yields trees of comparable quality but is slower than
stepwise addition and thus not well-suited for reconstruction
of big trees. One of the main shortfalls of the stepwise addi-
tion algorithm as implemented in fast DN Aml and AxML
is that the final tree strongly depends on the input order of
the sequences. Thus, it is recommended to run the program
several times with different randomized sequence input or-
der permutations (jumbling) at high rearrangement levels to
obtain reliable results. However, this practice becomes pro-
hibitive for large trees (> 200 sequences) even for parallel
implementations of the above programs on supercomputers
since thorough rearrangements and an augmentation in the
number of taxa and jumbles increases run time by orders of
magnitude. Parallel MPI-based implementations also exist
for most sequential programs mentioned above.

As alternative to the above approaches implementations
of genetic algorithms for maximum likelihood-based phylo-
genetic tree inference have been proposed e.g. in [1]. We
have however not been able to obtain the code of those pro-
grams for conducting a comparative analysis with PAxML
or RAXML. The performance of genetic algorithms has
mainly been assessed using PAUP [14] for calculating ref-
erence trees and reference run-times.

Finally, there exist bayesian approaches to phylogenetic
inference which have been implemented e.g. in MrBayes [6].
However, bayesian approaches require good starting and ref-
erence trees to accelerate computations and to determine
when the Markov Chain Monte Carlo (MCMC) process has
converged (see Section 4). These starting trees can quickly
be obtained using RAxML.

For a good comparative analysis of phylogenetic tree build-
ing methods see [20].

3. A RANDOMIZED APPROACH

As already mentioned the impact of sequence input order-
ing on final results is one of the main shortfalls of PAxML.
Thus, it is recommended to run PAxML several times with
different randomized sequence input orderings (jumbling) in
order to obtain reliable results. In order to handle this prob-
lem, we have conducted experiments assessing a variety of
approaches to accelerate the program which are outlined
in [16].

Those experiments lead to the following algorithm con-
sisting of 3 major computational steps which we describe
below including the rationale and implementation of each
step.

Step 1: Calculate an initial set of parsimony trees for
a specified number of randomized sequence input orderings
(in all experiments we used number of species * 0.5). There-
after, calculate the Ln likelihood values for those trees and
store them in an ordered tree list tl. Let n be the number
of trees in ¢l and ¢1,...,t, the topologies stored in ¢l.

Rationale 1: In order to accelerate the inference of ran-
domized input order permutations we used dnapars which
implements a similar stepwise addition algorithm as PAxML.
We exploit the relationship between parsimony and maxi-
mum likelihood methods described e.g. in [2][19] to obtain

at least equally good trees (in terms of likelihood values)
compared to the initial version of RAxML which applied
maximum likelihood-based stepwise addition without rear-
rangements for computing the initial tree set ¢/ and thus
required more time, without yielding better trees.

Implementation 1: For calculating parsimony trees we
integrated dnapars from PHYLIP [12] into RAxML. Fur-
thermore, we used the evaluation function from AxML to
calculate likelihood values for the trees produced by dna-
pars.

Step 2: Calculate a majority-rule consensus tree and like-
lihood values for all subsets {t1,t2}, {t1,t2,t3}, ..., {t1, -, tn}
of tl. Insert the resulting consensus trees into ¢l.

Rationale 2: In many experiments one or several con-
sensus trees showed a better likelihood than the best tree
obtained during Step 1 of RAxML. Furthermore, the con-
sensus trees provide valuable information about frequently
appearing subtrees, which can be used for a further refine-
ment of the rearrangement process of Step 3.

Implementation 2: We integrated consense [7] from
PHYLIP into RAxML.

Step 3: Optimize the best tree of ¢! by applying local
and regional rearrangements in a similar way as PAxML
but using parsimony-based heuristics. However, all rear-
ranged topologies are initially scored by parsimony and only
a fraction of trees (fraction dependent on the rearrangement
setting) with the best parsimony scores is evaluated with
maximum likelihood. While no better tree is found the frac-
tion is increased progressively until all rearranged topologies
have been evaluated.

Rationale 3: Especially with real biological data the best
tree of Step 1 and Step 2 has a significantly worse likeli-
hood than the best-known tree. Thus, rearranging the best
tree becomes inevitable for further improving its likelihood
score. Since the rearrangement process is the most compu-
tationally intensive part of RAXML (e.g. 371.00 secs at
Step 1 & 2 and 3359.34 secs at Step 3 for 101_SC, see
Section 4) we decided to exploit once again the relation-
ship between maximum likelihood and parsimony to accel-
erate the rearrangement phase. The acceleration is achieved
due to the significantly lower cost of the parsimony function
and the very frequent appearance of improved trees among
topologies with good parsimony scores. E.g. an evaluation of
all rearranged topologies for 150_ARB (see Section 4) with
parsimony requires 47.92 secs whereas an evaluation with
maximum likelihood takes 7023.75 secs.

Implementation 3: For reasons of efficiency we imple-
mented the parsimony-score function directly in RAxML.

The parallel version of RAxML communicates via MPI
and consists of a simple master-worker architecture. It is
available for download as open source code at [11].

4. TEST DATA & RESULTS

For our experiments we extracted alignments comprising
150, 200, 250, 500 and 1000 taxa (150_ARB,...,1000_ARB)
from the ARB [8] small subunit ribosomal ribonucleic acid
(ssu rRNA) database containing organisms from the king-
doms Eucarya, Bacteria and Archaea. In addition, we used
the 101 and 150 sequence data sets (101_SC, 150_SC [17])
which can be downloaded at [10]. Finally, we generated



several simulated trees and respective alignments contain-
ing 150, 200, 250 and 500 sequences (150_SIM,...,500_SIM)
using the HKY (Hasegawa et al. 1985) model of sequence
evolution, various combinations of base frequencies, transi-
tion/transversion ratios as well as different models of rate
heterogeneity.

Parallel Tests:

All tests have been conducted on the HELICS [5] 512 pro-
cessor Linux Cluster using 32 up to 200 processors for the
largest alignments.

In Table 1 we summarize the results for our experiments
with real biological data. For each data set we use the best-
known tree in terms of Ln likelihood values as reference tree
and provide the total amount of CPU hours required by
PAxML and RAxML. Furthermore, for each run we in-
dicate the final likelihood value and the Robinson-Foulds
(RF) rates indicating the topological distance to the refer-
ence tree. Note that the values and topologies of the best-
known trees for all data sets, except the 250_ARB align-
ment, have been inferred with program versions of RAxML.
RAXxML is particularly well suited for large data sets such
as the 1000_ARB alignment since it constantly returns trees
with a significantly better final likelihood than PAxML in
less time. The inference of the best-known reference tree
for 1000_ARB with higher rearrangement parameters and
a greater number of random input order permutations re-
quired 4114.69 CPU hours on HELICS, which is still faster
by factor 2.41 than PAxML and at least 4.82 than parallel
fast DN Aml (see [15]).

In Table 2 we outline the results obtained for simulated
data respectively. Note that in those cases were RAxML
did not return the model tree, it was contained in the tree
file list ¢! the program returns.

We consider the results obtained with real biological data
containing errors and gaps more meaningful although the
“real” tree is not known since we observed that both PAxML
and RAxML converged much faster and constantly to the
model tree for simulated data. Thus, we believe that in-
ferring trees for real error-prone data is much harder than
for simulated alignments and maximum likelihood programs
should also be evaluated based upon a standard benchmark
set of real alignments.

Sequential Tests:

All sequential tests were performed on an Intel Xeon 2.2
GHz Processor. We compiled the programs using icc -03
(native Intel compiler).

In Table 3 we list execution times, final likelihood values
and RF distances to the best-known tree of AxML, fastD-
NAml, RAxML and MrBayes for the 101_SC data set
from which we removed the rate category vector to speed
up computations. For these initial tests we used the HKY
(Hasegawa et al. 1985) model of sequence evolution and uni-
form rates among sites. The rearrangement Level of AxML,
fastDNAml, RAxML was set to 5. MrBayes was run
twice with 4 chains using a random starting tree and a
user starting tree. The user starting tree was computed
using RAXML within 365 seconds and has a likelihood of
-74091.15.

In Figure 1 we plot the likelihood values of a SC_101 op-
timization process over time for RAxML and MrBayes
with the same user starting tree. The execution time for

MrBayes with the user starting tree is the time of the first
appearance of the best likelihood value whereas the Mr-
Bayes run with a random starting tree was aborted at the
specified execution time.

In this experiment RAxML clearly outperforms all other
programs in terms of execution time and final likelihood
value except for MrBayes with the user starting tree.

As can be derived from Table 3 and Figures 5 and 7 how-
ever MrBayes requires significantly longer execution times
for de novo tree computations, since it does not provide
functionality for computing good starting trees and uses a
random tree as initial tree.

Table 3: Execution times (secs), Ln likelihoods, RF
rates for fast DNAml, AxML, RAxML, MrBayes

Program Seconds Ln RF
likelihood rate
AxML 118534.60 | -73975.90 | 13.07%
fastDNAml 179745.32 | -73975.90 | 13.07%
MrBayes (User) 1253.11 | -73962.63 | 0.0%
MrBayes (Random) || 25908.23 | -76676.27 | 26.13%
RAxML 3742.26 | -73962.63 | 0.0%

In Figure 2 we display the improvement of the Likelihood
value (HKY model of sequence evolution) over time for the
sequential programs fastDNAml, AxML and RAxML
during the optimization of a final tree for ARB_150 with
an initial Ln likelihood of -77258.24. Figure 2 shows the
impact of the parsimony-based rearrangement heuristics on
tree optimization time. Furthermore, in Figure 3 we com-
pare RAXxML with MrBayes for the same optimization
process. MrBayes and RAxML perform equally well in
tree optimization provided the same starting tree.
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Figure 1: Likelihood improvement over time for
SC_101 optimization

Since it appears that running MrBayes with “good” user
trees can speed up convergence and improve final results
we performed some additional tests with the SC_101 and
SC_150 data sets under the general reversible model of se-
quence evolution. The starting tree for SC_150 could be
computed within 1729 seconds with RAxML. We executed
MrBayes with 4 chains and let it run for 3.000.000 gen-
erations. We depict the development of the Ln likelihood
value over the number of generations for SC_101 for the first
100.000 and 3.000.000 generations in Figures 4 and 5 respec-
tively. In Figures 6 and 7 we plot the same information for
data set SC_150 respectively. For 3.000.000 generations Mr-
Bayes required 54233 (SC-101) and 67013 (SC-150) seconds
respectively. Those initial tests show that “good” starting



Table 1: CPU hours, Ln likelihoods, RF rates for PAXML/RAxML (real data)

Data best-known || CPU hrs Ln Lh RF CPU hrs Ln Lh RF acc
tree Ln Lh PAxML rate RAxML rate
150_SC -44145.98 163.66 -44146.90 9.43% 20.43 -44145.98 | 0.00% || 8.01
150_ARB -77189.69 300.40 -77189.78 2.70% 19.70 -77193.73 | 2.02% || 15.25
200_ARB | -104743.33 774.56 -104743.33 | 0.00% 41.71 -104743.33 | 0.00% || 18.57
250_ARB | -131468.97 1947.18 | -131468.97 | 0.00% 80.69 -131479.99 | 2.80% || 24.13
500_ARB | -252553.12 7371.79 | -252588.67 | 8.42% 889.43 | -252553.12 | 0.00% || 8.29
1000_ARB | -401242.80 9898.05 | -402282.08 | 13.37% 1070.59 | -401501.57 | 6.21% | 9.23

Table 2: CPU hours, Ln likelihoods, RF rates for PAXML/RAxML (simulated data)

Data simulated || CPU hrs Ln Lh RF CPU hrs Ln Lh RF acc
tree Ln Lh || PAxML rate RAxML rate
150_SIM -49401.09 133.00 -49398.73 | 1.02% 5.03 -49398.73 | 1.02% || 26.44
200_SIM -68418.88 281.08 -68418.88 | 0.00% 17.08 -68418.88 | 0.00% || 16.46
200_2_SIM | -96158.55 445.21 -96158.55 | 0.00% 25.99 -96158.55 | 0.00% || 17.13
250_SIM -86348.99 531.63 -86348.99 | 0.00% 17.33 -86348.99 | 0.00% || 30.67
500_SIM | -166185.70 1670.06 | -166185.33 | 0.10% 178.25 -166185.33 | 0.10% || 9.37

Time (secs)

Figure 2: Likelihood improvement over time for
ARB_150 optimization
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Figure 3: Likelihood improvement over time for
ARB_150 optimization

trees lead to significantly better likelihood values and reduce
the number of required generations for convergence. Fur-
thermore, starting trees seem to induce a smoother conver-
gence to a stationary state and might be of great help since
deciding when to stop an MCMC simulation is the “$64,000
question for MCMC analysis” as Huelsenbeck puts it in the
MrBayes manual. Thus, we recommend using RAxML
to compute good starting trees for MrBayes and to obtain
an estimate at which likelihood value the Markov chain of
MrBayes should be interrupted which is the major prob-
lem with bayesian approaches. We have already integrated
an additional function into the new version of RAxML (see
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Figure 4: Likelihood improvement over 100.000 gen-
erations for SC_101
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Figure 5: Likelihood improvement over 3.000.000
generations for SC_101

Section 5 below) which writes a complete MrBayes input
block with a good starting tree obtained by RAxML to
a file, in order to avoid tedious file conversions to NEXUS
format.

5. CURRENT & FUTURE WORK

Currently, we are developping the new version of RAxML
which incoorporates a slightly different approach from the
program version presented in this paper. Our program starts
with one single parsimony tree and implements an altered
rearrangement process which enables simultaneous applica-
tion of topological changes within one rearrangement cycle.
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Figure 6: Likelihood improvement over 100.000 gen-
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Figure 7: Likelihood improvement over 3.000.000
generations for SC_150

Furthermore, due to a reduced application of branch length
optimization operations which have a less significant effect
on the overall likelihood than the topology per se the aver-
age evaluation time per topology has been reduced by or-
ders of magnitude. The new program enables computation
of trees containing up to 1000 taxa within less than 24 hours
on a single Intel Xeon 2.4GHz CPU (see Table 4 for some
results). Note, that especially for large trees signifcantly
better results were obtained.

Table 4: Results for the new version of RAxML

Data Seconds (Hours:Minutes) | Ln likelihood
101_SC 616.7 (00:10) -73919.30
150_SC 389.5 (00:07) -44142.61

150_ARB 178.0 (00:03) -77189.70
200_ARB 271.5 (00:05) -104742.56
250_ARB 1067.5 (00:18) -131468.02
500_ARB 26123.7 (07:12) -252499.43
1000_ARB 50729.1 (14:06) -400925.30

Future work will cover the implementation of a parallel
MPI-based program, as well as the integration of the new
algorithm into RAxML@home.
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