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Abstract

Heuristics for calculating phylogenetic trees for a large sets of aligned rRNA
sequences based on the maximum likelihood method are computationally expen-
sive. The core of most parallel algorithms, which accounts for the greatest part
of computation time, is the tree evaluation function,that calculates the likelihood
value for each tree topology. This paper describes and uses Subtree Equality Vec-
tors (SEVs) to reduce the number of required floating point operations during
topology evaluation.

We integrated our optimizations into various sequential programs and into par-
allel fastDNAml, one of the most common and efficient parallel programs for
calculating large phylogenetic trees.

Experimental results for our parallel program, which renders exactly the same
output as parallel fastDNAml show global run time improvements of 26% to
65%. The optimization scales best on clusters of PCs, which also implies a sub-
stantial cost saving factor for the determination of large trees.

c© 0-7695-1524-X/02 $17.00 (c) 2002 IEEE
∗This work is partially sponsored under the project ID ParBaum, within the framework of the

“Competence Network for Technical, Scientific High Performance Computing in Bavaria”: Kompeten-
znetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern (KONWIHR).
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1 Introduction

In recent years there has been an astonishing accumulation of genetic information for
many different organisms. This information can be used to infer evolutionary relation-
ships (called a phylogenetic tree or phylogeny) among a collection of species or even
closely related subspecies. There are a variety of techniques that are used to compute
these relationships, including the use of maximum likelihood. A recent result by Kor-
ber et al. that times the evolution of the HIV-1 virus [9] demonstrates that maximum
likelihood techniques can be effective in solving biological problems.

Maximum likelihood approaches start with a collection of taxa and a (binary) tree
representing possible relationships. Each taxa is represented by a nucleotide or amino
acid sequence denoted by characters. The sequences from the individual taxa are aligned
and then on a column-by-column basis under certain evolutionary assumptions the like-
lihood of each column is computed. The overall likelihood is a function of all the
column likelihoods. Typically, maximum likelihood programs generate a variety of trees
to determine the most likely tree as well as other good trees that are not statistically
significantly different from the most likely tree. Because of computational requirements
of likelihood analysis and the large number of possible trees, relatively few trees are ever
considered by maximum likelihood approaches, especially for large numbers of taxa.

At the ParBaum (Parallel Tree) project at the Technische Universität München
(TUM) work is conducted to facilitate large-scale parallel phylogenetic tree compu-
tations on trees of at least 1000 taxa on the Hitachi SR8000-F1 supercomputer [6]
(rank 14 in the top 500 supercomputers list, June 2002 [16]) installed at the Leibniz-
Rechenzentrum (LRZ) in Munich. Our work relies on alignments from the small sub-
unit ribosomal RiboNucleic Acid (ssrRNA) database of the ARB project [14], developed
jointly by the Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR) and the
Department of Microbiology at the TUM. The ARB database provides high quality
alignments of 16S and 18S rRNA sequences.

Some earlier work in this area of genome analysis focused on finding perfect phy-
logenies. Kannan and Warnow have a polynomial time algorithm for finding perfect
phylogenies [8] under certain reasonable restrictions. However, like many problems as-
sociated with genome analysis, the general version of the perfect phylogeny problem is
NP-complete [1]. Perfect phylogenies require that for each character in each column,
the taxa containing that character in that column form a subtree of the phylogeny.
While maximum likelihood methods do not strive to meet this requirement (and regu-
larly produce highly likely, yet “imperfect” trees), it is widely believed that computing
phylogenies that meet any sort of effective criteria is NP-hard. Thus, the introduction
of heuristics for reducing the search space in terms of potential tree topologies evaluated
becomes inevitable. Heuristics for phylogenetic tree calculations still remain computa-
tionally expensive, mainly due to the high cost of the tree likelihood function, which is
invoked repeatedly for each tree topology analyzed.

Thus, only relatively small trees (≈ 500 taxa [12, 13]), have been calculated so
far, although large data sets containing potential phylogenetic information are available
(over 20000 sequences in the ARB ssrRNA database).

We focus on three key areas to attain our goal of producing large, high quality
evolutionary trees:

1. Integration of empirical biological knowledge into algorithms.
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2. Adaptation of the existing algorithms to hybrid supercomputer architectures.

3. Improvement of the existing algorithms by introduction of new heuristics and al-
gorithmic optimizations.

This paper presents results concerning algorithmic optimizations for accelerating the
computation of the topology evaluation function used by maximum likelihood-based
programs. These optimizations are applicable to most existing sequential and parallel
programs for phylogenetic tree inference based on the maximum likelihood method,
especially derivatives of fastDNAml [3, 10] and the phylip [4, 15] package, and are
independent from the specific search space strategy.

We implemented the optimizations proposed in this paper in A(x)cce-lerated Maxi-
mum Likelihood (AxML) and Parallel AxML (PAxML) based on the latest sequential
and parallel releases of fastDNAml (v.1.2.2).

Apart from the description of the algorithmic optimization, the performance of the
parallel version for large test sets and the impact of different hardware architectures on
its efficiency is our main focus.

Our experiments with PAxML obtained total run time reductions ranging from 26%
to 65% and demonstrate that our approach scales well to the parallel program. The good
scalability to the parallel program, is due to the fact that most parallel approaches [2, 12]
are based on a master-worker architecture with the workers performing the topology
evaluation tasks. I.e. the tree evaluation function is the core of the worker process.

The big range in run time improvement is mainly due to different hardware archi-
tectures, and our results show that the optimization scales especially well on cheap
processor architectures equipped with less powerful FPUs.

These results are promising first steps toward efficient determination of large, high
quality evolutionary trees using supercomputers and big, less expensive clusters of PCs,
since we have significantly accelerated a program that has already been used for large
scale phylogenetic tree computations on supercomputers [12]. Furthermore, we have
access to one of the most powerful supercomputers worldwide for conducting production
runs of biological importance and will soon obtain access to the HEidelberg LInux
Cluster System (HELICS [5]), installed at the Institut für Wissenschaftliches Rechnen
(IWR) Heidelberg, which is presently the largest Linux cluster worldwide (rank 35 in
the top 500 supercomputers list, June 2002 [16]).

In addition, we provide our programs free of charge to the community via the WWW.
Finally, we have demonstrated the generality of our approach by incorporating our

optimization into TrExML, a program with a more extensive tree space exploration
strategy than fastDNAml. We call the resulting program Accelerated TrExML
(ATrExML). Initial experiments with ATrExML have shown performance improve-
ments over TrExML analogous to those mentioned above [11].

2 Subtree Column Equalities

In general the cost of the likelihood function and the branch length optimization func-
tion, which accounts for the greatest portion of execution time (95% in the sequential
version of fastDNAml), can be reduced in two ways:
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Firstly, by reducing the size of the search space using some additional heuristics, i.e.
reducing the number of topologies evaluated and thus reducing the number of likelihood
function invocations. This approach might, however, over look high quality trees.

Secondly, by reducing the number of sequence positions taken into account during
computation and thus reducing the number of computations at each inner node during
each tree’s evaluation.

We consider the second possibility through a detailed analysis of column equalities.
Two columns in an alignment are equal and belong to the same column class if, on a
sequence by sequence basis, the base is the same. A homogeneous column consists of
the same base, whereas a heterogeneous column consists of different bases.

1 m

ACGTTTTTTTTGGGGGCCCCTTTTTT
ACGTTTTTTTTGGGGGCCCCTTTTTT
ACGTTTTTTTTGGGGGCCCCTTTTTT
ACGTTTTTTTTGGGGGCCCCTTTTTT
ACGTTCTTTCTGGGGGCCCCTTTTTT

1,5,6,12,2
ACGTC
ACGTT
ACGTT
ACGTT
ACGTT

1 5

column weights

s1

s2
s3
s4
s5

s1
s2
s3
s4
s5

compressing equal columns

Figure 1: Global compression of equal columns, all column weights are 1 in the uncom-
pressed matrix

More formally, let s1, ..., sn be the set of aligned input sequences as depicted in the
upper matrix of Figure 1.
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Let m be the number of sequence positions of the alignment. We say, that two
columns of the input data set i and j are equal if ∀sk, k = 1, ..., n : ski = skj , where
skj is the j-th position of sequence k. One can now calculate the number of equivalent
columns for each column class of the input data set.

After calculating column classes, one can compress the input data set by keeping a
single representative column for each column class, removing the equivalent columns of
the specific class and assigning a count of the number of columns the selected column
represents, as depicted in Figure 1.

Since a necessary prerequisite for a phylogenetic tree calculation is a high-quality
multiple alignment of the input sequences one might expect quite a large number of
column equalities on a global level. In fact, this kind of global data compression is
already performed by most programs. Unfortunately, as the number of aligned sequences
grows, the probability of finding two globally equal columns decreases. However, it is
reasonable to expect more equalities on the subtree, or local level.

The fundamental idea of this paper is to extend this compression mechanism to the
subtree level, since a large number of column equalities might be expected on the subtree
level. Depending on the size of the subtree, fewer sequences have to be compared for
column equality and, thus, the probability of finding equal columns is higher.

None the less, we restrain the analysis of subtree column equality to homogeneous
columns for the following reason:

The calculation of heterogeneous equality vectors at an inner node p is complex and
requires the search for ck different column equality classes, where k is the number of tips
(sequences) in the subtree of p and c is the number of distinct values the characters of the
sequence alignment are mapped to. (E.g., fastDNAml uses 15 different values.) This
overhead would not amortize well over the additional column equalities we would obtain,
especially when ck > m′ where m′ is the length of the compressed global sequences.

We now describe an efficient and easy way for recursively calculating subtree column
equalities using Subtree Equality Vectors (SEVs).

Let s be the virtual root placed in an unrooted tree for the calculation of its likelihood
value. Let p be the root of a subtree with children q and r, relative to s. Let ev p (ev q,
ev r) be the equality vector of p (q, r, respectively), with size m′. The value of the
equality vector for node p at position i, where i = 1, ..., m′ can be calculated by the
following function (see example in Figure 2):

ev p(i) :=
{

ev q(i) if ev q(i) = ev r(i)
−1 else

(1)

If p is a leaf, we set ev p(i) := map(sequence p(i)), where, map() is a function
that maps the character representation of the aligned input sequence sequence p, at
leaf p to values 0, 1, ..., c. Thus, the values of an inner SEV ev p, at position i, range
from −1, 0, ..., c, i.e. −1 if column i is heterogeneous and from 0, ..., c in the case of an
homogeneous column.

For SEV values 0, ..., c a pointer array ref p(c) is maintained, which is initialized
with NULL pointers, for storing the references to the first occurrence of the respective
column equality class in the likelihood vector of the current node p.

Thus, if the value of the equality vector ev p(j) > −1 and ref p(ev p(j)) �= NULL
for an index j of the likelihood vector lv p(j) of p, the value for the specific homogeneous
column equality class ev p(j) has already been calculated for an index i < j and a large
block of floating point operations can be replaced by a simple value assignment lv p(j) :=
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lv p(i). If ev p(j) > −1 and ref p(ev p(j)) = NULL, we assign ref p(ev p(j)) to the
address of lv p(j), i.e. ref p(ev p(j)) := adr(lv p(j)).

v0           v1 v0 v1
0   1   0   0   1   1   0   0   0   1   1   1

0  −1  0  −1  1   1

0   1   2   3 0   1   2   3

0   1   2   3

towards root

ev_q ev_r
lv_r

ev_p
lv_p

NULL

NULL

p

q r

ref_r

ref_p

ref_q

lv_q

v0  v1     v2  v3

z(p, q) z(p. r)

Figure 2: Example likelihood-, equality- and reference-vector computation for the sub-
tree at p

The additional memory required for equality vectors is O(n ∗ m′). The additional
time required for calculating the equality vectors is O(m′) at every node.

The initial approach renders global run time improvements of 12% to 15% 1. These
result from an acceleration of the likelihood evaluation function between 19% and 22%,
which in turn is achieved by a reduction in the number of floating point operations
between 23% and 26% in the specific function.

It is important to note that the initial optimization is only applicable to the likelihood
evaluation function, and not to the branch length optimization function. This limitation
is due to the fact that the SEV calculated for the virtual root placed into the topology
under evaluation, at either end of the branch being optimized, is very sparse, i.e. has

1The percentages mentioned in this section were obtained during initial tests and program develop-
ment on a Sun-Blade-1000.
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few entries > −1. Therefore, the additional overhead induced by SEV calculation does
not amortize well with the relatively small reduction in the number of floating point
operations (2% - 7%). Note however, that the SEVs of the real nodes at either end of
the specific branch do not need to be sparse, since this depends on the number of tips
in the respective subtrees.

We now show how to efficiently exploit the information provided by an SEV, in order
to achieve a further significant reduction in the number of floating point operations by
extending this mechanism to the branch length optimization function.

To make better use of the information provided by an SEV at an inner node p with
children r and q, it is sufficient to analyze at a high level how a single entry i of the
likelihood vector at p, lv p(i), is calculated:

lv p(i) := f(g(lv q(i), z(p, q)), g(lv r(i), z(p, r)), (2)

where z(p, q) (z(p, r)) is the length of the branch from p to q (p to r, respectively).
The function g() is a computationally expensive function, that calculates the likelihood
of the left (right) branch of p, depending on the branch length z(p, q) (z(p, r)) and the
value of lv q(i) (lv r(i), respectively). Whereas f() performs some simple arithmetic
operations for combining the results of g(lv q(i), z(p, q)) and g(lv r(i), z(p, r)) into the
value of lv p(i). Note that z(p, q) and z(p, r) do not change with i.

If we have ev q(i) > −1 and ev q(i) = ev q(j), i < j, we have lv q(i) = lv q(j)
and therefore g(lv q(i), z(p, q)) = g(lv q(j), z(p, q)) (the same equality holds for node
r). Thus, for any node q we can avoid the recalculation of g(lv q(i), z(p, q)) for all
j > i, where ev q(j) = ev q(i) > −1. We precalculate those values and store them
in arrays precalc q(c) and precalc r(c) respectively, where c is the number of distinct
character-value mappings found in the sequence alignment.

Our final optimization consists in the elimination of value assignments of type
lv q(i) := lv q(j), for ev q(i) = ev q(j) > −1, i < j where i is the first entry for a specific
homogeneous equality class ev q(i) = 0, ..., c in ev q. We need not assign those values
due to the fact that lv q(j) will never be accessed. Instead, since ev q(j) = ev q(i) > −1
and the value of g q(j) = g q(i) has been precalculated and stored in precalc q(ev p(i)),
we access lv q(i) through its reference in ref q(ev q(i)).

During the main for-loop in the calculation of lv p we have to consider 6 cases,
depending on the values of ev q and ev r. For simplicity we will write p q(i) instead of
precalc q(i) and g q(i) instead of g(lv q(i), z(p, q)).

lv p(i) :=




f(p q(ev q(i)), p r(ev r(i))) if ev q(i) = ev r(i) > −1,
ref p(ev r(i)) = NULL

skip if ev q(i) = ev r(i) > −1,
ref p(ev r(i)) �= NULL

f(p q(ev q(i)), p r(ev r(i))) if ev q(i) �= ev r(i),
ev q(i), ev r(i) > −1

f(p q(ev q(i)), g r(i)) if ev q(i) > −1, ev r(i) = −1
f(g q(i), p r(ev r(i))) if ev r(i) > −1, ev q(i) = −1
f(g q(i), g r(i)) if ev q(i) = −1, ev r(i) = −1

(3)

A simple example for the optimized likelihood vector calculation and the respective
data-types used is given in Figure 2.
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2.1 Parallelization Aspects

Most parallel implementations of maximum likelihood-based phylogeny programs use
a coarse-grained parallelization approach by distributing a set of topologies among the
workers for evaluation. A fine-grained parallelization approach, i.e. the parallelization
of the tree evaluation (likelihood) function itself, suffers from various disadvantages.

A typical approach for a shared memory architecture would consist of splitting up
the likelihood vectors of one tree into equal segments among the processors. A great
part of partial likelihood vector computation can be performed independently during
recursive tree traversal but synchronization is required at those points of the program
where the entire likelihood vector has to be available, for calculating the likelihood value,
e.g. , at the branches where branch length optimization is being performed.

In the special case of our optimization, the workload among likelihood vector seg-
ments may vary significantly, depending on the distribution of equality vector entries
in the respective SEV segments. Such a load imbalance suggests an additional perfor-
mance penalty should be expected. This imbalance could be resolved by dynamically
calculating an appropriate asymmetric likelihood vector split at each node of the tree,
which, however, introduces an additional overhead.

In addition, the completion of the precalculation step for obtaining precalc p(c)
becomes a precondition for the execution of the main for-loop of the critical functions,
when using SEVs.

Therefore, we decided to maintain the coarse-grained parallelization scheme, even on
the hybrid architecture of the Hitachi supercomputer, since it ensures optimal efficiency
and scalability of our algorithmic optimization.

3 Implementation

We integrated subtree equality vectors into three existing phylogeny programs: fastD-
NAml [10], parallel fastDNAml [12] and TrExML [17]. We name the optimized ver-
sions AxML, PAxML and ATrExML respectively. About 300 lines of code (≈ +5%
in the sequential code) have been added to those programs, thus demonstrating the
efficiency, simplicity and applicability of our approach.

A simple analysis of fastDNAml with the gprof tool shows that the tree likelihood
function newview() and the branch length optimization function makenewz() consume
over 95% of overall execution time. The basic ideas of this paper have been implemented
in functions newview(), makenewz(), sigma() and evaluate(), since those functions
access the likelihood-vectors of the nodes and are affected by the changes induced by
skipping assignments of type lv p(i) := lv p(j), i < j, ev p(j) = ev p(i) > −1.

In each of those functions the main for-loop over the number of distinct columns m′
has been modified in order to correspond to formula 3. Furthermore, an additional loop
of constant length ≤ c for initializing precalc q(c) and precalc r(c) has been inserted.

The remaining modifications concern mainly initialization matters, and the definition
of a few additional data-types for storing the precalc() and ref() array information.

For PAxML we designed a special version consisting of a single binary (paxml)
instead of three distinct ones (master, foreman, slave), for reasons of portability,
since the execution of multiple binaries is not supported by all MPI environments.
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3.1 Adaptation to the Hitachi SR8000-F1

Testing PAxML on the Hitachi SR8000-F1 showed that its execution is less efficient
than on more conventional architectures (see section 4) and that the amount of perfor-
mance improvement strongly depends on the specific processor architecture.

The observed behavior is clearly associated with the hardware architecture of the
SR8000-F1 and with the case analysis of formula 3 in particular, which has origi-
nally been directly inserted into the computationally expensive for-loops of functions
newview(), makenewz(), sigma() and evaluate() as nested conditional statement.

A modification of the program, where we split up the main for-loop of the above
functions into distinct (smaller in length) for-loops for each case of formula 3, for avoiding
conditional statements within loops confirms this hypothesis.

The modified version performs slightly better (e.g. 6% faster for the 150 taxa test
set, see section 4) than the initial one, although a significant overhead is introduced by
the loop split due to some additional precalculations and indexing operations.

Furthermore, the SR8000-F1 is the only architecture where the above modification
rendered better results as the original version.

On all other processor architectures we used for testing AxML and PAxML (Intel
Pentium II & III, Sun UltraSPARC-III, SGI/Cray Origin 2000, AMD Athlon MP) the
version with loop splits performs significantly worse.

4 Results

The amount of expected run time improvement of AxML and PAxML in relation to
fastDNAml and parallel fastDNAml respectively depends on two main factors.

Firstly, the amount of performance improvement strongly depends on the number
and length of the input sequences, as well as the quality of the alignment. We note that
whenever more subtree column equalities are expected, performance improves more. We
establish two general rules:

1. Performance improves with the quality of the alignment.

2. Performance improves with the length of the sequences.

Secondly, our latest tests reveal a strong correlation between processor architecture and
program performance. We observe that the run time reduction percentage can vary
between 26% and 65% for the same test set on different architectures.

In this section we focus mainly on the performance of PAxML for larger sequence
alignments, the impact of processor architecture on performance and an ad hoc solution
for predicting the expected performance improvement.

For results concerning AxML, ATrExML, initial small tests with PAxML as well
as the impact of various program options on program performance refer to [11].

4.1 Platforms and Compilers

We used two different platforms for conducting large parallel test runs:
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1. A Myrinet-based 8 node Linux cluster equipped with 16 Intel Pentium III pro-
cessors and 2 Gbyte of main memory. The processors we used were exclusively
reserved for our experiments.

2. The Hitachi SR-8000F1, where we exclusively reserved 2 nodes, i.e. 16 processors
in intra-MPI mode for each experiment.

For performing a part of the sequential test runs mentioned in the following section
we also used a Sun-Blade-1000 under Solaris and an AMD Athlon under Linux. PAxML
and AxML were compiled with gcc -O3 on the cluster, the Sun workstation, and the
Linux PC. For the compilation on the SR-8000F1 we used the native C-compiler with
-O3 -model=F1. On the Hitachi we decided not to use special optimization options in
order to ensure comparability of parallel fastDNAml and PAxML.

4.2 Estimating the Expected Run Time Improvement

Since preparing and executing large tests, as with the alignments mentioned below, re-
quires a great amount of time we propose a simple method for obtaining an estimate of
the expected run time improvement of PAxML for a specific data/hardware combina-
tion. The simple approach is to turn off both global and local rearrangement options
(for details refer to the fastDNAml documentation). By doing so, the computation
of the tree is accelerated by orders of magnitude, though the quality of the final tree
may decrease (the final likelihood values were only ≤ 0.5% worse for the 150, 200 and
250 sequence alignments however, but this is not the sole criterion for evaluating tree
quality).

In addition, as depicted in Table 1, for some tests conducted on the Sun-Blade-1000,
the SEV method does not scale as well without rearrangements, such that the percentage
of run time improvement can be considered as a lower bound for a big parallel run with
local and global rearrangements.

Thus, the execution and comparison of the running times of AxML and fastD-
NAml represents a feasible approach for obtaining an estimate within reasonable time
limits. Another example is given in Table 2 where we executed AxML and fastD-
NAml without rearrangements on a machine of the Linux cluster for predicting the run
time improvement of PAxML vs. parallel fastDNAml.

Finally, this approach enables an initial analysis of hardware architecture impact on
program performance and an evaluation of appropriate adaptations using the sequential
program, which can then easily be integrated into the parallel version.

data set AxML with rearrangements AxML without rearrangements
20 taxa 44.91% 34.13%
30 taxa 44.81% 34.34%
40 taxa 44.91% 34.75%
50 taxa 45.09% 36.04%
161 taxa 46.90% 39.48%

Table 1: Run time improvements for AxMl vs. fastDNAml with and without the rear-
rangement program option on the Sun-Blade-1000
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4.3 Results for Large Data Sets

For performing larger test runs with biologically significant data we extracted 3 align-
ments from the ARB small subunit ribosomal RNA database included in the most recent
database release file (6spring2001.arb [14]) consisting of 150, 200 and 250 16S/18S rRNA
sequences from organisms of the three kingdoms Eucarya, Bacteria and Archaea. The
number of distinct columns (also referred to as distinct data patterns) in those align-
ments ranges from 2137 up to 2330.

The overall good scalability of the optimization to the parallel program is due to
the fact that the tree evaluation function is the core of the worker components, which
perform the actual computation [12]. Therefore, we only refer to the number of worker
processes started in the tables below. The results, especially the comparison with se-
quential performance prediction runs, demonstrate that communication overhead is only
a secondary issue for parallel performance analysis.

The large parallel tests were conducted with local and global rearrangements enabled
and the quickadd option set. Earlier tests have shown [11] that there is no significant
difference in run time improvement for runs with quickadd enabled and disabled.

In general the tests with larger data sets reveal two astonishing results.
Firstly, we attained run time improvements of over 60% on the cluster, which demon-

strate the actual potential of our optimization in terms of floating point operation re-
duction, especially on relatively cheap processors with weak FPUs.

Secondly, the tests conducted on the Hitachi SR-8000F1 confirm the significant im-
pact of hardware architecture on the performance of PAxML. The obtained run time
improvement of over 26% should not be underestimated however.

Num. of Sequences Num. of columns Workers Improvement Estimate
150 2137 8 62.42% 56.96%
200 2253 12 63.29% 57.69%
250 2330 12 64.60% 58.40%

Table 2: Global run time improvement PAxML vs. parallel fastDNAml on the Linux
cluster

In Table 2 we present the run time improvements of PAxML over parallel fastD-
NAml for tests conducted on the Linux cluster, and the estimate obtained by comparing
the performance of the respective sequential programs as previously described.

In Table 3 we present the results obtained on the SR8000-F1, using the specially
adapted program version with split up for-loops, for analogous test runs.

Num. of Sequences Num. of columns Workers Improvement
150 2137 14 26.57%
200 2253 14 28.52%
250 2330 14 28.40%

Table 3: Global run time improvement PAxML vs. parallel fastDNAml on the Hitachi
SR8000-F1
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Since PAxML does not implement heuristics but only a purely algorithmic opti-
mization in all tests and on all platforms PAxML and parallel fastDNAml rendered
exactly the same output, a fact that can be verified by a simple diff on the output files.

Due to lack of time we did not perform parallel computations of larger trees. However
we did conduct sequential test runs in order to obtain a run time improvement estimate
for a 500 taxa alignment consisting of 2751 distinct columns in order to demonstrate
the applicability of our method to large data sets. On a single processor of the Linux
cluster we measured a run time improvement of 55.51% for AxML.

4.4 Impact of Hardware Architecture

Due to the significant impact of hardware architecture we include some additional figures
to underline the importance of this choice, especially within the context of efficiently
performing large phylogenetic tree computations on less complex and expensive infras-
tructures.
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Figure 3: Actual execution times of PAxMl and parallel fastDNAml on the Hitachi and
the Linux cluster

In Figure 3 we depict the actual running times for the parallel test runs we conducted
on the SR8000-F1 and the cluster. Although this comparison might seem unorthodox,
due to differing numbers of workers and performance characteristics of the processors,
it allows an additional interesting observation (the execution time of the 150 taxa test
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on the Linux cluster has been scaled to 12 worker processes). PAxML executes faster
on the Linux cluster than on the SR8000-F1, whereas parallel fastDNAml in turn
executes faster on the Hitachi.

In Figure 4 one can observe a similar phenomenon, for the absolute execution times of
the sequential versions without rearrangements for the 150, 200 and 250 taxa alignments
on the Sun-Blade-1000 and a machine of the Linux cluster. Whereas there is a big
divergence in the execution times of fastDNAml on those architectures, the difference
is marginal for AxML.
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Figure 4: Absolute execution times of PAxMl and fastDNAml on the Sun-Blade-1000
and a machine of the Linux cluster

Since the HELICS cluster at the IWR Heidelberg is equipped with 512 AMD Athlon
MP 1.4GHz processors, we performed some additional sequential estimate runs without
rearrangements on a comparable AMD Athlon MP 1.6GHz processor at the LRR, for
assessing the impact of hardware architecture and the aptness of the cluster for large
tree reconstructions. The obtained run time improvements are summarized in Table 4
and are similar to those observed on the Pentium III processors. Thus we expect an
analogous performance of PAxML on the HELICS cluster. In addition, these tests
demonstrate once more the good scalability of our optimization on standard off-the-
shelf processors.

Finally, we observe that, as initially stated the efficiency of our optimization, i.e. ,
in terms of reduction of floating point operations, improves with increasing number of
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distinct columns in the alignment. E.g. for “short” alignments (303 to 381 distinct
columns) the sequential program rendered execution time improvements ranging be-
tween 27% and 29% on the cluster, whereas the improvement for “long” alignments
(2137 to 2330 distinct columns) is well above 50%. This is due to the fact, that the
length of the precalculation for-loop is constant ≤ c (see section 2), and amortizes better
when the main for-loop is longer.

Num. of Sequences Num. of columns Improvement
150 2137 53.40%
200 2253 53.04%
250 2330 53.82%
500 2751 54.94%

Table 4: Global run time improvement AxML vs. fastDNAml on an AMD Athlon MP
1.6GHz

5 Availability and Current Work

The most recent distribution versions of AxML, ATrExML and PAxML are avail-
able for download at: http://wwwbode.in.tum.de/~stamatak/research.html. A
PAxML version with a single binary file will soon be released.

Currently we are working on the extension of the AxML program family and
investigating the applicability of various programming paradigms for handling the

complexity of the problem beyond the scope of traditional supercomputing. Within this
context we are currently developing Distributed AxML (DAxML) and Grid AxML
(GAxML). DAxML is essentially a CORBA-based derivative of PAxML, whereas
GAxML is being designed as migrating grid application.

6 Conclusion and Future Work

We have presented a general method for significantly reducing the number of float-
ing point operations, and thus, the execution time of the tree evaluation function, for
maximum likelihood-based phylogenetic tree calculations. Furthermore, the theoretical
concept has been efficiently implemented in two sequential and one parallel phylogeny
program. The degree of run time improvement depends both on the size of the sequence
alignment and on the processor architecture. We measured run time improvements
ranging between 26% and 65%.

The highest run time improvements have been measured on a relatively inexpensive
cluster of Linux PCs equipped with standard hardware and software. Thus, our ap-
proach does not only enable a fast but also inexpensive, in terms of infrastructure costs,
approach for the efficient determination of large phylogenetic trees, especially within
the context of partial replacement of traditional supercomputers by large clusters.

Future work will cover the implementation and analysis of a different parallelization
approach.
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As already mentioned in section 4.2, not using the rearrangement option accelerates
program execution by orders of magnitude without significantly decreasing the quality
of the final tree, although this has to be further investigated. Since the algorithm uses
heuristics, one has to be careful about considering a final tree as “the” tree for that
specific alignment. Therefore, one should rather consider methods for extracting useful
information from a set of good trees. Another important factor influencing the final
output is the input order of the sequences. This factor has such a strong influence
that it is recommended to repeatedly execute fastDNAml with various input order
permutations [10].

The above observations suggest a different parallelization approach. Since tree qual-
ity does not seem to decrease significantly when the rearrangement option is not set, one
could attempt to obtain a set of “good” trees by distributing a large number of sequence
permutations instead of topologies among workers, since a complete tree computation is
significantly faster in this case. Furthermore, methods and criteria for the intelligent or-
dering of input sequence need to be established, to improve final tree quality, especially
within the context of computations without rearrangements. Finally, algorithms and
concepts such as CONSENSE [7] are required for extracting and using information
from the such obtained set of “good” trees.

In addition to this approach we will investigate in more detail the impact of proces-
sor architecture on the performance of PAxML and intend to find solutions for more
efficiently exploiting the potential of the SEV method on more elaborate architectures.

Finally, we plan to parallelize ATrExML based on the experiences gained during
development and evaluation of PAxML.
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