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ABSTRACT
Phylogenetic inference is a grand challenge in Bioinformatics
due to immense computational requirements. The increas-
ing popularity of multi-gene alignments in biological stud-
ies, which typically provide a stable topological signal due
to a more favorable ratio of the number of base pairs to the
number of sequences, coupled with rapid accumulation of se-
quence data in general, poses new challenges for high perfor-
mance computing. In this paper, we demonstrate how state-
of-the-art Maximum Likelihood (ML) programs can be effi-
ciently scaled to the IBM BlueGene/L (BG/L) architecture,
by porting RAxML, which is currently among the fastest and
most accurate programs for phylogenetic inference under the
ML criterion. We simultaneously exploit coarse-grained and
fine-grained parallelism that is inherent in every ML-based
biological analysis. Performance is assessed using datasets
consisting of 212 sequences and 566,470 base pairs, and 2,182
sequences and 51,089 base pairs, respectively. To the best
of our knowledge, these are the largest datasets analyzed
under ML to date. The capability to analyze such datasets
will help to address novel biological questions via phyloge-
netic analyses. Our experimental results indicate that the
fine-grained parallelization scales well up to 1,024 proces-
sors. Moreover, a larger number of processors can be ef-
ficiently exploited by a combination of coarse-grained and
fine-grained parallelism. Finally, we demonstrate that our
parallelization scales equally well on an AMD Opteron clus-
ter with a less favorable network latency to processor speed
ratio. We recorded super-linear speedups in several cases
due to increased cache efficiency.
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1. INTRODUCTION
Phylogenetic trees are used to represent the evolutionary

history of a set of n organisms. An alignment of DNA or
protein sequences that represent these n organisms can be
used as input for phylogenetic inference. In a phylogeny
the organisms of the input dataset are located at the tips
(leaves) of the tree and the inner nodes represent extinct
common ancestors. The branches of the tree represent the
time which was required for the mutation of one species into
another, new one. Phylogenetic trees have many important
applications in medical and biological research (see [3] for a
summary).

Due to the rapid growth of sequence data over the last
years there is an increasing demand to compute large trees
which often comprise more than 1,000 organisms and se-
quence data from several genes (so-called multi-gene align-
ments). Since alignments continuously grow in the number
of organisms and in sequence length, there exists an increas-
ing need for efficient parallel phylogeny programs.

It has recently been shown that the Maximum Likelihood
(ML) phylogeny problem is NP-hard [8]. The inherent al-
gorithmic complexity of this problem is a result of the vast
number of alternative tree topologies which grows exponen-
tially with the number of organisms n, e.g. for n = 50 there
exist 2.84 ∗ 1076 alternative trees. In order to find the Max-
imum Likelihood tree, all potential alternative trees would
have to be enumerated and evaluated under ML. Thus, effi-
cient heuristic tree search algorithms are required to reduce
the search space. Significant progress in the field of heuristic
ML search algorithms has been made over the last years with
the release of programs such as IQPNNI [23], PHYML [18],
GARLI [38] and RAxML [29, 32], to name only a few. Note
that none of these heuristics is guaranteed to find the Max-
imum Likelihood tree topology, but will only yield a best-
known ML-based tree. In order to explore the search space
more thoroughly tree searches from different starting points
(starting trees) are performed, so-called multiple ML tree



searches.
In addition to the algorithmic difficulty, ML-based in-

ference of phylogenies is very memory- and floating point-
intensive. In fact, both memory consumption as well as
inference times grow linearly with the number of distinct
alignment columns (see Section 3.1). Due to the continuous
accumulation of sequence data, the application of high per-
formance computing techniques can significantly contribute
to the reconstruction of larger and more accurate trees.

RAxML-VI-HPC [29] (Randomized Axelerated Maximum
Likelihood version VI for High Performance Computing) is
a program for large-scale ML-based [12] inference of evo-
lutionary trees using multiple alignments of DNA or AA
(Amino Acid) sequences. Since August 2006, the program
has been downloaded over 660 times from distinct IP ad-
dresses and is an integral component of some of the promi-
nent web resources including CIPRES (CyberInfrastructure
for Phylogenetic RESearch, www.phylo.org) project and the
greengenes workbench [10] (greengenes.lbl.gov). Moreover,
some of the largest published ML-based phylogenetic anal-
yses to date have been conducted with RAxML [17, 26, 22].
Typical applications in current medical and biological re-
search include the evolution of Papilloma-viruses [15, 16]
which are associated with cervical cancer or the analysis of
microorganisms living in permafrost soils [14]. Finally, the
sequential version of the program has been used to com-
pute trees on the two largest data matrices analyzed un-
der ML to date: a 25,057-taxon alignment of protobacteria
(length: 1,463 nucleotides, [9]) and a 2,182-taxon alignment
of mammals (length: 51,089 nucleotides, [5]). A recent per-
formance study [29] on real world datasets with more than
1,000 sequences reveals that RAxML is able to find better
trees in less time and with lower memory consumption than
other current ML programs (IQPNNI, PHYML, GARLI,
MrBayes). Recently, novel heuristics have been introduced
in RAxML that further accelerate the program by a factor
of approximately 2.5 while yielding equally good trees [30].

Porting RAxML and any other program to the IBM Blue-
Gene/L (BG/L) represents a particular scaling challenge due
to the large number of relatively low performance proces-
sors, limited amount of RAM memory (512 MB per node
on our system, which reduces to half that if both proces-
sors of a node are used for computation; memory shortage
is a prevalent problem for large-scale ML analyses) and lim-
ited functionality of the operating system as well as of the
message passing layer. Despite the fact that RAxML is cur-
rently the most memory-efficient ML implementation [29],
the total memory footprint of typical large-scale phyloge-
netic analyses can easily exceed 1GB. Thus, we devise an ef-
ficient mechanism to distribute data structures across nodes
and orchestrate computations accordingly.

We assess performance of our parallelization under the
GTR+Γ model of evolution [37] using the two largest data-
sets that have been analyzed under ML to date, in terms of
input matrix dimensions and memory footprint:

• A multi-gene alignment of 2,182 mammalian sequences
with 51,089 nucleotide positions.

• An alignment of non-redundant SNPs (Single Nu-
cleotide Polymorphisms) on the human chromosome 1
that consist of 212 sequences and 566,470 base pairs.

A full analysis on these datasets is currently not feasible
on conventional machines. In general, adapting applications

to the BG/L architecture is important since 12 out of the
30 top-ranked supercomputers in the current top 500 list,
including the number one system at Lawrence Livermore
National Laboratories, are based on the BG/L architecture.
Moreover, software which scales well on BG/L, will probably
scale equally well on forthcoming petascale systems such as
the BlueGene/P and BlueGene/Q.

The BG/L supercomputer is a massively parallel archi-
tecture with 360 Teraflops of peak performance in the full
64-rack configuration. Because it has been extensively de-
scribed in other papers (see e.g. [21]), we only highlight the
issues which are crucial for the effective porting of ML code.
A single node of BG/L consists of two PowerPC 700 MHz
processors, each enhanced with two 64-bit floating point
units (so called double-hummer). Note that these FPUs
cannot be addressed separately. Each of the two CPUs on
a node has a non-coherent L1 data cache with 32 KB and
both CPUs share a small L2 cache which serves as a prefetch
buffer, as well as a common 4 MB L3 cache. There are two
working modes: co-processor, where one of the two proces-
sors is used to perform computations while the other one is
responsible for handling communication, e.g. reduction op-
erations. The other mode is virtual node, where both CPUs
are running computations and share cache, memory, and the
network. The BlueGene/L system has a high processors to
memory ratio, with each node on our system having only
512 MB of RAM memory. Nodes are connected using five
different networks. Three of those are of interest to the ap-
plication programmer: a point-to-point network organized
into 3D mesh or torus (bandwidth: 154 MB/s/link, latency
≈ 3.35 µs, plus 90 ns per hop); a fast collective network for
reduction and broadcast operations (bandwidth 337 MB/s,
latency 2.5 µs); a global interrupt network which allows to
perform full-system synchronization within 1.5 µs. To pro-
gram this system one can use the IBM MPI implementation
that provides customized routines for most MPI functions [1,
2].

The remainder of this paper is organized as follows: First,
we review related work on parallelization of ML programs
and adaptations to the BG/L (Section 2). In Section 3 we
describe the BlueGene-specific parallelization of RAxML at
fine-grained (Section 3.1) and coarse grained (Section 3.2)
levels. Our experimental setup and the respective results are
provided in Section 4. We conclude the paper with Section 5.

2. RELATED WORK AND PREVIOUS
PARALLELIZATIONS OF RAXML

RAxML exploits two levels of parallelism: fine-grained
loop-level parallelism and coarse-grained embarrassing par-
allelism. The program has been parallelized with OpenMP
to exploit loop-level parallelism. Like every ML-based pro-
gram, RAxML exhibits a source of loop-level parallelism in
the likelihood functions which typically consume over 95%
of the overall computation time. The OpenMP implementa-
tion scales particularly well on large multi-gene alignments
due to increased cache efficiency [34]. Note that loop-level
parallelism can be exploited at two levels of granularity: at a
relatively coarse-grained OpenMP level and at a fine-grained
CPU level via SIMD instructions. These two layers of loop-
level parallelism have been exploited in a recent RAxML
porting to the IBM CELL processor [6, 7]. However, the
main focus of porting RAxML on Cell was on exploring pro-



gramming and scheduling techniques for this architecture,
using a complex bioinformatics application. In contrast to
the current paper, the work on Cell represents a proof-of-
concept implementation, rather than a parallelization for
large-scale production runs.

The MPI version of RAxML exploits the embarrassing
parallelism that is inherent to every real-world phylogenetic
analysis. In order to conduct such an analysis (see [17] for an
example), about 20–200 distinct tree searches (multiple in-
ferences) to find a best-scoring tree on the original alignment
as well as a large number of (100–1,000) bootstrap analyses
have to be conducted. Bootstrap Analyses are required to
assign confidence values ranging between 0.0 and 1.0 to the
inner nodes of the best-known/best-found ML tree. This
allows to determine how well-supported certain parts of the
tree are and is important for drawing biological conclusions.
Bootstrapping is essentially very similar to multiple infer-
ences. The only difference is that inferences are conducted
on a randomly re-sampled alignment (a certain number of
alignment columns are re-weighted) for every bootstrap run.
This is performed in order to assess the topological stability
of the tree under slight alterations of the input data.

All those individual tree searches, be it bootstrap or mul-
tiple inferences, are completely independent from each other
and can thus be exploited by a simple master-worker scheme.
If the dataset is not extremely large or the available memory
per CPU is not too small, this represents the most efficient
approach to exploit HPC platforms for production runs.

Most other parallel implementations of ML programs [11,
23, 31, 35, 38] have mainly focused on the intermediate level
of parallelism (inference/search algorithm parallelism) which
is situated between the loop-level parallelism and coarse-
grained parallelism currently exploited in RAxML. The work
on the exploitation of inference parallelism mentioned above
mainly deals with highly algorithm-specific and mostly MPI-
based parallelization of various hill-climbing, genetic, as well
as divide-and-conquer search algorithms. Typically, such
parallelizations yield a lower parallel efficiency compared to
the embarrassing and loop-level types due to hard-to-resolve
dependencies in the respective search algorithms. Moreover,
these parallelizations are much more program-specific and
thus not generally applicable. Minh et al. [24] recently im-
plemented a hybrid OpenMP/MPI version of IQPNNI which
exploits loop-level and inference parallelism.

Finally, Feng et al. [13] describe PBPI (Parallel Bayesian
Phylogenetic Inference), a fast parallel implementation of a
Bayesian phylogenetic algorithm on BlueGene/L. However,
we are not aware of any published real biological study based
on PBPI. This is probably due to the fact that PBPI cur-
rently only implements the simple Jukes-Cantor model of se-
quences evolution [20] and does not offer protein substitution
models nor account for rate heterogeneity among sites. Ac-
cording to the PBPI web-page [25] a version with a larger va-
riety of models is in preparation. Nonetheless, the datasets
for which trees have been inferred with PBPI on BG/L can
easily be handled by RAxML or GARLI under a more real-
istic model of nucleotide substitution on a single CPU. For
example, on a single 2.4 GHz AMD Opteron processor the
sequential version of RAxML requires an average of 3,674
seconds for one full ML tree search on the largest dataset
(218 sequences, 10,000 base-pairs) that has currently been
analyzed with PBPI. This means that, datasets of this size
do not represent a computational challenge and do not re-

quire expensive supercomputers. Finally, we are concerned
about the exclusive usage of “perfect” simulated data, that
does not contain gaps and typically requires less powerful
search mechanisms (see [32] for a discussion and related ex-
periments) to evaluate the performance of the topology pro-
posal mechanism in PBPI.

With respect to the application of Bayesian searches to
large — in terms of number of sequences — datasets, a
recent study by D.E. Soltis et al. [27] describes poten-
tial pitfalls concerning apparent stationarity of MC3 chains
(see also [33]), by example of a 567-taxon dataset of An-
giosperms.

3. PARALLELIZATION OF RAXML ON
THE BLUEGENE/L

The current section covers the adaptation of the two levels
of parallelism in RAxML to the BG/L using an MPI/MPI-
based approach. Depending on the alignment dimensions
it provides sufficient flexibility to simultaneously compute
many jobs on a relatively short alignment or to use a large
number of processors for jointly computing the likelihood
function on very long and memory-intensive alignments.

3.1 Fine-Grained Parallelism
As already mentioned the computation of the likelihood

function consumes over 90-95% of total execution time in
all current ML implementations. Due to its intrinsic fine-
grained parallelism coupled with a low number of dependen-
cies, the ML functions represent ideal candidates for paral-
lelization at a low level of granularity.

To compute the likelihood of a fixed unrooted tree topol-
ogy with given branch lengths one needs to compute the
entries for all likelihood vectors, which are located at the in-
ner nodes of the tree, bottom-up towards a virtual root that
can be located at any branch of the tree. The sequences
of the alignment are located at the tips of the tree topology
and are represented by tip vectors. Once this is done, the log
likelihood value can then be computed by summing up over
the likelihood vector values to the left and right of the virtual
root. In order to obtain the Maximum Likelihood value, all
individual branch lengths must be optimized with respect to
the overall likelihood score. For a more detailed description
please refer to [12] or [28]. Note that, most current search
algorithms such as GARLI, RAxML or PHYML, do not re-
optimize all branch lengths after a change in tree topology
but rather carry out local optimizations in the neighbor-
hood of the tree that is most affected by the change. The
main bulk of these computations consist of for-loops over
the length m of the alignment, or more precisely over the
number m′ of distinct patterns in the alignment.

The data-structures required to store the n sequences of
the alignment at the tips (tip vectors) of the tree and the
n− 2 likelihood vectors at the inner nodes account for more
than 90% of the total memory footprint of RAxML. In fact,
the memory consumption of all ML and Bayesian implemen-
tations is largely dominated by these data structures. The
n tip vectors consist of simple char* arrays of length m′ to
which the AA and DNA alphabet are mapped (see [4] for
more implementation details). For DNA data each of the m′

entries at inner likelihood vectors consists of 4 double values
(20 double values for amino acids) that contain the probabil-
ities of observing an A, C, G or T (the 4 DNA-bases adenine,
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Figure 1: Simplified representation of the fine-grained parallelization strategy

guanin, cytosine, and thymine) at the specific internal node
of the tree. If, as in the present case, the discrete Γ model
of rate heterogeneity [37] with 4 discrete rates is used, each
entry of the likelihood vector consists of 16 (80 for AA) dou-
ble values, 4 (20) for each discrete rate. Furthermore, each
likelihood vector entry contains an additional single integer
value that is used to record the number of times the specific
position has been scaled to avoid numerical underflow. Note
that, the individual iterations of the for-loops over tip and
likelihood vectors are independent from each other. This
property is due to one of the fundamental assumptions of
the ML model which states that individual columns evolve
independently from each other [12].

We summarize the three basic operations at an abstract
level and provide their approximate contributions to overall
run-time. The computations consist in combining the values
of two or three likelihood and/or tip vectors via a relatively
large number of floating point operations:

1. Computation of Partial Likelihood Vectors (ap-
proximately 55-60% of run-time): This operation
computes the entries of a likelihood vector located at
an inner node p by combining the values of the like-
lihood or tip vectors and branch lengths of its two
descendants. Thus, this function operates on 3 like-
lihood/tip vectors but does not require any reduction
operations.

2. Log Likelihood Value Computation (approxi-
mately 5% of run-time): this function just com-
bines the values of two likelihood/tip vectors at the
nodes located at either end of the branch where the vir-
tual root has been placed into the log likelihood value
for the tree. It requires a global reduction operation.

3. Branch Length Optimization (approximately
30-35% of run-time): this operation optimizes a
specific branch between two nodes of the tree (two like-
lihood/tip vectors) by applying e.g. a Newton-Raphson
procedure. In order to perform this operation syn-
chronization between the individual iterations of the
Newton-Raphson method is required in addition to re-
duction operations to compute the derivatives of the
likelihood function.

In the following we describe how this type of parallelism
which is typically exploited with OpenMP on SMP sys-
tems [24, 34] can be mapped to the BG/L using appro-
priate MPI collective communication operations. In order
to achieve this we have implemented a master-worker ap-
proach to exploit the fine-grained parallelism of the ML func-
tion. The master process maintains the only copy of the tree
topology and orchestrates the actual tree search as outlined
in [32] by issuing the three distinct types of likelihood vector
combination instructions to the worker processes.

At initialization each of the p worker processes allocates a
fraction m′/p space for the n tip and n − 2 inner likelihood
vectors, i.e. the memory space for tip/likelihood vectors is
equally distributed among the processes. These vectors are
consistently enumerated in all workers and the master, de-
spite the fact that no memory is actually allocated in the
master. The worker processes are relatively lightweight be-
cause they only implement the actual mathematical opera-
tions on the tip and likelihood vectors. Thus, the master
process simply has to broadcast commands such as optimize
the branch length between vectors number x and y given the
current branch length z. Global reduction operations, which
in both cases (log likelihood computation & branch length



M W

WW

WW

WM M W

WW

W

M W

W

Fine−Grained Parallelism

Coarse−Grained Parallelism

Super−Master

Master−Workers Group

Figure 2: Hybrid MPI/MPI parallelization of RAxML on BlueGene/L

optimization) are simply an addition over m′ double val-
ues, are performed via the respective MPI collective reduc-
tion operation. It is important to note that this represents
the most reasonable approach to exploit the BG/L archi-
tecture. The IBM MPI implementation uses the specialized
very low latency network to implement both collective op-
erations (broadcast and reduction). In contrast to the other
two operations (branch length optimization and likelihood
computation), the computation of inner likelihood vectors
frequently consists of a series of recursive calls, depending
on how many vectors must be updated due to changes in the
tree topology or model parameters. In order to reduce the
communication frequency such series of recursive calls are
transformed into an iterative sequence of operations by the
master. The master then sends the whole iterative sequence
of inner likelihood vector updates via a single broadcast to
each worker. The above mechanism is particularly efficient
during the ML model parameter optimization phase: after
the modification of a model parameter the n − 2 likelihood
vectors of the entire tree need to be updated to compute
the log likelihood under the changed model. Thus, we can
reduce the number of messages required from n − 2 to 1.
Note that the model optimization phase typically accounts
for 10-20% of overall inference time and that n can easily
become larger than 1,000.

In order to make efficient use of the 64-bit floating point
unit we re–organized the for-loops in the ML functions to
facilitate compiler-based (IBM XL C) loop unrolling and
exploitation of memory access patterns. Moreover, we used
the highly-tuned implementations of the compute-intensive
mathematical functions log and exp that are provided by
the IBM MASS library (Mathematical Acceleration SubSys-
tem, www.ibm.com/software/awdtools/mass). We were not
able to use SIMD vector instructions on the double-hummer
due to highly specific requirements for relative data align-
ment which would induce significant changes to the RAxML
source code. Nonetheless, we have identified the problem
and are confident that we can overcome this limitation in the
near future. At this point we should mention that because
we are not using double-hummer and the network communi-

cation is relatively infrequent we are able to exploit virtual
node mode very efficiently (see Section 4.4). A similar be-
havior has been observed in several other applications [21],
however it is not common.

Note that, we have only ported the likelihood functions
for the commonly used GTR+Γ model to demonstrate the
general applicability of our parallelization strategy since the
CAT approximation of rate heterogeneity is currently a spe-
cialty of RAxML.

In Figure 1 we provide a simplified view of the parallel
implementation for an alignment with 4 sequences and 100
distinct patterns (m′ = 100). The two likelihood (V 1, V 2,
large rectangles) and four tip vectors (S1 − S4, thick black
lines) are split up equally among both worker processes. The
master only maintains the tree data structure and executes
the RAxML search algorithm. In this example the mas-
ter broadcasts a request for branch length optimization of
branch z5 which is performed by executing computations on
the likelihood vectors V 1 and V 2 in the workers. Note that,
the master only needs to send the vector reference numbers
Ref(V 1), Ref(V 2) to the workers.

3.2 Coarse-Grained Parallelism
As outlined in Section 2, RAxML also exploits the em-

barrassing parallelism inherent to every ML-based produc-
tion run on real biological data via a simple master-worker
scheme. A centralized master distributes tree inference jobs
on distinct starting trees or distinct bootstrap replicates to
the worker processes.

For the BG/L porting we modified the above scheme to
exploit the hybrid parallelism of RAxML using MPI for both
layers: coarse-grained work distribution and fine-grained
parallelism as described in the previous Section. In a small
example scenario a set of 4 individual master processes might
be working on individual ML searches on 20 distinct starting
trees or bootstrap replicates. Those 4 masters can e.g. use
3,7, or 15 individual worker processes — depending on the
dataset size — to perform likelihood computations. In or-
der to distribute coarse-grained work at tree search level
one of those 4 masters has to assume the role of a super-



master. Apart from scheduling fine-grained work to its pri-
vate set of workers the super-master also needs to distribute
coarse-grained work to the remaining masters. For this pur-
pose we slightly modified the straight-forward master-worker
scheme of the standard RAxML distribution which uses a
work queue. The rationale for these modifications is to
avoid frequent perturbations of fine-grained work schedul-
ing at the super-master by coarse-grained work distribution
to other master processes (the execution time for a tree or
bootstrap search typically takes at least several minutes —
if not hours — i.e. master/super-master communication is
relatively scarce).

Initially, we divide the MPI_COMM_WORLD communicator
into the respective subgroups (4 subgroups in our example)
by using the MPI_Comm_split command. On BG/L we ap-
ply the following scheme: Each resulting sub-communicator
is built as 3D mesh with dimensions x, y, z, such that
x ≈ y ≈ z. The master node has coordinates (0,0,0). This
mechanism to create partitions and place the master node
is well–adapted to the collective operations implementation
in IBM MPI. When MPI_COMM_WORLD is used MPI_Bcast and
MPI_Reduce utilize the specialized low-latency network for
collective communication. However, when custom commu-
nicators are used collective communication is handled over
the point-to-point network which has a higher latency. The
exact algorithm deployed in this case depends on the mes-
sage size and the shape of the communicator, e.g. if it is
rectangular. In our case the shape of the communicator
guarantees that optimal algorithms, which e.g. benefit from
deposit bits, are employed on the point-to-point network.
Consequently, the latency is only slightly higher compared
to the latency of the MPI_COMM_WORLD communicator (3.35
µs, plus 90 ns per hop versus 2.5 µs).

Once the communicators have been set up the master of
subgroup 0 becomes the super-master. At program initial-
ization, each master process immediately starts computa-
tions on bootstrap replicates or ML searches without com-
municating with the super-master. Every time a master has
completed the computations on a tree it sends a message to
the super-master and locally stores the tree in a list. This
message contains the number of trees that have been com-
puted so far by this specific master. Every time the super-
master receives such a message it checks if the total number
of trees specified by the user (20 in our example) has al-
ready been computed. If that is the case, the super-master
sends a termination message to all other master processes.
When a master receives the termination message it sends all
locally stored trees to the super-master, which prints them
to file. Thereafter, each worker terminates along with the
respective worker processes. When all tree topologies have
been written to file, the super-master exits as well. The
above modification avoids the perturbation of fine-grained
work scheduling at the super-master, since the actual tree
topologies are only sent at the end of the computation. In
theory it could occur that more trees than necessary are
computed if two masters finish tree computations at the
same time. However, we have not observed such a case in
our experiments because the probability of such an event
is low. In addition, the computation of potentially more
trees than requested by the user within the same amount of
time does not represent a disadvantage. The check for pend-
ing master/super-master communication messages has been
integrated into the master function that schedules compu-

# SEQS # BP # PATT
50 5,000 3,066
50 50,000 23,385
50 500,000 216,025
250 250,000 202,482
250 500,000 403,581

Table 1: Number of distinct alignment patterns in
the dataset subsamples

tations of partial likelihood vectors to workers. We chose to
integrate the check into this method because it is by far the
most frequently invoked ML function and thereby provides
a fine enough granularity to rapidly detect master/super-
master communication requests.

Figure 2 outlines a typical setup with 4 masters that
use 3 worker processes each for ML computations. Thick
black arrows indicate frequent fine-grained ML communica-
tions within each master-worker group. Dotted thin lines
show the infrequent and less time-critical communications
between the super-master and the remaining masters.

4. EXPERIMENTAL SETUP AND RE-
SULTS

In this section, we describe the experimental setup and
platforms used (Section 4.1). We also provide performance
data for the fine-grained parallelization in Section 4.2 as
well as for the hybrid parallelization (Section 4.3). Finally,
in Section 4.4 we give execution times for analyses on the
complete biological datasets.

4.1 Experimental Setup
To test the scalability of our parallelization we used two

large and challenging real-world datasets:

1. A multi-gene alignment of 2,182 mammalian sequences
with 51,089 base-pairs that comprises data from 67
different genes. Despite the fact that a few ML trees
could already be computed with RAxML on a 4-way
AMD Opteron, the execution times do not allow for a
full bootstrap analysis. Large-scale analyses of mam-
malian phylogenies have recently received considerable
attention (including the popular press), since they can
be used for applications such as dating the rise of
present-day mammals [5].

2. An alignment of 212 sequences and 566,470 base-pairs.
This dataset contains genotype data for non-redundant
SNPs on the human chromosome 1 (a so called haplo-
type map) in sorted order for 210 unrelated individu-
als in the HapMap project [9]. A chimpanzee as well
as a gorilla sequence have been added to this align-
ment as outgroups. Each SNP corresponds to two
positions within the alignment representing the two
alleles and allowing for heterozygosity in the human
population. A phylogenetic analysis of this dataset
represents a novel approach where individual humans
are represented as leaves on a phylogenetic tree that is
reflective of their ancestral history. The combination
of genotypic and phenotypic data on phylogenetic trees
makes new types of correlative inference possible that
differ from standard linear approaches [19]. Phyloge-
netic trees inferred on BG/L could be combined and



# SEQS # BP # Workers
1 3 7 15 31 63 127 255 511 1,023

50 5,000 1,400s 498s 226s 120s 67s 44s 33s 31s 29s 29s
50 50,000 14,326s 4,653s 2,008s 948s 472s 252s 142s 87s 60s 48s
50 500,000 32,659s 14,187s 6,531s 3,055s 1,533s 798s 436s 256s 169s
250 250,000 22,981s 11,495s 6,289s 3,762s 2,381s 1,689s
250 500,000 145,739s 70,617s 35,056s 18,025s 9,375s 5,105s

Table 2: Absolute run-times on BlueGene/L

# SEQS # BP # Workers
1 3 7 15 31 63 127

50 5,000 664s 182s 92s 62s 59s 72s 120s
50 50,000 7,706s 2,332s 937s 390s 218s 157s 181s
50 500,000 51,569s 17,084s 7,766s 3,462s 1,717s 884s 440s
250 500,000 192,591s 90,901s 45,306s 23,111s

Table 3: Absolute run-times on AMD Opteron

correlated with publicly available biological phenotype
data from the same human samples [36].

In order to test scalability on various dataset-sizes
we extracted appropriate sub-alignments from the above
datasets. From the mammalian alignment we extracted sub-
alignments containing 50 sequences with 5,000 and 50,000
base-pairs each. The human chromosome alignment was
sub-sampled to 50 sequences with 500,000 base pairs. Ad-
ditionally we extracted alignments with 250 sequences and
lengths of 250,000 and 500,000 base-pairs from the same
HapMap database we derived the 210 sequences dataset
from. Table 1 provides the number m′ of distinct patterns
(# PATT) for each subsample of the mammalian and hap-
lotype alignments. Note that m′ reflects the length of the
respective for-loops in each test dataset.

For the assessment of scalability on a more common
cluster architecture we used a system of 32 4-way AMD
2.4 GHz Opteron 850 processors with 8GB of main mem-
ory per node which are interconnected by Mellanox Tech-
nologies MT23108 Infiniband host channel adapters and an
MTEK43132 Infiniband switch (latency for small messages
≤ 5µs). The BG/L system we used is a one–rack machine
with 1,024 nodes (2,048 CPUs) and a peak performance of
5.734 Teraflops.

As RAxML uses randomized algorithms for the creation
of starting trees and for bootstrapping, the run-times as well
as the results of the tree search differ for every individual
program run. In order to obtain reproducible results and
run-times, we used a fixed seed for the random number gen-
erator.

4.2 Scalability of Fine-grained Parallelism
We provide speedup values for the fine-grained paralleliza-

tion based on the number of workers for various dataset sizes
in Figures 3 through 8. Absolute run-times for BlueGene/L
and AMD Opteron are given Tables 2 and 3, respectively.
Note that the total run-time for different datasets does not
scale linearly with the number of sequences in the dataset
or the sequences’ length: the search algorithm will take dif-
ferent paths through the search space for different input
datasets. Experimental results regarding the scalability of
RAxML with respect to the number of taxa are provided in
[29].

Plots 3 and 4 depict speedups for mammalian subsets with
50 sequences consisting of 3,066 and 23,385 alignment pat-

terns, respectively. The poor performance for more than 15
workers shown in Figure 3 can be explained by the rather
small problem size. Note that performance on the Opteron
cluster is slightly super-linear up to 31 worker processes in
Figure 4 because of an increased cache efficiency. Another
interesting observation is that BG/L scales significantly bet-
ter for this setting with more than 63 workers. However,
this was expected as the BlueGene system provides a bet-
ter communication to computation ratio due to it’s very low
latency network and only moderate computing power per
CPU. Thus it scales better even for small problem sizes.

In Diagram 5 we depict speedup values for a 50-taxa hap-
lotype subset with 216,025 distinct patterns. Since the for-
loops for this alignment are longer by one order of mag-
nitude, the communication to computation ratio improves
roughly by a factor of 10. As a result, the scalability both
on the Opteron cluster as well as on BG/L is nearly linear.

Finally, in Figures 6, 7 and 8 we show how the program
scales on 250 haplotype sequences with 202,482 and 403,581
distinct patterns, respectively, up to 1,024 CPUs. Note that,
plots 7 and 8 provide relative scalability compared to a run
with 15 workers. This is due to the fact that we were not able
to execute the program with a smaller number of workers be-
cause of memory shortage. However, as shown in Figures 4
and 5, the program scales linearly for up to 15 workers for
these numbers of patterns.

In general, one can conclude that the scalability of the
fine-grained parallelism directly depends on the length of
the alignment or rather the number of distinct patterns,
as the computation/communication ratio increases with the
length of the likelihood vectors. The number of sequences
and thus the number of nodes in the tree influence perfor-
mance only slightly. On the one hand, the computation of
partial likelihood vectors benefits from the increased num-
ber of internal nodes, as more vector updates can be aggre-
gated into one single call and thus again improve compu-
tation/communication ratio. On the other hand, the total
number of branches whose lengths need to be optimized also
increases with the number of sequences. However, this func-
tion is very costly with respect to communication because of
the frequent reduce operations which need to be performed
on every iteration of the Newthon-Raphson procedure. Fur-
thermore, the cost of these reduce operations also increases
with the number of processes involved. In total the positive
and negative effects of increasing the number of sequences
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Figure 3: Speedup on 50 mammalian sequences with
3,066 distinct patterns
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Figure 4: Speedup on 50 mammalian sequences with
23,385 distinct patterns
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Figure 5: Speedup on 50 haplotype sequences with
216,025 distinct patterns
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Figure 7: Speedup on 250 haplotype sequences with
403,581 distinct patterns on 15–127 workers
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Figure 9: Execution times of multiple groups setup
on mammalian subsample with 50 sequences and
23,385 distinct patterns
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Figure 10: Scalability of coarse-grained paralleliza-
tion: Execution times for 32 distinct tree searches on
mammalian subsample with 50 sequences and 23,385
distinct patterns

# total nodes # nodes/group
8 16 32 64 128

32 1,984s 963s
128 1,986s 964s 502s 291s
512 1,977s 963s 502s 291s 190s

Table 4: Absolute execution times for multiple
groups on BlueGene/L

# total nodes # nodes/group
16 32

32 15,387s 15,008s
128 3,850s 4,006s
512 963s 1,005s

Table 5: Absolute execution times for 32 distinct
tree searches on BlueGene/L

almost keep balance with a slight bias to improve perfor-
mance.

4.3 Scalability of Hybrid Parallelism
We assessed the performance of the coarse–grained par-

allelization using the mammalian dataset with 50 sequences
and 23,385 distinct patterns. The experiments were con-
ducted on BlueGene/L partitions of 32, 128, and 512 nodes.
For the sake of completeness, Tables 4 and 5 provide the
absolute run-times of these experiments.

Figure 9 shows execution times for individual tree infer-
ences using groups of 8, 16, 32, 64, and 128 nodes. The
straight black line shows the time for a single master–
worker group (see Table 2). The remaining three graphs
show execution times for multiple master–worker groups on
the aforementioned BG/L partitions which have been split
into 4, 8, 16, 32, and 64 groups (where applicable) using
MPI_Comm_split as described in Section 3.2.

As we expected, the run-times observed for multiple
groups setup are slightly higher than the corresponding run-
times of a single master–worker group. This is due to the
fact that on multi–group setups all messages are sent over
the higher latency peer-to-peer network while a single group
can utilize the faster specialized collective network (see sec-
tion 3.2).

Figure 9 shows that the total number of distinct groups
does not influence the run-time of the individual tree
searches. This means that communication between masters
and super–master is infrequent enough to not influence the
fine–grained parallelism within each group.

Figure 10 provides the total run-times for 32 distinct tree

searches on 32, 128, and 512 nodes. The nodes have been
split into groups of 16 and 32 nodes. So for example in
the case of 512 nodes and 32 nodes per group, 16 masters
with their private set of 31 workers perform 32 distinct tree
searches in parallel, two for each group. The plot shows that
the total execution time decreases linearly with an increasing
number of total nodes used for computation. Furthermore,
one can see that groups of 16 nodes perform slightly better
than groups of 32 nodes — as expected, given the absolute
run-times for single groups in Table 2.

4.4 Full Analyses
On the mammalian dataset (2,182 sequences, 51,089 base

pairs) we were able to conduct 30 bootstrap analyses on
2,048 CPUs (1,024 nodes in virtual node mode) within 41
hours by using 8 groups with 255 workers per group.

On the haplotype alignment (212 sequences, 566,470 base
pairs) we performed a full phylogenetic analysis: Initially we
conducted ML-searches for the best-scoring tree on 1,024
CPUs (1,024 nodes in co-processor mode) in single-group
configuration. Within 14 hours we were able to complete
7 distinct tree searches. The bootstrap analysis was per-
formed on 2,048 CPUs in virtual node mode which have
been divided into 8 groups. It took 26 hours to complete 64
bootstraped tree searches.

We also used the full haplotype alignment to test the scal-
ability of our approach in virtual node mode. The aver-
age run-time of the aforementioned 7 tree searches in co-
processor mode is 6,838 seconds. The average execution
time on 512 nodes in virtual node mode, i.e. 1,024 CPUs,
amounts to 7,000 seconds. The efficiency achieved is thus



97.69%.
The above results demonstrate that a full real-world anal-

ysis of these challenging datasets is feasible on BlueGene/L.
Additionally, as we have shown in the experiments, the fine-
grained parallelism is capable to efficiently exploit hundreds
of CPUs. Provided that the alignments used for phyloge-
netic analyses continue to grow and that real-life problems
require hundreds of tree searches and bootstrap runs to be
conducted, we may expect that our software will be able to
efficiently exploit forthcoming petascale systems.

5. CONCLUSION AND FUTURE WORK
We have presented a generally applicable porting strategy

for ML-based phylogeny programs to the BG/L. Moreover,
we have demonstrated that our approach scales well up to
2,048 processors on the BG/L and up to 128 CPUs on a com-
mon cluster architecture. Performance has been assessed by
conducting tree searches on the two largest DNA alignments
analyzed under ML to date, to the best of our knowledge.

Being able to handle and scale well on such large datasets,
the presented version of RAxML may open up new perspec-
tives towards the computation of whole-genome phylogenies.
Due to the steadily accelerating accumulation of sequence
data because of novel sequencing techniques the proposed
parallelization scheme for ML provides a viable solution for
future computational needs in phylogenetics.

Future work will cover biological production runs on those
two datasets as well as a full porting of all substitution mod-
els offered by RAxML to BG/L. We also plan to execute
an appropriate fraction of likelihood computations at the
master processes in order to further improve parallel effi-
ciency. Moreover, we will investigate how to accelerate the
likelihood functions by additional BG/L-specific low-level
code optimizations. We intend to assess the performance of
our approach compared to the standard OpenMP-version on
current multi-core architectures. We also plan to devise a
method which, given a dataset, will automatically determine
the optimal number of workers for fine-grained parallelism.

Finally, we will integrate an accelerated algorithmic tech-
nique for bootstrapping that has the potential to yield accel-
erations of one order of magnitude while returning support
values that are highly correlated (coefficient 0.94-0.96) to the
“standard” technique. This will allow for full ML analyses
on even larger datasets in the near future.
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