Models and methods for disentangling the complexity of gene and species evolution

Benoit Morel

CMMS talks 19.10.2023

About me

- Benoit Morel (benoit.morel@h-its.org)
- Studied computer science and mathematics
- Worked 4 years as a software developer
- PhD and postdoc:
 - Model and software development
 - In the field of phylogenetics

Phylogenetics

Study of evolutionary relationships among biological entities (genes or species)

Species tree

Gene tree

To answer those questions...

Describe evolution with a probabilistic model

To answer those questions...

- Describe evolution with a probabilistic model
- Identify with parameters are known (data) and which ones have to be estimated

To answer those questions...

- Describe evolution with a probabilistic model
- Identify with parameters are known (data) and which ones have to be estimated
- Use maximum likelihood to estimate the most likely unknown parameters by maximizing:

P(data | parameters)

Species tree

Genomes

• Gene family: set of homologous genes (share a common ancestor)

Gene (family) tree

Gene sequences

Sequence evolution

Sequence evolution in a gene tree

Model of sequence evolution

Phylogenetic likelihood = P(

sequences gene

gene tree

Reconciliation scenario and gene tree

Reconciliation scenario

Gene tree

Different scenarios can explain the same gene tree

The UndatedDTL model

- Describes gene tree evolution under a species tree
- Parametrized by the duplication, loss, and transfer rates
- Assumes that every species has the same chance of receiving a gene transfer

Model of gene evolution

Reconciliation likelihood = P(A | A)

Gene tree

Species tree

The goal

- We want to infer:
 - the gene tree
 - (the species tree)
 - their reconciliation
 - the DTL probabilities

Gene sequence alignment

Gene tree

Gene tree inference under maximum likelihood

• Search for the gene tree that maximizes the phylogenetic likelihood:

- Gene sequences are short
- Not enough signal to resolve the gene tree

Gene sequence alignment

Inaccurate gene tree

• Solution: use the species tree

• Solution: use the species tree

Species tree aware gene tree inference

- GeneRax: optimize the gene tree
- AleRax: integrate over all gene trees

(there are many other interesting methods!)

GeneRax

Find the gene tree that maximizes the joint likelihood:

GeneRax

Find the gene tree that maximizes the joint likelihood:

How to find the maximum likelihood gene tree?

- Start from any gene tree G
- For each "neighbor" G':
 - estimate the likelihood of G'
 - if G' has a higher likelihood than G, replace G with G'
- Stop when no better gene tree can be found

Model parameters

- Model parameters: D,T,L,S probabilities
- We optimize them to maximize the likelihood function after each round of tree search

Gene tree reconciliation

- Now we have the gene tree and the species tree
- We select the reconciliation scenario with the highest likelihood
- We use a recursive dymanic programming algorithm to iterate over all possible scenarios that are compatible with the gene tree

GeneRax: thousands of families and hundreds of species

Parallelization scheme

- Two-level parallelization:
 - We treat different gene families in parallel
 - We assign several cores to each individual gene families

→ excellent parallel efficiency :-)

GeneRax and AleRax

 GeneRax: co-estimate gene trees and model parameters

 \bullet

GeneRax and AleRax

- GeneRax: co-estimate gene trees and model parameters
- AleRax: treat gene trees as latent variables, and integrate over them

Limitations and opportunities

Heterogeneous DTL rates

Transfer highways

Model species networks

Time constraints

Species tree uncertainty

Incomplete lineage sorting

Model parameter heterogeneity

• Different species and different families have different DTL probabilities

Model parameter heterogeneity

• Origination (de novo gene) probabilities

Transfer probabilities

• Transfer probabilities are not uniform

Cyanobacteria \rightarrow another CyanobacteriaHuman \rightarrow fig treeCyanobacteria \rightarrow first plant

Transfer probabilities

• Transfer probabilities are not uniform

- Cyanobacteria \rightarrow another Cyanobacteria
- Human → fig tree
- Cyanobacteria → first plant

... But we can't estimate the N^2 combinations

Model horizontal gene transfer highways

- Focus on the "interesting" pairs of species
- Transfer highway: pair of species that exchanged many genes

Species networks

Species tree

Species network

Species networks

Species networks

- Reconcile under networks
- Test network hypotheses
- Infer networks

Time constraints on the transfers

UndatedDTL model

Time constraints on the transfers

ReldatedDTL model

Relative dating

• Use the RelDated model to estimate the most likely order of speciation events

Incomplete lineage sorting

- Species are populations
- Gene can have multiple alleles that might co-exist across several species lineages
- Gene trees do not always follow the species tree structure

Incomplete lineage fictional example

Incomplete lineage fictional example

Blue allele

\bigcap	
•	6
4	

Re	d	all	ele

Incomplete lineage fictional example

\int	
•	9
9	

Blue allele					

Red allele

ILS and reconcilation

- Reconciliation models assume no ILS
- What happens when ILS occures nonetheless?

ILS and reconcilation

- Reconciliation models assume no ILS
- What happens when ILS occures nonetheless?

Spurious horizontal gene transfers...

Species tree uncertainty

- Instead of using a fixed unreliable tree
- Reconcile with a distribution of plausible species trees

Conclusion

- We have reconciliation methods that handle:
 - gene duplications, losses, and transfers
 - gene tree uncertainty
- ... but our models are too simple
- ... interesting computational challenges apply more complex models to large datasets

Thank you!

contact: benoit.morel@h-its.org

Time constraints on the transfers

DatedDTL model (very slow likelihood computation)

Time constraints on the transfers

ReldatedDTL model Allows transfers to the future

Time constraints on the transfers

ReldatedDTL model Allows transfers to the future

Incomplete lineage sorting

Model parameter heterogeneity

• Crucial to assess competing scenarios

Scenario with 3 losses

Scenario with 1 HGT

Solution

- Sample "individual trees" under the multispecies coalescent model
- Reconcile the distribution of gene trees with the distribution of species trees

Species tree uncertainty

