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Zusammenfassung

Die Phylogenetik ist die Lehre der Entwicklung des Lebens auf der Erde. Das Auf-
decken alter evolutionärer Beziehungen zwischen lebenden Arten ist von großem
Wert, da sie zu wichtigen Entdeckungen in der Biologie führte, wie beispielsweise
zur Entwicklung neuer Medikamente, zur Nachverfolgung der Dynamik einer globa-
len Pandemie sowie zu Erkenntnissen über den Ursprung der Menschheit. Heutzu-
tage werden phylogenetische Analysen typischerweise mit Hilfe statistischer Modelle
durchgeführt, wobei Sequenzdaten, in der Regel molekulare Sequenzen, als Einga-
bedaten verwendet werden. Basierend auf diesen statistischen Modellen wird die
wahrscheinlichste Erklärung für die Eingabedaten berechnet. Das heißt, der (ver-
meintlich) korrekte phylogenetische Baum ist der Baum, der gemäß eines bestimm-
ten Modells der Sequenzentwicklung am wahrscheinlichsten ist.

Die rasche Zunahme verfügbarer Daten in den letzten Jahren ermöglicht wesentlich
kompliziertere phylogenetische Analysen. Paradoxerweise hat diese massive Zunah-
me der für die Analyse verfügbaren Daten nicht in allen Fällen zu einer endgültigen
Schlussfolgerung geführt, d. h. das verwendete Modell ist unsicher bezüglich der
wahrscheinlichsten Schlussfolgerung. Dies kann auf eine Vielzahl von Faktoren zu-
rückzuführen sein, wie beispielsweise hochkomplexe Modelle, Rauschen in einigen
oder allen Daten sowie physikalische Prozesse, die durch das Modell nicht angemes-
sen berücksichtigt werden. Schwierigkeiten aufgrund von Ungewissheit sind weder in
der Phylogenetik noch in der Wissenschaft im Allgemeinen neu, doch die Entwick-
lung komplizierterer Analysemethoden fordert neue Methoden zur Angabe, Analyse
und Integration von Unsicherheiten.

Die vorliegende Arbeit präsentiert drei Beiträge zur Verbesserung der Unsicherheits-
bewertung. Der erste Beitrag betrifft die Bestimmung der Wurzel von ungewurzelten
phylogenetischen Bäumen. Phylogenetische Bäume sind entweder bezüglich der Zeit
orientiert, in diesem Fall nennt man sie verwurzelt, oder sie haben keine Orientie-
rung, in diesem Fall sind sie unverwurzelt. Die meisten Programme zur Bestimmung
phylogenetischer Bäume erzeugen aus rechnerischen Gründen einen ungewurzelten
phylogenetischen Baum. Ich habe das Open-Source-Softwaretool RootDigger entwi-
ckelt, das sowohl einen ungewurzelten phylogenetischen Baum, als auch eine Vertei-
lung der wahrscheinlichen Wurzeln berechnet. Darüber hinaus verfügt RootDigger
über ein Parallelisierungsschema mit verteiltem Speicher, welches auch die Analyse
großer Datensätze erlaubt, wie beispielsweise die Bestimmung eines phylogenetischen
Baumes aus 8736 SARS-CoV-2-Virussequenzen.



vi Zusammenfassung

Mein zweiter Beitrag in der vorliegenden Arbeit ist das Open-Source-Softwaretool
Phylourny zur Berechnung des wahrscheinlichsten Gewinners eines Knock-out-Turniers.
Der Algorithmus in Phylourny ist angelehnt an den Felsenstein Pruning Algorith-
mus, einen dynamischen Programmierungsalgorithmus zur Berechnung der Wahr-
scheinlichkeit eines phylogenetischen Baums. Die Verwendung dieses Algorithmus
erlaubt eine erhebliche Beschleunigung der Berechnung im Vergleich zu Standard-
Turniersimulationen. Mit dieser beschleunigten Methode untersucht Phylourny auch
den Parameterraum des Modells mit Hilfe einer MCMC-Methode, um Ergebnisse zu
bewerten und zusammenzufassen, die eine ähnliche Wahrscheinlichkeit des Auftre-
tens haben. Diese Ergebnisse weichen oft erheblich vom wahrscheinlichsten Ergebnis
ab. In der vorliegenden Arbeit präsentiere ich die Performanz von Phylourny anhand
zweier realer Fußball- und Basketballturniere.

Der finale Beitrag in dieser Arbeit ist die Neugestaltung und Neuimplementierung
eines bekannten Tools für historische Biogeografie, mit dem sich Rückschlüsse auf
die Verteilung der angestammten Verbreitungsgebiete ziehen lassen. Ein Hauptin-
teresse der Biogeographie besteht in der Bestimmung der Verbreitungsgebiete von
Arten. Die historische Biogeografie befasst sich daher häufig mit der Ableitung des
Verbreitungsgebiets der Vorfahren lebender Arten. Diese Verteilungen des Verbrei-
tungsgebiets der Vorfahren sind ein häufiges Ergebnis von biogeografischen Studien,
die oft mit einem Modell abgeleitet werden, das zahlreiche Ähnlichkeiten mit Mo-
dellen der Sequenzevolution aufweist. Meine neue Version, Lagrange-NG, berechnet
die Ergebnisse bis zu 50 Mal schneller als die vorherige Version und bis zu zwei Grö-
ßenordnungen schneller als das beliebte analoge Tool BioGeoBEARS. Darüber hinaus
habe ich eine neue Abstandsmetrik entwickelt, die es erlaubt Ergebnisse alternativer
Tools und Algorithmen zu vergleichen.



Abstract

Phylogenetics is the study of the evolution of life on earth. Uncovering the ancient
evolutionary relationships between living species is valuable, as it has led to impor-
tant discoveries in biology, such as new drug formulations, tracking the dynamics
of a global pandemic and insights into the origin of humanity. Nowadays, a typical
phylogenetic analysis will be performed using statistical models which use as their
input sequence data, generally molecular sequences, which are then used to find the
most likely explanation of the data. That is, the (putatively) correct phylogenetic
tree is the tree which is the most likely under some particular model of sequence
evolution.

In recent years, the ability to perform substantially more complicated phylogenetic
analysis has been unlocked by the rapid increase in available data. Somewhat para-
doxically, this massive increase of data available for analysis has not in all cases made
it possible to arrive at a definitive conclusion, that is the model used is uncertain
about the most likely conclusion. This can be due to a plethora of factors, including
highly complex models, noise in some or all of the data, or physical processes which
are not adequately accounted for by the model. Difficulties from uncertainty are not
new to phylogenetics or to science in general, however the advent of more compli-
cated analysis has fostered to the need for new methods of reporting, analyzing, and
integrating uncertainty.

This thesis presents three contributions to improve uncertainty assessment. The first
contribution concerns rooting previously unrooted phylogenetic trees. Phylogenetic
trees are either oriented with respect to time, in which case they are called rooted,
or they lack an orientation, in which case they are unrooted. For computational
reasons, most tool which infer phylogenetic trees produce an unrooted phylogenetic
tree. I developed the open source software tool RootDigger, which can both root an
unrooted phylogenetic tree, or compute a distribution of likely roots. In addition,
RootDigger is engineered with a distributed memory parallelization scheme, which
allows it analyze large datasets, such as a tree built from 8736 SARS-CoV-2 virus
sequences.

My second contribution in this thesis is the open source software tool Phylourny,
which computes the most probable winner of a knock-out tournament. Phylourny

uses an algorithm inspired by the Felsenstein Pruning Algorithm, a dynamic pro-
gramming algorithm to compute the likelihood of a phylogenetic tree, to substan-
tially accelerate the computation of results when compared to using standard tour-
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nament simulations. Using this accelerated method, Phylourny also explores the
parameter space of the model via an MCMC method to asses and summarize the
outcomes which have similar likelihood of occurring. These outcomes often diverge
substantially from than the most likely outcome. I present the performance of Phy-
lourny using two real football and basketball tournaments.

My final contribution in this thesis is the redesign and reimplementation of a popular
historical biogeography tool to infer ancestral range distributions. A primary interest
in biogeography is to determine the range of species (i.e., where a species can be
found). Naturally, historical biogeography is therefore often concerned with inferring
the range of ancestral species for a set of living species. These ancestral range
distributions are a common result of biogeography studies, which are often inferred
using a model that exhibits numerous similarities to models of sequence evolution.
My new version, Lagrange-NG, computes results up to 50 times faster than the old
version, and up to 2 orders of magnitude faster than the popular analogous tool
BioGeoBEARS. In addition, I also develop a novel distance metric which allows for
the comparison of results from alternative tools and algorithms.
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1. Introduction

1.1 Motivation

Uncertainty in science can broadly be defined as a lack of conclusive evidence towards
a specific conclusion when addressing specific scientific question. It comes in several
forms, from measurement error, lack of sufficient data for the question at hand, or a
shortcoming in the model such that establishing an answer with certainty is difficult.
Uncertainty, by its nature, has always been difficult to handle, and uncertainty
analysis has become more prominent for at least the past 200 years (e.g. the discovery
of Ceres and the computation of its orbit by Gauss).

In modern times the amount of data available to researchers has increased exponen-
tially, particularly in the area of Bioinformatics [62]. However this has paradoxically
not reduced the relevance of uncertainty analysis. Instead, the frontier of science
has advanced such that present day researchers are using highly complex mathemat-
ical and statistical models. Additionally, these complex models have largely been
implemented in software tools, meaning that a large part of modern scientific work
is computational in nature. As science has become more computational the need
to integrate, tolerate, and report the uncertainty when using computational models
has increased.

One such field is Bioinformatics, which has seen an explosion in the amount of
data available for researchers since the advent of genetic sequencing in the 1970s.
This has been further accelerated by the development of next generation sequencing
technologies in the early 2000s [62]. Now, researchers are faced with the challenge
of integrating large quantities of heterogeneous data along with computational and
statistical models to test hypotheses [32, 71]. Unfortunately, many tools and models
do not have the capacity to report uncertainty about their results, which may lead
researchers to be overly confident in their conclusions.

In this thesis I focus on phylogenetics, a subfield of Bioinformatics, which is con-
cerned with inferring the evolutionary relationships between species. For a more



2 1. Introduction

thorough introduction into the specifics of phylogenetics, please see Chapter 2. How-
ever, for this section it is only important to know that phylogenetic tools generally
require as input genetic sequences sampled from individuals, generally of difference
species, which have been heavily preprocessed1. This preprocessing is not completely
certain in its results [65, 90]. However, these tools which take these preprocessed
sequences often assume that each preprocessing step produced results which are ex-
actly correct. This assumption is, in general, not correct [46, 47, 81] and can affect
the final result of phylogenetic tools [5, 35].

The reasons why uncertainty is under-disclosed and under-accounted for are com-
plicated. However, they broadly fall into two categories: lack of resources (either
financial or computational) or lack of tooling/formalism. In this thesis, I seek to ad-
dress both issues by developing tools and methods which further enable researchers
to understand and even utilize uncertainty to their advantage.

1.2 Contributions

My main contributions to this thesis are the open-source software tools RootDigger,
Phylourny, and Lagrange-NG.

RootDigger is a software tool to root unrooted phylogenetic trees. For reasons that
are discussed in the next chapter, phylogenetic trees are often inferred without a
root. Put another way, unrooted phylogenetic trees lack an orientation with respect
to time. RootDigger uses a character substitution model which yields a likelihood
that varies with respect to the orientation of time. This allows the software to
identify the most likely position for a root on a phylogenetic tree. To do this,
RootDigger takes as input an unrooted phylogenetic tree, and an MSA, which the
software then uses to compute the likelihood of various location for the root. An
article describing RootDigger appeared in BMC Bioinformatics [4].

Phylourny is a tool to assist in predicting knock-out tournaments. Traditional meth-
ods of predicting knock-out tournaments generally fit a model to historical data, and
then use that model to simulate a tournament numerous times. Instead, I propose to
compute the probability of all possible outcomes via a dynamic programming algo-
rithm, which is inspired by similar dynamic programming algorithm to compute the
likelihood of a phylogenetic tree. This has the advantage of being substantially more
computationally efficient, as well as computing the probabilities of outcomes exactly.
I then use this more efficient algorithm to explore the parameter space around the
most likely parameters, with the goal of assessing stability via an MCMC search. At
the time of writing this thesis Phylourny is currently under review for publication
in the journal Statistics and Computing.

1 The preprocessing steps are not covered in detail in this thesis, as they are complex topics in
their own right, and therefore outside the scope of this thesis. Nonetheless, in brief the steps are:
gene sequencing; read assembly; (optionally) annotation; and finally sequence alignment. Each
of these steps uses complex statistical and computational models to maximize the accuracy of
the results.
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I also redesigned and reimplemented an old, yet very popular, biogeographic tool
for inferring ancestral range distributions of ancient species. The new version of
the tool is named Lagrange-NG, and improves on the previous version of the tool
in three important ways. First, the tool is now capable of multithreading, which
accelerates the computation by using more resources when needed. Second, the
software engineering quality is substantially improved, including fixing a rare but
critical bug in the computation of results. Third, and most importantly, I made
the software substantially more efficient. The new version is generally an order of
magnitude faster than the old version for small datasets, and up to 2 orders of
magnitude faster for larger datasets. In addition to providing an improved version
of a well established and popular tool, I also describe a new metric for comparing
results of analogous tools. Prior to this work, no formalized method of comparing
results between competing tools in this field (ancestral range reconstruction) existed.
A paper describing Lagrange-NG and the associated distance appeared in the journal
Systematic Biology in 2023 [3].

I also have a number of minor contributions which have not been included in the
thesis. I will mention them below in order of publication.

I was a part of an effort to investigate the genomes of SARS-CoV-2, the virus re-
sponsible for the COVID-19 pandemic. My role was to integrate RootDigger into
the pipeline that fellow lab members had developed. Additionally, I was responsi-
ble for running and producing a distribution of likely rootings of the SARS-CoV-2
phylogeny using RootDigger. This effort culminated in a publication on the diffi-
culty of analysing the SARS-CoV-2 genomes in a phlyogenetic context. This article
appeared in the journal Molecular Biology and Evolution in 2020 [61].

I assisted a partner lab in investigating a method of accelerating phylogenetic tree
inference by reducing the dataset size via sub-sampling the input MSA. I contributed
to the project by modifying RAxML-NG [45] to output the required runtime infor-
mation to train a model. This model will then reduce the size of the MSA via
sampling, with the goal of reducing runtime. The article appeared in the journal
Bioinformatics in 2022 [16].

I assisted a fellow lab member (Julia Haag) with an article concerning predicting the
difficulty of datasets with regard to phylogenetic inference. The main contribution
for this project is the tool Pythia, which assigns a difficulty score to a dataset. Pythia
performs this task by computing several values describing the dataset (i.e. features)
which are then provided to a machine learning model which computes the final score.
My contribution to the work involved contribution of ideas (specifically, providing
some of the features used in the final model), as well as general consulting on topics of
academia. The article describing Pythia appeared in the journal Molecular Biology
and Evolution in 2022 [28].

Finally, I led and participated in the development of a new version of the internal
lab library (formally the Phylogenetic Likelihood Library or LibPLL-2 [23]), newly
named Coraxlib. My contributions include: adding support for non-reversible mod-
els; building a testing framework; implementing a new tree parser for the Newick
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tree format; documenting many critical but undocumented portions of the library;
and organizing the efforts of volunteers to improve the quality of the library. Cur-
rently two of the Exelixis Lab’s tools utilize Coraxlib: RootDigger, and GeneRax
(a tool written by fellow lab member Benoit Morel).

1.3 Structure

The remainder of this thesis is structured as follows. Chapter 2 is an introduc-
tion into the models and methods which will be used in later chapters of the the-
sis. Chapter 3 contains a thorough discussion of the operation and performance of
RootDigger. Chapter 4 explores the prediction of knock-out tournaments with Phy-

lourny, along with two case studies involving real world sports tournaments in the
sports (basketball and football). Chapter 5 discusses the technical improvements,
the results of the improvements for Lagrange-NG as well as the formal details of the
novel distance metric used to compare results between tools. And finally, Chapter 6
concludes the thesis, and gives directions for future work.



2. Background

2.1 Introduction to Phylogenetics and Biogeography

Phylogenetics is the study of the history of evolution. Therefore, the goal is to
determine the evolutionary relationships between a given set of species. Histori-
cally, this analysis was performed by experts in a particular genus or family, and
required substantial effort and many years of study of physical samples and their
morphology [80]. However, computational methods were quickly adopted with the
advent of computers and computational science, with the first computer inferred
phylogeny being published in 1965 [8]. Early phylogenetic models were simplistic,
mostly seeking to minimize the number of changes to a sequence when relationships
were represented on a tree, using a criterion called Maximum Parsimony. Later,
probabilistic models of sequence evolution were developed [21, 41], which alleviated
some issues with Maximum Parsimony [20].

2.1.1 Fundamentals of Phylogenetics

Suppose that we wish to find a plausible explanation for the evolution of some set of
species. That is, we wish to take a set of species, for which we are interested in the
history of their evolution, and using attributes about them (commonly molecular
data obtained from the organism, for example DNA) and produce a description of
the evolutionary history of this group. This is the central problem of phylogenetics,
and to enable this, we will make 2 assumptions.

The first assumption, that evolution is roughly treelike, is as old as Darwin’s On
the Origin of Species [11], which contains some of the first tree representations of
phylogeny. These so-called phylogenetic trees are the main goal and result of phylo-
genetic analysis. While there are exceptions to evolution being treelike with events
such as hybridization (when two previously physically separated population rejoin
into a single population which can produce fertile offspring), and horizontal gene
transfer (when genetic material is transferred between two species via means other
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than producing offspring), the presence of trees as the major result of phylogenetic
analysis remains.

To be specific, a phylogenetic tree is a graph structure satisfying the requirements
of a tree, that is to say, that there exists only one path between any two nodes.
Additionally, nodes on a phylogenetic tree are grouped into two categories: inner
nodes and tips. Inner nodes (also known as internal nodes or hidden nodes, but
they will be referred to as inner nodes only in this work) represent hypothetical
ancestral species, which underwent a speciation process to produce 2 new species.
Tips represent the observable, typically extant species which we can sample for
information, such as DNA, to guide phylogenetic analysis.

The second assumption, that the speciation events are strictly binary, is an assump-
tion born not out of the need to represent biology, but out of convenience. The
particular benefits of this assumption will be discussed in detail in Section 2.1.3.
But to summarize that discussion here: assuming that the tree is binary allows
us to formulate the equations in a much simpler manner, and there is no loss of
information by making this assumption.2

The edges of a phylogenetic tree are called branches. These branches may have asso-
ciated branch lengths, which are a measure of the distance between two hypothetical
species. This distance can be thought of in two ways, either as the amount of time
elapsed or the amount of evolutionary events which have occurred.

A phylogenetic tree can be either rooted, in which case the tree has a root, or
unrooted in which case the tree lacks a root. In this work, the root indicates the
oldest species in the tree, which is the most recent common ancestor of the species
present as tips of the tree.

Normally, phylogenetic trees are bifurcating, which is a realization of the assumption
that speciation is a binary process. More formally, a bifurcating phylogenetic tree
is a tree where all nodes in the tree have either degree 3 or degree 1. In the case of
a rooted tree, there must be a single node with degree 2.

A multiple sequence alignment (MSA) is a matrix of sequences sampled from in-
dividuals such that each column represents an homologous site. Here, homologous
can be interpreted to mean “from the same origin” that is that the site evolved from
a common ancestral site, for all species in the MSA. Taking a given MSA and pro-
ducing an accurate phylogeny (i.e. a phylogenetic tree which describes the history of
evolution for the species present in the MSA) is the main challenge in phylogenetics.

Historically, phylogenies were produced by hand and the intuition of experts, as
mentioned above. In modern times however, computational analysis of molecular
sequences has almost entirely supplanted this method. In order to produce a phy-
logeny for publication, researchers now sample a sequence of Deoxyribonucleic Acid

2 The reason why we can do this require understanding the statistical models of character evo-
lution, which are discussed later. I can, however give an informal explanation. If we allow
for branches with a length of zero, then we have a branch were no evolution occured. We can
transform a tree which does not satsify the degree requirements, that is a non-binary tree, by
inserting 0 length branches such that the tree eventually becomes binary.



2.1. Introduction to Phylogenetics and Biogeography 7

Figure 2.1: Two example trees, unrooted (left) and rooted (right).

(DNA) or Amino Acid (sequence) (AA) from an organism, prepare those sequences
as an MSA in a long series of preparatory steps which will not be discussed here,
and then provide that resulting MSA to a program which infers a phylogeny.

2.1.2 Models of Character Evolution

Suppose we have an MSA with two species, say species A and B, as well as a single
site. The natural question we could ask is “given a putative phylogeny, what is the
probability of observing the sequences obtained from species A and B”. As there are
only two species, there is only 1 possible topology, which is shown in Figure 2.2. If
we imagine evolution as a process which changes character a at some instantaneous
rate r over time t, then the probability of an event (i.e. a character substitution) is

1 − e−rt. (2.1)

Once an event occurs, we change the character to some other state from any of s
states with uniform probability. Please note that the “null” change is allowed, that
is a “becoming” a. Given this, the probability that character a remains as a at time
t is

Pa,a(t) = e−rt + 1 − e−rt

s
. (2.2)

That is, the probability of no change is the probability of no event (1 − (1 − e−rt))
plus the probability of an event and selecting a again. In contrast, the probability
that a changes to b, where a ̸= b is

Pa,b(t) = 1 − e−rt

s
. (2.3)

For convenience and to motivate Markovian models later, we can express the two
equations above as a matrix, which we do so here for a 2 state model.
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P (t) = 1
2

(
1 + e−rt 1 − e−rt

1 − e−rt 1 + e−rt

)
(2.4)

where the probability of state a converting to state b is given by the matrix P (t)
entry at row a column b.

As elegant as the model in Eq. 2.4 is, it has severe limitations, the first of which is
that it assumes equal rates between all state transitions. If we want to extend the
model to account for different rates between states, we should instead look at the
instantaneous change in the probability of observing a over some time dt. Let p be
a vector with entries (pa(t), pb(t)), that is the probability of observing state a or b
at time t. Then,

d

dt
pa(t) = qaa × pa(t) + qba × pb(t) (2.5)

and
d

dt
pb(t) = qab × pa(t) + qbb × pb(t). (2.6)

Where qij are the instantaneous rates of change from state i to j. We can use these
relations to setup the following system of differential equation.

d

dt
p(t) = Qp(t) (2.7)

where

Q =
(

qaa qab

qba qbb

)
(2.8)

that is, the matrix of rates present in Eq. 2.5 and Eq. 2.6. If initial values are given
as p(0), then

p(t) = eQtp(0). (2.9)

What we have defined here is a Continuous-Time Markov Chain (CTMC). Using a
CTMC allows us to compute the probability of specific evolutionary events. A quick
note about p(0), which is known as the prior distribution. This vector is important
enough to be given its own notation, and is generally referred to as π.

We almost never use these models to compute a probability, but instead we use these
models to compute the likelihood of the observed data. In general, the likelihood is
defined as

L(M |D) = P (D|M) (2.10)

where D is some observations (i.e. data) and M comprises some model parameters.
For our specific case, suppose we have a 2 state model like above, and a pair of ob-
served states a and b, with a specified model Q and estimated time t. The likelihood
then is

L(Q, t|a, b) = P (a, b|Q, t) = Pab(t). (2.11)

As it can be seen above, computing the likelihood for a single pair of states is trivial.
In the next section,we extend the models and scope of the likelihood calculations
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Figure 2.2: A simple tree with 2 taxa, and a single branch between them.

beyond this simple case. Finally, the math so far has been conducted assuming a
single site. However, this is not very useful as there is simply not sufficient infor-
mation contained in a single site to determine the evolutionary history of a large
number of species. Instead, an assumption is made for most models (which is true
for all models used in this work) that each site evolves independently, and identically
to other sites. Specifically, we make an “independently and identically distributed”
assumption about a set of sites, and typically perform our computations on a large
number of sites, i.e. an MSA.

A small wrinkle with the i.i.d. assumption is the existence of segments of a genome
which have evolved under different pressures. For example, a gene coding for a
particularly important protein might evolve differently than a gene coding for a
minor protein. In this case, it is convent to partition the MSA into sets of sites
which evolved under the same model. In these cases we relax the i.i.d. assumption
to be within a partition.

Therefore, the likelihood of a model given an MSA M with S sites is

L(Q, t|M) =
∏

1≤i≤S

L(Q, t|Ma,i, Mb,i) (2.12)

where Ma,i is the character for taxon a at site i.

An additional note about the Q in Eq. 2.8: in order for eQt to be a properly formed
Markov matrix, the rows of Q must sum to zero. If this is not the case, the net rate
of change for a state would either be negative or positive, that is the total number
of sites would change over time. Given that we have a fixed number of sites in our
observed data, we must impose this condition which conserves the number of sites
over time. This means that we should rewrite Eq. 2.8 as

Q =
(

−qab qab

qba −qba

)
. (2.13)

This reduces the number of free parameters to 2, and ensures that the result of eQt

is well formed Markovian matrix.

2.1.3 Continuous-Time Markov Models and Phylogenetic Trees

Suppose we have a set of n species, an MSA for these species, and we wish to find the
phylogenetic tree which best describes the evolutionary history of these species. If we
suppose that the models of character evolution described in the previous section are
an accurate description of the underlying evolutionary process, then we can simply
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augment the likelihood in Equation 2.12 with two additional parameters: a binary
tree T , and a set of branch lengths B. Doing this yields the expression

L(Q, T, B|M) =
∏
i≤S

L(Q, T, B|Mi) (2.14)

where
L(Q, T, B|Mi) = P (Mi|Q, T, B). (2.15)

The specific expression to compute P depends on the particular structure of the tree
parameter T . For example, suppose we want to use this expression to compute the
likelihood of the tree in Fig. 2.3. We would then need to evaluate the expression∑

i

∑
j

∑
k

∑
l

πi × P1(j|i) × P2(k|j) × P3(l|j) × P4(m|i) (2.16)

That is, the probability of transitioning from state i at the root to state j, and so
on, summed over all possible states. If we rearrange the expression a little, we can
notice some structure which we can exploit

∑
i

πi ×

∑
j

(
P1(j|i) ×

(∑
k

P2(k|j) ×
∑

l

P3(l|j)
))

×
∑
m

P4(m|i)
 . (2.17)

Notice the nesting structure of the tree is represented by the parentheses in this
expression. We can further rewrite this expression to be more readable if we employ
matrix notation and the Hadamard product

π⊺ (P1 (P2a ◦ P3b) ◦ P3c) (2.18)

This observation, that the expression to compute the likelihood of a tree can be
rearranged based on the topology of the tree, is known as the Felsenstein Pruning
Algorithm [21], which itself is a realization of a technique known as Horner’s method.
This algorithm allows us to compute likelihoods efficiently, as it allows for partial
results to be used in later computations, greatly improving the efficiency of the
evaluation of likelihoods.

In practice, the result of a Hadamard product can be stored in a Conditional Like-
lihood Vector (CLV) and reused for later computation. This further simplifies the
expression to compute the partial results corresponding to node i with children j
and k

CLVi = (P(tj)CLVj) ◦ (P(tk)CLVk) (2.19)

where tj and tk are the branch lengths from nodes i to j and from i to k, respectively.
We can compute the likelihood of some tree by recursively applying the Equation 2.19
to each inner node of the tree, finishing with the root which we will label r. Once
that is complete, the likelihood is finally computed by evaluating

L = π⊺CLVr. (2.20)



2.2. Computational Methods Used In This Work 11

Figure 2.3: A three taxa rooted tree with labeled branches.

2.1.4 Reversible and Non-Reversible Markov Models

For this work the topic of reversibility of a Markov model is important. A Markov
model is reversible if there exists a π such that the following equation holds for all
i, j and P

πiPij = Pjiπj. (2.21)

If such a π exists, we call it a stationary distribution of the Markov model. In con-
trast, if such a π does not exist, then we call the model non-reversible. Traditionally,
reversible models have been used in phylogenetic inference over non-reversible mod-
els due to the reduced computational complexity that a reversible model grants [21].
The major reduction in computational complexity comes from the so-called Pulley
Principle, which points out that if a Markov model is reversible, then all root loca-
tions will yield the same likelihood. If a model is non-reversible, then different root
locations will yield different likelihoods, which means that root placement must be
included in the model optimization process.

In the context of evolution, reversibility is an assumption that is clearly false. If it
were true that evolution followed a reversible process, we would expect the propor-
tion of sites to be equal across the tree of life. However, we find instead that the
GC content (the relative proportion of sites in a DNA sequence which are either a
Guanine or Cytosine) varies substantially across the tree of life [30]. Nonetheless,
many phylogenetic analyses are conducted with models which assume reversibility,
due to the computational savings that such an assumption affords.

2.2 Computational Methods Used In This Work

2.2.1 Matrix Exponential

The matrix exponential is defined by the Taylor Series

eA = 1
0!A

0 + 1
1!A

1 + 1
2!A

2 + . . . (2.22)
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where A is a square matrix with (in our case) real entries, and A0 = I. Computations
using this formula are generally avoided, as it is both slow and extremely numeri-
cally unstable. Instead, specialized algorithms have been developed to calculate this
quantity with varying degrees of accuracy and efficiency. Here, I only present only
the algorithms used in this work, but the algorithms presented here are only a small
subset of known algorithms for matrix exponentiation, which are discussed in detail
in [59].

2.2.1.1 Matrix Exponential by Scaling and Squaring

There are several immediate optimizations that we can apply to Equation 2.22. The
first is to use the Padé approximation, instead of the Taylor series. Padé approxi-
mations are a ratio of two polynomials which generally gives a better approximation
with less terms when compared to a truncated Taylor Series. Additionally, one can
notice that

eA = (eA/m)m (2.23)

for some integer m. Therefore, by first scaling the matrix by m such that m is a
power of 2, we can both reduce the number of terms in the Padé approximation as
well as improve the numerical stability of the method. To this end, we can pick m
to be a power of 2 such that we can obtain (eA/m)m by repeated squaring.

2.2.1.2 Matrix Exponential by Krylov Subspaces

A Krylov subspace for matrix A and vector b is a space spanned by a series of
vectors constructed as

Km = {A0b,A1b,A2b, . . . ,Amb}. (2.24)

A property of a Krylov subspace is that it well approximates certain properties
of Ab, such as the largest m eigenvectors and eigenvalues. Generally, m is small
compared to the size of A, so if a Krylov subspace is used instead of A, large gains
in computational efficiency can be gained. To compute the matrix exponential with
a Krylov subspace, Arnoldi Iterations are applied to form Vm, an orthonormal basis
containing the basis vectors from the Krylov subspace for Ab, and Hm, a partially
Hessenberg reduced matrix which approximates the first m eigenvalues. From these
matrices, eAb can be approximated with

eAb ≈ VmeHmv. (2.25)

In our case, b will generally be the partial result stored in a CLV according to
Felsenstein’s Pruning Algorithm. For example, in Equation 2.19 every P(ti)CLVi

is in reality a matrix exponentiation followed by a matrix vector product, which is
exactly the value being approximated in Equation 2.25. The choice of the number
of basis vectors m is a bit arcane. The authors of [33] give an upper bound on the
error of the approximation of eAv using m basis vectors as

2∥A∥m
2 ∥v∥2

m! max(1, eη) (2.26)
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where ∥A∥2 is the l2 norm, and η is the logarithmic norm of A, which is equal to
the largest eigenvalue of the symmetric part of A. As m! grows faster than am with
respect to m, the maximum error from this approximation decreases rapidly as m
increases.

This method can be significantly faster, as Hm is an m by m matrix, and m can
be quite small when compared to the size of A while still being accurate. For more
details, please see [7, 59].

2.2.2 Optimization

Optimization is a broad topic, which primarily concerns itself with finding a solution
to the problem

argmin
x

f(x) s.t. Ax = 0 and

Bx ≥ 0
(2.27)

where matrices A and B are constraints (in this case linear constraints) on the
values of the vector x. This problem constitutes a large area of research, and a full
exploration of the topic is far beyond the scope of this work. Instead, we present a
few of the methods used to solve this problem here, which are used in later sections
of this work.

2.2.2.1 Newton’s Method

Newtons’s method is an iterative method of finding roots. This method proceeds by
producing iteratively better guesses by starting with some guess xi, and following
the tangent line to the x axis, and using this as the new guess. Formally, the next
guess

xi+1 = xi − f(xi)
f ′(xi)

(2.28)

where f ′ is the derivative of f .

In order to find optima with Newton’s method, roots should be found in f ′ instead
of f . That is, Newton’s method finds points where the derivative is equal to zero.
In the case of well-behaved one dimensional functions, these are guaranteed to be
local optima. Therefore, by finding the roots of f ′, we can also find optima in f .
However, this requires computing the second derivative of f , which can be either
analytically, computationally, or numerically difficult.

2.2.2.2 Brent’s Method

Brent’s method is a root finding method which is a combination of several existing
methods, and has applications similar to Newton’s method. The main advantage of
Brent’s method over Newton’s method is that Brent’s method does not require the
computation of a derivative, either numerically or analytically, which can be either
computationally expensive, analytically intractable, or impossible depending on the
function. In particular, if the method is used to optimize a function value (that
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is, perform root finding on the derivative of a function), then a second derivative
needs to be computed, which can be difficult to compute numerically, as higher order
derivatives require more function evaluations in order to be accurate.

Additional details for Brent’s method may be found in [6], however the method
works by using

1. Inverse Quadratic Interpolation,

2. The Secant Method, and

3. Bisection

roughly in this order of priority in order to find a function root.

2.2.2.3 L-BFGS-B

Limited memory Broyden-Fletcher-Goldfarb-Shanno with Bounds (L-BFGS-B) is a
general purpose multidimensional optimization routine which seeks to outperform
gradient descent, while also avoiding the computation of a second derivative [97].
Again, additional details can be found in [97], or in most textbooks on numerical
optimizations, but a summary is presented here. L-BFGS-B operates by emulating
Newton’s method, but instead of computing the second derivative (here known as
the Hessian) either analytically or numerically, it instead builds an approximation
of the Hessian via a series of updates computed from the gradient and the steps
taken each iteration of the algorithm. As the algorithm proceeds, the estimate of
the Hessian becomes increasingly accurate, allowing for rapid convergence to an
optimum.

2.2.2.4 Linear Programming

Linear programming is an optimization method applied to problems of the form

argmin
x

a⊺x s.t. Ax = 0 and

Bx ≥ 0
(2.29)

where A and B are a set of linear constraints represented as a matrix, a is a set
of weights for the linear optimization problem. In contrast to other optimization
problems, linear programming problems are relatively easy to solve, and have favor-
able properties. In particular, solutions to linear programming problems are always
global optima, if they exist.

2.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a class of techniques used to
sample from a probability distribution. While there are several algorithms which can
be classified as MCMC methods, such as Gibbs Sampling and Hamiltonian Monte
Carlo, this work only focuses on MCMC via the Metropolis-Hastings Algorithm [57].
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In phylogenetics, and also in this work, the probability distribution we wish to sample
from is the posterior distribution, i.e.

P (M |D) = P (D|M)P (M)
P (D) . (2.30)

Where M is some model and D is some observed data. In this equation, the expres-
sion on the right is generally impossible to compute directly, as P (D), is simply not
known for the real world. To see why, consider that P (D) is the marginalization of
P (D|M) over all possible M . This is a monumental task as even defining all pos-
sible models is, at the very least, difficult. Therefore instead of dealing with P (D)
directly, the Metropolis-Hastings algorithm avoids computing this term by instead
only computing the ratio of two posteriors:

P (M1|D)
P (M2|D) = P (D|M1)P (M1)

P (D) × P (D)
P (D|M2)P (M2)

= P (D|M1)P (M1)
P (D|M2)P (M2)

(2.31)

This term on the right then becomes the acceptance ratio in the Metropolis-Hastings
algorithm, and allows us to characterize the posterior. In this way, we have turned an
impossible problem into merely a computationally expensive problem, as adequately
exploring the posterior via the Metropolis-Hastings algorithm can require many
samples, and therefore many computations. Nonetheless, Metropolis-Hastings is
a very powerful tool, as it allows us to fully characterize probability distributions
which are difficult or impossible to characterize analytically.
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3. RootDigger

This chapter is based on the following peer-reviewed software article:

Ben Bettisworth, Alexandros Stamatakis. “Root Digger: a root placement
program for phylogenetic trees”BMC Bioinformatics, Volume 22, Issue 1,
pp. 1-20, https://doi.org/10.1186/s12859-021-03956-5

3.1 Introduction

In standard phylogenetic inference, most tools [64, 77] yield unrooted trees. This is
because they typically implement time-reversible nucleotide substitution models [21]
as they yield the phylogenetic inference problem more computationally tractable.
However, time-reversible models are incapable of identifying the root, as they disre-
gard the direction of evolution. This is the result of the so-called Pulley Principle
(for more information, please see Section 2.1.4) [21]. Nevertheless, a rooted phy-
logeny is often required for downstream analyses and interpretation of results as it
can resolve long standing disputes regarding the placement of large clades on the tree
of life for example [15]. In many cases, researchers will have to use a dedicated tool
or include additional information in the analysis to recover the root of an inferred
unrooted phylogenetic tree.

To root a tree when the primary phylogenetic inference is performed via a reversible
model, researchers typically deploy one of the two following methods: including a
set of outgroup taxa in the analysis, or using some form of molecular clock anal-
ysis. Unfortunately, both approaches exhibit their own challenges and pitfalls [2].
Including outgroup taxa in the analysis increases the amount of work that must be
conducted in order to infer a tree, which primarily comes in the form of addtional
research and possibly sequencing on the part of the researchers. More importantly,

https://doi.org/10.1186/s12859-021-03956-5
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adding an outgroup can also affect the ingroup topology in unexpected ways [34]
(See the next section for more details). Molecular clock analysis can be complicated
by the need to calibrate the molecular clock, as this often requires appropriate and a
sufficient number of fossil records that are related to the organisms under study [1,
2].

Alternatively, one can use a non-reversible model as, under such a model, the root
placement does affect the likelihood of the tree [95]. Examples of non-reversible
models include gene tree species tree reconciliation methods that account for gene
duplication, loss, and transfer [60], or non-reversible Markov substitution processes
of character evolution. It is the latter process that RootDigger uses to root an
existing phylogeny. This allows RootDigger to circumvent the compute-intensive
step of inferring a tree under a non-reversible model, and instead only use a non-
reversible model to root the inferred tree in a final step. By doing in this manner,
one can combine the advantages of both: fast tree inference under reversible models;
and rooting the tree under a non-reversible model.

The rest of this paper is organized as follows. First, we provide some more back-
ground on the theory and operation of RootDigger, as well as a justification for
our method. Then, we describe the operation of RootDigger in detail. Next, we
outline the methodology used to experimentally verify RootDigger and present the
respective results. Finally, we discuss the effectiveness of RootDigger with respect
to other rooting methods which are applied after tree inference, specifically IQ-TREE

2 and MAD.

3.2 Background

Methods that use additional topological information take advantage of prior knowl-
edge about the world, which is not present in the, generally molecular, data that
is used to infer the tree. In particular, knowledge about specific species which are
not too distantly related to the species in question can be included as a so-called
outgroup. This outgroup can then be used to place the root on the tree, as the most
recent common ancestor of the ingroup and the outgroup should be the root of the
overall tree.

There are challenges to including an outgroup to an analysis. Gatsey et. al. [24]
showed how adding a single taxon to an analysis can substantially change the re-
sulting tree topology, even for the taxa which were already present in the analysis
(i.e., the ingroup). Holland [34] investigates this phenomenon in simulations, and
finds that outgroups affecting or altering the ingroup topology are common.

Alternatively, molecular clock analysis can be used to place a root without prior
topological knowledge [92]. The molecular clock hypothesis assumes that the sub-
stitution process exchanges bases (i.e., “ticks”) at a stochastically constant rate.
Using this supposition a likely location can be inferred for the root on an existing
phylogenetic tree. A simple version of this is midpoint rooting, which relies on a con-
stant molecular clock assumption in order to produce a phylogenetically meaningful
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rooting. However it can be applied to any binary tree, regardless of whether it is ul-
trametric or not. Other methods, such as Minimal Ancestral Deviation (MAD) [82]
and MinVar [54] also rely on the molecular clock assumption. They attempt to solve
the potentially poor performance of midpoint rooting in the presence of a violation
of the strict molecular clock by allowing for variation in the rate of the molecular
clock.

Molecular clock analyses exhibit their own difficulties. In particular, the clock does
not generally “tick” at a constant rate over the tree [51, 78]. Relaxed clock models
exist which can alleviate this problem, but are not always successful at correctly
identifying the root as shown in [2] and come with their own set of inference errors
and methodological challenges.

The final method that can place a root on a tree is to perform the phylogenetic
analysis under a non-reversible model of evolution. When using a non-reversible
model, the direction of time affects the likelihood of the tree [95]. Using this property,
the most likely location on the tree for the root can be found, so long as the model
has an appropriate fit. Indeed, early results suggested that some non-reversible
models (particularly those based on character substitution) are inappropriate for the
purposes of rooting a tree [36]. However, in this work we find that these concerns
appear to be mostly overstated (see Results). Several software packages are able to
infer or score a phylogenetic tree under a non-reversible model, and as a by-product
also identify a root [64, 75].

Non-reversible model for phylogenetic trees come in many forms. For example, ac-
counting for duplication, transfer, and loss events yields a non-reversible model [60].
In particular, duplication events have been used for rooting trees [18]. Another
method, the one primarily used in this work, is to eliminate the reversibility as-
sumption of standard character (e.g., nucleotide or amino acid) substitution models.
Unfortunately, eliminating this assumption significantly increases the computational
effort required to find a good (high likelihood) phylogenetic tree. This is due to the
resulting inapplicability of the Pulley Principle [21], which allows phylogenetic in-
ference tools to ignore root placement during tree inference. Therefore, by adopting
a non-reversible model, the location of the root on a phylogenetic tree affects the
likelihood of that tree.

As the location of the root affects the likelihood of the tree, when using standard
tree search techniques all possible rootings would need to be evaluated for each
tree considered in order to find the rooting with the highest likelihood. In the
worst case, this increases the work per tree being visited during the tree search by a
factor of O(n) where n is the number of taxa in the dataset. Therefore, eliminating
the reversibility assumption drastically increases the computational effort required
to infer a tree. Hence, standard inference tools choose to adopt the reversibility
assumption, as phylogenetic tree inference would be computationally significantly
more intensive otherwise.

As an alternative to the computationally expensive process of inferring a tree with a
root, an unrooted tree which has already been inferred under a reversible model can
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be evaluated a posteriori for possible root locations under a non-reversible model.
This requires less computational effort, as it skips the expensive step of identifying
“good” rootings in intermediate trees during the tree search. With this method,
we can find the most likely root location for a given phylogenetic tree. Even this
approach still faces numerical challenges, as previous research suggests that the like-
lihood function for rooting a phylogenetic tree may exhibit several local maxima [36],
although we did not find this to be a major issue in our experiments (see discussion).

We implemented the open source software tool RootDigger which uses a non-
reversible model of character substitution to infer a root on an already inferred,
given tree. The inputs to our tool are a multiple sequence alignment (MSA) and an
unrooted phylogenetic tree. RootDigger then returns a rooted tree. RootDigger

implements fast and a slow root finding modes, called Search mode and Exhaus-
tive mode, respectively. The search mode simply finds the most likely root quickly
via appropriate heuristics, and is intended for users who simply intend to root the
tree. For a more through exploration of the possible roots, we designed the exhaus-
tive mode, which thoroughly evaluates the likelihood of placing the root into every
branch of the given tree, and reports the likelihood weight ratio [79] for placing a
root on that branch for every branch on the tree. In other words, the exhaustive
mode allows to quantify root placement uncertainty over the branches of the tree.

Additionally, RootDigger supports both thread and process level parallelism, over a
potential data partition of phylogenomic alignments and over distinct search starting
locations (i.e., parallelization of the root search procedure), respectively. Finally, to
support root inferences on extremely large datasets using compute clusters, we have
implemented checkpointing in RootDigger, which allows for the search to be halted
and resumed at a later point in time in case of hardware failures or when the job
time limit has been exceeded.

3.3 The Software

Usage of RootDigger is straight-forward. All that is required is a tree in newick
format, and a MSA in either PHYLIP or FASTA format. RootDigger is open
source, released under the MIT license, and written in C++, and is targeted at the
Linux platform. The code, documentation, test suite, as well as any modifications
to existing libraries can be found at github.com/computations/root digger.

In order to implement both, likelihood computations, and non-reversible models,
RootDigger has two major dependencies: Coraxlib (the successor to the Phylo-
genetic Likelihood Library [LibPLL] [23]), and L-BFGS-B [97]. Coraxlib is used
for efficient likelihood calculations and non-symmetric model computation, and L-
BFGS-B is used for substitution rate optimization.

3.4 Methods

The input to RootDigger is an MSA and a phylogenetic tree with branch lengths
in expected mean substitutions per site. RootDigger then uses the tree and branch

github.com/computations/root_digger
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lengths to find the most likely root location by calculating the likelihood of a root lo-
cation under a non-reversible model of DNA substitution3(specifically, UNREST [94]
with a user specified number of discrete Γ rate categories, and optionally a propor-
tion of invariant sites, i.e., UNREST+Γ+I). The UNREST model is used because
numerous other models (including models which are in the Lie group detailed in![91])
have been derived from this model. The optimal position of the root along a specific
branch of length t is calculated by splitting the given branch in two with resulting
branch lengths βt and (1 − β)t, with 0 ≤ β ≤ 1.0. We then find the maximum like-
lihood value of β, and report the likelihood for the given branch as the likelihood of
the root location on that branch. By formulating the problem this way, we can use
single parameter optimization techniques such as Brent’s method [6], which are com-
putationally more efficient compared to multi-parameter optimization routines such
as the L-BFGS-B algorithm (named for its creators: Broyden, Fletcher, Goldfarb,
and Shanno). Note that we specifically selected Brent’s method instead of New-
tons’s method, because it does not require the calculation of the second derivative
to optimize the function. While an analytical computation of the second derivative
could be implemented, initial estimates showed that the savings were insufficient
to justify the increased complexity and potential numerical issues. Nonetheless, in
principle, the computation of the second derivative of the likelihood is feasible and
could be implemented.

A potential problem of Brent’s and analogous methods is that they find extrema by
identifying roots for the derivative of the objective function. In order to find maxima,
though, it is required that the objective function’s value is also determined, as a root
of the derivative could correspond to a minimum. In addition, Brent’s method will
fail to find all extrema. To alleviate this, we need to search for bracketing windows
that can be used to safely find extrema. Unfortunately, we are not aware of a general
method for finding such bracketing windows, so a recursive method is employed,
were the search range is bisected and adequately searched for appropriate windows.
Appropriate here means that the sign of the function in question has opposite signs
at the respective endpoints of the window.

As already mentioned, RootDigger offers two modes of operation. These modes will
be discussed individually, starting with the search mode:

1. Initialize numerical model parameters:

• α-shape parameter for discrete Γ rates to 1.0 (if applicable),

• Character substitution rates to 1
4(4−1) = 1

12

3 Typically tree inference which uses AA data does not allow for using the fully unrestricted Gen-
eral Time Reversible (model) (GTR) rate matrix, instead picking from one of several precom-
puted empirical substitution matrices. This substantially limits the number of free parameters,
thereby reducing the risk for over fitting. In contrast, the fully unrestricted reversible AA rate
matrix would have 380 free parameters. Therefore, we choose to limit RootDigger to DNA
data because the equivalent model for AA data would have far too many parameters to reliably
optimize.
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• Base frequencies to 1
4

2. Generate starting roots according to one of the following strategies (default
1% of possible root positions)

• Modified MAD (Default) or,

• Randomly.

3. For each starting root:

a Optimize model parameters

• α-shape parameter for Γ distributed rates (if applicable, and only
every 10 iterations of root placement updates),

• Character substitution rates,

• Base Frequencies.

b Find the best root location for the current model

i. Create a list of high likelihood candidate root locations evaluated at
the midpoint of every branch.

ii. For the top root candidates (default 1%), optimize the root location
along their specific branch.

c Repeat from 3(a) until a stopping condition is met:

• The difference between likelihoods between the current iteration and
the previous iteration is sufficiently small (below user defined param-
eter atol, by default 1 × 10−4),

• If early stopping is enabled, the new root location is sufficiently close
to the old root location by distance along the branch (below user
defined parameter brtol, by default 1 × 10−12) or,

• More than 500 iterations have been exectuted.

4. Report the best found root candidate, along with its log-likelihood

In order to select the starting branches in search mode, we have developed two
strategies: modified MAD and random selection. When using modified MAD, we
compute the approximate MAD ranking for each branch via a simplified version of
the MAD algorithm for the purposes of computational efficiency. This approximate
metric is used to rank branches for selection as initial root positions. There is a
possibility that this option will bias the results, so we also provide a random branch
strategy for these cases.

During the search, we re-estimate the base frequencies in every iteration to suffi-
ciently optimize the likelihood, and because the cost of optimizing these parameters
is small (approximately 10% of overall run time). Furthermore, because we use a
non-reversible substitution matrix, the base frequencies might not be stable across
every branch of the tree. Therefore, to ensure a good fit, we need to re-optimize the



3.4. Methods 23

base frequencies every time. The algorithm for the exhaustive mode is analogous;
the core optimization routines are the same as in search mode. The major difference
is that now, all branches are being considered as starting branches:

1. For every branch on the tree:

a Place root at current branch.

b Initialize numerical parameters:

• α-shape parameter for discrete Γ rates to 1.0 (if applicable),

• Character substitution rates to 1
4(4−1) = 1

12

• Base frequencies to 1
4

c Optimize model parameters

• α-shape parameter for Γ (if applicable, and only every 10 iterations
of root search),

• Character substitution rates,

• Base Frequencies.

d Repeat from 1(c) until a stopping condition is met:

• The difference between likelihoods between this iteration and the
previous iteration is sufficiently small (below atol) or,

• If early stopping is enabled, the new root location is sufficiently close
to the old root location by distance along the branch (below brtol).

• More than 500 iterations have passed.

2. Report the tree in newick format with NHX annotations for every branch:

• The root position along the branch,

• The log-likelihood,

• and the Likelihood Weight Ratio [79].

We set to default the initial model parameters in every iteration (from (3) in search
mode and (1) in exhaustive mode) to avoid the numerous local minima, as discussed
in [36]. In both modes, there is an upper limit to the number of iterations of 500. In
empirical and simulated datasets this limit has never been reached, and only exists
to ensure that the program will eventually halt.

In addition to the two search modes, there is an optional early stop mode, which can
be combined with either of the root search modes. In this early stop mode, the search
will terminate if the root placement is nearly the same twice in a row. This is to
say, if the location of the best root position is on the same branch as in the previous
iteration and the value inferred for the root position along that branch is sufficiently
close to the position in the previous iteration, the program will terminate. While
the early stop optimization does improve rooting times substantially (approximately
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by a factor of 1.7 on some empirical datasets), the likelihood of each root placement
will not be fully optimized. In practice, this does not substantially affect the final
root placement, but it does render comparison of the likelihood with results from
other tools invalid.

We utilize both OpenMP [67] and MPI to parallelize parts of the computation.
First, we use the thread level parallelism of OpenMP to optimize each partition
(sections of the alignment which are given their own independent model parame-
ters) independently. If there are too few partitions present in the dataset to achieve
’good’ parallel efficiency, we also parallelize the transition matrix calculations over
the branches. We use process level parallelism to parallelize searches over the initial
search locations. This is most efficient in exhaustive mode, where there are many in-
dependent searches that can be carried out in parallel. To synchronize the processes,
the results from each independent search are written to an append only binary log
file. By using an append only file, synchronization of file locations is handled by
the underlying filesystem, simplifying multinode checkpointing. At the end of the
search, the results (root locations and their associated log-likelihoods, as well as the
associated model parameters) in the checkpoint filed are reviewed, and the final step
of finding the best root is performed by the master node. Using this strategy, we are
able to (with sufficient independent searches) achieve a ’good’ parallel efficiency of
0.58 (see figure 3.12). Furthermore, by using this append only logging method, we
can also implement checkpointing for the search. If the computations are interrupted
during the search, when the search is re-started, the previous results are taken into
account, and the search continues where it left off. In order to ensure that no write
corruption has occurred during writes to disk and that all writes are complete, a
checksum is computed. To compute the checksum, we use the Alder-32 algorithm,
which is implemented as a part of zlib [55]. To avoid a dependency on zlib for the
checksum RootDigger includes the algorithm in its own code base.

3.5 Results

To validate RootDigger, we conducted several experiments on both simulated and
empirical data. Furthermore, we also used the Likelihood Weight Ratio (LWR) [79]
to asses the confidence of root placements on empirical datasets. Finally, we inves-
tigated the effects of the early stop mode on the final results.

3.5.1 Experimental Design

In the following sections we will describe the experimental setup for both simulated
data and empirical data. Here, we will describe how we measured and computed
the error for each of the methods. For simulations and empirical data, we computed
the topological distance from the estimated root (by both IQ-TREE and RootDigger

in search mode) to the true root, and normalized it by the number of nodes in the
tree (both internal nodes as well as tips). If the correct root is picked, the distance
is zero. For empirical data, the true root was taken to be the root indicated by the
outgroup.
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Evaluating the exhaustive search mode is difficult, since to our knowledge there are
no other tools which perform the same task. Instead, we show the LWR distributions
of empirical data which have been annotated onto trees. Additionally, these trees
have the true root (again, as indicated by the outgroup) indicated.

3.5.1.1 Simulations

Tests with simulated data were conducted to both, validate the software, and to
compare against IQ-TREE version 2.0.4 [58] which also implements the non-reversible
UNREST model. We created a pipeline to

1. Generate a random rooted tree with ETE3 [37] and random model parameters.

• Substitution parameters for INDELible were generated by drawing uni-
formly between 0.01 and 1.01.

• Frequency parameters for INDELible were generated by an exponential
distribution and then normalizing the parameters so that the frequency
parameters sum to 1.

• Otherwise, options for INDELible were left to defaults.

• Branch lengths were generated via an exponential distribution using a
scale parameter of 0.5

2. Simulate an MSA with indelible [22] using uniformly distributed substitution
rates from 0.0 to 1.0 with 0.1 added to the result to prevent pathological
substitution rates

3. Execute RootDigger and IQ-TREE [58] with the simulated MSA, given the
generated random tree.

4. Repeat from (2) for a total of 100 iterations

5. Compute comparisons

a Calculated rooted RF distance with ETE3 [73]

b Mapped root placement onto original tree with the true root.

Both IQ-TREE and RootDigger were given the same model options for all runs.
RootDigger was executed with the arguments.

rd --msa <MSA FILE> --tree <TREE FILE>

By default RootDigger uses no discrete Γ rate categories, and currently only sup-
ports the UNREST model [94]. IQ-TREE was executed with the arguments

iqtree2 -m 12.12 -s <MSA FILE> -te <TREE FILE>
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The -m 12.12 argument to IQ-TREE specifies that the UNREST model should be
used [91] and the -te <TREE FILE> option constrains the tree search to the given
user tree. When given a fully resolved unrooted tree, this has the effect of rooting
the tree. We used this option to simulate the operation of RootDigger. For all runs,
the UNREST model was used. Furthermore, we vary two additional parameters to
control dataset size: the number of MSA sites and taxa. In total, we ran 9 simulated
trials with MSA sizes of 1000, 4000, and 8000 sites as well as tree sizes of 10, 50,
and 100 taxa. The results from these experiments, as well as the execution times,
are shown in Figure 3.1.

3.5.1.2 Empirical Data

In addition to simulated data, we conducted tests with empirical data using IQ-

TREE and additionally MAD [82]. The datasets used are described in Table 3.1
with additional statistics about these datasets provided in Table 3.2. The empirical
datasets were chosen from TreeBASE [69, 88] and helpfully provided by fellow re-
searchers [86] to include an existing, strongly supported outgroup. For each of the
empirical datasets, we ran RootDigger in exhaustive mode to calculate the Likeli-
hood Weight Ratio (LWR) for each branch. We ran the experiments on the datasets
with the outgroup included, as well as with the outgroup excluded.

We also performed some preprocessing. In order ensure that all branch lengths in
all trees used were specified in substitutions per site, the branch lengths were re-
optimized using RAxML-NG [45] version 0.9.0git. The original model was used
when known, otherwise the branch lengths were optimized under GTR+Γ4.

Annotations are suppressed for branches with a small LWR (less than 0.0001). The
trees with annotated LWR are shown in Figures 3.2 - 3.10. The analysis errors are
summarized in Table 3.3 and runtimes for each method are summarized in Table 3.4.

3.5.2 Effect of early stopping on result

Finally, we investigated the effect of the early stopping criterion on the final LWR
results. To do this, we ran RootDigger in exhaustive mode on all empirical datasets
with early stopping enabled and disabled. For most runs, the results with and
without early stopping showed no meaningful difference (difference in LWR less
than 0.000001). The dataset that showed the largest difference in LWR is shown in
Figure 3.11. In exchange, the runtime for this dataset with early stopping enabled
is about 1.7 times faster.

Run time improvements for early stopping in search mode are less pronounced. We
were not able to measure any large differences in results or speed in search mode
between early stopping enabled and disabled. We suspect that this is because the
speed gain from early stopping in exhaustive mode is primarily due to it “skipping”
low likelihood branches, which do not contribute significantly to the LWR.
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3.5.3 Parallel efficiency

Finally, we also evaluated the parallel efficiency of RootDigger. Figure 3.12 plots
the speedup (how many times faster than 1 node) vs perfect efficiency for dataset
DS7. We choose DS7 because it is one of the larger datasets at hand, and therefore
is ideal for displaying the strengths and weaknesses of RootDigger’s parallelization
strategy. Results were computed on a cluster, using MPI to communicate between
nodes with RootDigger’s exhaustive mode. The parallel efficiency ranges from 0.94
on 2 nodes, to 0.50 on 32 nodes, each with 16 cores.

3.6 Discussion

Compared to IQ-TREE, RootDigger performs competitively, as can be seen in both
sides of Figure 3.1. The results on simulations are mixed, with IQ-TREE performing
slightly better in terms of root placement under all simulated scenarios. RootDigger
is faster than IQ-TREE on all datasets we tested. When analysing empirical data,
RootDigger also performed well, though not as well as IQ-TREE or MAD for most
datasets, yet produced minimal errors in most cases. A notable exception is dataset
DS3, for which RootDigger obtained a better result than either MAD or IQ-TREE.
Examining the dataset with RootDigger’s exhaustive mode (see Figure 3.8), we see
that there is a number of branches with good likelihood weight support for a root
placement. This suggests that there is conflicting signal as to the root location for
this dataset, which naturally leads to confusion in generally reliable methods like
MAD.

In general, the exhaustive mode is more successful at identifying the correct root
location (see Figures 3.2, 3.3, 3.6, 3.7, 3.8, and 3.9). This is to be expected, since the
exhaustive mode performs a substantially more thorough search for the best root
location. Nonetheless, this shows that RootDigger is successful not only at identi-
fying the correct root location, but also at identifying any uncertainty or ambiguous
signal for the dataset at hand.

Parallel Efficiency of RootDigger is acceptable, but could be further improved. Cur-
rently, it seems that losses in efficiency are largely due to the fact that different initial
search locations require different amounts of time to complete. When this happens,
some of the nodes finish early, and must wait for the remaining nodes to complete
their computations. Due to this behavior, the parallel efficiency of RootDigger is
dataset dependent. Fortunately, this behavior generally only manifests itself when
each node has a small number of initial starting positions assigned to it. When this
is the case, small variations in runtime are not given a chance to “average out” over
many initial starting positions. In contrast, when a dataset is large with respect
to the number of taxa, the number of initial starting positions increases and conse-
quently the average time to complete computational work per node converges to an
average amount. Nonetheless, RootDigger could benefit from a heuristic method to
intelligently assign initial search locations to nodes. For example, a strategy that
could work is to compute initial likelihoods for each branch, and then assign each
core a roughly similar amount of total likelihood. The hope here is similar initial
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likelihoods are correlated with runtime, though this would need to be examined
before implementing such a heuristic.

3.7 Conclusions

In Huelsenbeck [36], it was shown that the prior probability of a root placement
on a sample tree did not have a strong signal when using a non-reversible model
of character substitution. While performing our verification of RootDigger using
empirical data, we found that this was often not the case. For example on the
AngiospermsCDS12 dataset (see figure 3.6), we found a clear signal for the root
placement, both with and without the outgroup.

Even in cases when the signal was not as strong, for example SpidersMitochondrial
(see figure 3.4), there is a substantially stronger signal for root placement than
the results in Huelsenbeck [36] would suggest we should obtain with this kind of
analysis (which is to say, analysis using a non-reversible model). Those results in
Huelsenbeck would suggest that we would essentially not be able to recover any
signal at all. Instead, the signal appears to be moderately strong, at least most of
the time, as RootDigger managed to obtain the correct root in 3 out of 8 empirical
datasets 100% of the time while using search mode. It is interesting to note the
ficus dataset, which showed at least marginal support for the root on nearly all
branches of the tree, but RootDigger nonetheless managed to correctly identify
the root using the exhaustive mode. We suspect that this is due to Huelsenbeck
performing the analysis on a 4 taxon tree with the distantly related taxa frog, bird,
mouse, and human. By only using 4 distantly related taxa, the rate matrix is less
constrained by the data present, which may lead to over-fitting. In contrast, for
“localized clades” we believe that we have shown that the methods presented here
will typically produce a clear signal for the rooting of a tree, and when they do
not we can identify such situations with the use of RootDigger’s exhaustive search
mode.
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Figure 3.1: Box plot of results and execution times for IQ-TREE and RootDigger

on simulated data with and without early stopping enabled.

Figure 3.2: SpidersMissingSpecies dataset analyzed without an outgroup. LWR is
the Likelihood weight ratio of placing a root on the branch. The true root branch
is indicated in red.
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Figure 3.3: SpidersMissingSpecies dataset analyzed with an outgroup. LWR is the
Likelihood weight ratio of placing a root on the branch. The true root branch is
indicated in red.

Figure 3.4: SpidersMitocondrial dataset analyzed without an outgroup. LWR is the
Likelihood weight ratio of placing a root on the branch. The true root branch is
indicated in red.

Table 3.1: Table of empirical datasets used for validation.

Name Dataset Original Model Model Used Source

DS1 AngiospermsCDS12 GTR+Γ UNREST + Γ4 [70]
DS2 AngiospermsCDS GTR+Γ UNREST + Γ4 [70]
DS3 Grasses GTR+ G4 + I UNREST + Γ4 [9]
DS4 Ficus GTR+ G UNREST + Γ4 [10]
DS5 SpidersMissingSpecies NAa UNREST + Γ4 [49]
DS6 SpidersMitocondrial NAa UNREST + Γ4 [49]
DS7 Beetles GTR+G4 UNREST + Γ4 [86]
DS8 BeetlesHomogeneous GTR+G4 UNREST + Γ4 [86]
a The paper states that PartitionFinder was used, but the results were not provided.
b The dataset is partitioned, and the partition file was provided. UNREST was used
instead of any substitution matrices, but invariant sites and rate categories was
preserved.
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Figure 3.5: SpidersMitocondrial dataset analyzed with an outgroup. LWR is the
Likelihood weight ratio of placing a root on the branch. The true root branch is
indicated in red.

Figure 3.6: AngiospermsCDS12 dataset analyzed without an outgroup. LWR is the
Likelihood weight ratio of placing a root on the branch. The true root branch is
indicated in red.

Figure 3.7: AngiospermsCDS12 dataset analyzed with an outgroup. LWR is the
Likelihood weight ratio of placing a root on the branch. The true root branch is
indicated in red.
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Figure 3.8: Grasses dataset analyzed without an outgroup. LWR is the Likelihood
weight ratio of placing a root on the branch. The true root branch is indicated in
red.
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Figure 3.9: Beetles dataset analyzed without an outgroup. LWR is the Likelihood
weight ratio of placing a root on the branch. The true root branch is indicated in
red.

Figure 3.10: BeetlesHomogeneous dataset analyzed without an outgroup. LWR is
the Likelihood weight ratio of placing a root on the branch. The true root branch
is indicated in red.

Table 3.2: Table of statistics for the emperical datasets.

Name Tree Diametera Root Branch Lengthb Ratioc #Genes #Taxa #Sites

DS1 1.1204 0.2276 0.203 1308 35 864,029
DS2 0.5236 0.1089 0.208 1308 35 1,296,043
DS3 0.6657 0.0856 0.129 3 245 4,973
DS4 0.0985 0.0316 0.320 5 200 5,552
DS5 0.0628 0.0099 0.158 1019 33 1,097,842
DS6 0.4189 0.0283 0.068 15 34 12,479
DS7 2.5334 0.0842 0.033 2948 14 4,098,894
DS8 1.6601 0.0539 0.032 101 14 186,499
a Defined here to be the longest path between two taxa.
b The length of the root branch if the tree was unrooted.
c Root Branch Length over Tree Diameter.
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Table 3.3: Table of empirical datasets used for validation and
results. RD Distance and IQ Distance are the average topo-
logical distances over 100 runs from the inferred root to the
true root normalized by the number of nodes (both tips and
internal nodes). Similarly for MAD the distance is also nor-
malized by the number of nodes but only 1 iteration was
performed.

Dataset RD Distanceabc IQ Distancea MAD Distance

DS1 0.000 0.000 0.000
DS2 0.075 0.000 0.000
DS3 0.002 0.004 0.025
DS4 0.038 0.005 0.003
DS5 0.000 0.000 0.000
DS6 0.031 0.015 0.000
DS7 0.000d 0.000 0.000
DS8 0.158 0.000 0.000
a Averaged over 100 independent executions
b In early stop mode
c In search mode
d Results obtained using UNREST (without rate categories)

Table 3.4: Table of empirical datasets used for validation and results. Search
and Exhaustive times are for the respective modes of RootDigger.

Dataset Search Timeab IQ-TREE Timeac Exhaustive Time MAD Time

DS1 8.1m 48m 340m 0.00m
DS2 24m 114m 554m 0.00m
DS3 2.5m 1.5m 123m 0.02m
DS4 0.4m 0.4m 45m 0.00m
DS5 6.8m 25m 162m 0.00m
DS6 0.2m 1.5m 7m 0.00m
DS7 167md 327m 441m 0.00m
DS8 4.8m 19.2m 81m 0.00m
a Averaged over 100 independent executions
b In early stop mode
c In search mode
d Time obtained with UNREST+G4 (with rate categories)
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Figure 3.11: Effect of early stopping on results. Dataset is SpidersMitocondrial and
has the largest observed difference of LWR between with and without early stopping.
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Figure 3.12: Plot depicting parallel efficiency, which is log nodes vs log speedup.
Trials were run on 1, 2, 4, 8, 16, and 32 nodes with 16 threads per node using DS7
in exhaustive mode with early stopping turned off. The parallel efficiency ranges
from 0.94 on 2 nodes to 0.50 on 32 nodes.



4. Phylourny

This chapter is based on the following peer-reviewed software article:

Ben Bettisworth, Alexander I. Jordan, Alexandros Stamatakis. “Phy-
lourny: Efficently Calculating Elimination Tournament Win Probabilities
via Phylogenetic Methods” Statistics and Computing, Volume 33, Issue 4,
pp. 80, https://doi.org/10.1007/s11222-023-10246-y

Amongst all unimportant subjects,
football is by far the most
important.

Pope John Paul II

4.1 Introduction

Predicting the per-team win probabilities of a knock-out tournament (alternatively
bracket-based or elimination tournament) given a pairwise win probability matrix P ,
can become computationally expensive if a high degree of numerical accuracy shall
be attained. In some cases the prediction will need to be computed thousands or
even millions of times, for instance, to quantify the impact of slight perturbations of
the pairwise win probability matrix P on the per-team tournament win probability.
Given a tournament with n teams, one needs to evaluate a polynomial with ≈ 2n

terms to fully and exactly calculate the tournament win probability for a specific
team via a näıve implementation (see the Section 4.2.1 for details). To calculate
this tournament win probability for every team, an additional n such polynomials
must be evaluated. Alternatively, one typically deploys stochastic simulations (again

https://doi.org/10.1007/s11222-023-10246-y
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given a pairwise win probability matrix P ), over the tournament tree to approximate
the per-team win probabilities. Typically, this is computationally more efficient
than computing the aforementioned polynomial, but comes at the cost of reduced
numerical precision of the results [12, 17].

Prior work for predicting knock-out tournaments has generally focused on producing
accurate outcomes, and not on the efficiency of the simulations per se. Consequently,
these works generally deploy a statistical model of pairwise match win probabilities
to predict match winners, such as the Bradley-Terry model, or an Independent Pois-
son Model which is also used in this work. Using such models, parameters are in-
ferred from historic matches, and these parameters are subsequently used to predict
the outcome of individual tournament matches [27, 50]. Alternatively, researchers
have attempted to devise models for directly predicting the final ranking of teams
in a tournament without taking into account the tournament (tree) structure [83].
These models generally only infer a few sets of parameters, that is, only the most
likely outcome is used to generate a prediction.

In the following, we propose a novel algorithm to efficiently (O(n2) which trans-
lates to a runtime improvement by 2-4 orders of magnitude) and exactly compute
win probabilities for single elimination tournaments, given a square pairwise win
probability matrix P . Our method was inspired by an observation [93] that the
Felsenstein Pruning Algorithm [21] can more generally be interpreted as an efficient
way to compute polynomials of a high degree. We implement and make available our
new method in an open source software tool named Phylourny (the name is a pun,
on the words phylogeny and tournament). We experimentally demonstrate the or-
der(s) of magnitude runtime improvement of Phylourny over stochastic tournament
simulations and näıve evaluations of the polynomials. We also experimentally deter-
mine the differences in numerical accuracy between Phylourny and the stochastic
simulation approach.

Finally, we showcase the new predictive possibilities that emerge through this in-
crease in computational efficiency. By example of two recent tournaments, one with
a large amount of data and one with a small amount of data (a basketball and
football tournament respectively), we show how slight yet reasonable perturbations
of P affect prediction uncertainty by calculating millions of tournament win proba-
bilities within hours on a standard laptop. The main contribution of this paper is
the substantially more computationally efficient approach to computing tournament
win probabilities given a pairwise win probability matrix P . To this end, in our
case studies we deploy a simplified version of a standard model from [50] to compute
P but do not propose improved approaches for computing P . Instead, we show
to which extent slight alterations of P affect tournament win probabilities. Such
studies are now feasible in acceptable times with Phylourny.

4.2 Methods

We initially describe our algorithm for exactly and efficiently calculating the tourna-
ment win probabilities in Section 4.2.1 and provide software implementation details
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Figure 4.1: A single elimination tournament with n := 4 teams.i) A set of exam-
ple team strength parameters. ii) The P matrix created from the team strength
parameters using a simplified likelihood model, where win probabilities are equal to
ra/(ra + rb). iii) A tournament with computed Win probability vectors (WPVs).

in Section 4.2.2. Thereafter, we describe our simple models for calculating reason-
able P matrices in Section 4.2.3 and outline how we deploy Markov Chain Monte
Carlo (MCMC) sampling in 4.2.4 to quantify the prediction uncertainty induced by
slight alterations of P .

4.2.1 The Phylourny Algorithm

We initially provide some definitions and introduce some notation.

The Win probability vector (WPV) for a given node in the tournament tree is a
vector containing the probabilities of observing a specific team at that node, denoted
by R ∈ [0, 1]n, where n is the number of teams. Evidently, all tournament tree nodes
below the tournament final, that is, the root of the tree, will comprise some entries
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that are equal to zero with the leaves being represented by the canonical unit vectors.
For an illustration, see panel iii) in Figure 4.1.

Let Pa⊢b ∈ [0, 1] denote the pairwise probability of team a winning over team b in a
single match, that is, the probability that “team a beats team b”. By convention, we
define Pa⊢a = 0 for any team a. In the simplest tournament with only two teams, a
and b, there is only a single match. The pairwise win probability matrix is given by

P =
(

Pa⊢a Pa⊢b

Pb⊢a Pb⊢b

)
,

and the WPV for the single node in this tournament is

R = (Ra, Rb) = (Pa⊢b, Pb⊢a). (4.1)

Because this constitutes a trivial case, the calculation is straight-forward. To re-
cursively extend this to larger trees, we rewrite the above expression by also using
the respective child nodes. First, we introduce the child WPVs as V = (1, 0) and
W = (0, 1) leading to the expression

Ra = (Pa⊢a × Wa + Pa⊢b × Wb) × Va (4.2)

for the win probability Ra of team a, assuming the team can only enter the match
via the first child of the node as indicated by Va = 1 and Wa = 0. As such, Pa⊢a ×Wa

vanishes regardless of the value of Pa⊢a, and Eq 4.2 reduces as given in Eq 4.1.

In general, for any number of teams n, the WPV R at any given node can be
calculated from the respective child node WPVs V and W and the pairwise win
probability matrix P as

R = V ⊙
(
WP ⊤

)
+ W ⊙

(
V P ⊤

)
, (4.3)

where ⊙ denotes the element-wise product. Please note that Eq 4.3 is a generalized
restatement of Eq 4.2 using matrix and vector notation, and accounts Thereby, we
account for any team entering the match via either child, but for single elimination
tournaments at most one of Va and Wa can be positive as each team only has
one route to the finals (and thereby to this node). The WPV at the root can be
efficiently computed via a post-order traversal of the tournament tree, that is, by
computing WPVs at the nodes bottom-up from the tips/leaves toward the final/root.
Figure 4.1 depicts a simple example with the pairwise win probabilities calculated
by normalizing relative team strengths.

In some tournaments, Pa⊢b will correspond to a “best of k” series of play-off matches
instead of a single match, as for example in the National Basketball Association
(NBA) playoffs. Further, this k can vary over the duration of the tournament since
early matches are often “best of 1” with k := 1, whereas later matches might be
“best of 5” with k := 5. We can seamlessly account for this by introducing P (k), a
node-dependent pairwise win probability matrix for a “best of k” series.
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4.2.2 The Phylourny Software

The open-source C++ implementation of our algorithm is available via GitHub at
https://github.com/computations/phylourny under GNU GPL version 3.0. The
software only requires CMake to build and git to download. Phylourny also imple-
ments stochastic (that is, simulation based) as well as näıve polynomial tournament
win probability calculations for the sake of conducting run time and numerical preci-
sion comparisons. Finally, it also offers the simple models for devising reasonable P
matrices and conducting Markov Chain Monte Carlo (MCMC) sampling presented
in the following Sections 4.2.3 and 4.2.4. Finally, Phylourny has a software qual-
ity score of 7.7 as rated by the software quality analysis tool SoftWipe [96], which
places Phylourny in the top 10% of scientific software tools included in the SoftWipe
benchmark. Version v1.2.1 was used to perform the uncertainty analyses presented
here.

Computing the P matrix based on the Poisson likelihood model (which is discussed
in the next section) is comparatively computationally expensive. Therefore, to expe-
dite these computations, we parallelized the computation of the likelihood over the
historic matches using OpenMP [68]. Despite this parallelization, the computation
of the likelihood score still accounts for approximately 90% of the overall run time
of the Poisson model based MCMC analysis.

To perform an analysis with Phylourny, a list of teams who will participate in
the elimination tournament needs to be provided as an input file. Phylourny can
then compute a win probability when given a probability matrix P , which must be
provided as a CSV file. Alternatively, Phylourny can conduct an MCMC search
of the parameter space of the Independent Poisson Likelihood Model (discussed in
Section 4.2.3). In this case, a list of historical matches needs to be provided in a CSV
file. The results from the MCMC search will be summarized in 3 output files with
three different summaries: the maximum likelihood prediction (MLP) which is the
prediction using the parameters with the highest likelihood; the maximum marginal
posterior prediction (MMPP) which is the prediction averaged over all posterior
samples; and the list of samples taken from the posterior during the MCMC search.
The MLP and MMPP are discussed in more detail in Section 4.2.4.

4.2.3 The Independent Poisson Likelihood Model

The success of a tournament prediction heavily relies on the P matrix, that is, the
methods used to calculate and also the data used to evaluate its likelihood. Thus,
improved methods for obtaining this matrix constitute an active area of research.
Improving upon them is beyond the scope of this thesis [31, 38, 42, 52]. As a simple
yet effective reference model, we adapt the“Independent Poisson Model” from [50] to
model the pairwise win probabilities based on historical match data. In a nutshell,
two competing teams are assumed to independently score points under respective
Poisson distributions, with parameters driven mainly by the difference of the teams’
strengths. The win probability of a team is the probability to score more points
than the opponent as given by the Skellam distribution that describes the difference
between two independent Poisson random variables.

https://github.com/computations/phylourny
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Our version of the Independent Poisson Model is a straightforward implementation
of the model described in [50], slightly modified by removing the constraint that
the team strength parameters need to sum to zero. During our MCMC search, we
constrain the strength parameters to be between 0.0 and 1.0, which has a similar
effect. Additionally, we remove the distinction between home and away games to
further simplify the model. A home advantage parameter could be integrated into
the model in a future version of Phylourny. Let M denote a series of historical
matches (a, b, ga, gb), where a and b are the teams and ga and gb are the goals scored
by each team, respectively. Then, the likelihood of the Independent Poisson Model
is given by

L(R, ρ) =
∏

(a,b,ga,gb)∈M

(
λga

a⊢b

ga! e−λa⊢b × λgb
b⊢a

gb!
e−λb⊢a

)
, (4.4)

where R = (ra, rb, . . . ) ∈ [0, 1]n is the parameter vector of team strengths that reflect
the skill levels of each team, and ρ ∈ R represents an “average” skill level among all
teams in the Poisson parameter

λa⊢b = era−rb+ρ.

The expression in Equation 4.4 is useful to describe the model. However, it is un-
suitable for computation in general as many sports have score counts which are
substantially larger than that of football. For example, basketball scores are gen-
erally 10-80 times higher. The issue is that when scores are large, some terms in
the computation simultaneously become very large (for example ga!) and very small
(for example e−λa⊢b). This introduces substantial numerical deviations, which can
potentially be amplified by the MCMC search, as it might sample numerical error
under unfavorable conditions. If numerical deviations yield likelihoods scores that
are better than the exact analytical likelihood scores, the MCMC search will prefer-
ably sample points in parameter space that maximize the numerical error. While
a strong prior can prevent this in many cases, it is preferable to devise more nu-
merically stable computations, to prevent this type of potential error a priori. To
alleviate this, we deploy the standard solution to reduce numerical error by com-
puting the log-likelihood instead. As we show, this provides sufficient numerical
stability to also apply this model to basketball.

Additionally, the particular model we use for the sake of the example, might likely
not be correct for many sports, including basketball. This is because a Poisson
distribution always has a mean equal to its variance. However, this assumption does
likely not hold for sports such as basketball, where the score variance is generally
much smaller than the score mean. For example, in the dataset for the basketball
tournament we analyze later in this work, the mean score is ≈ 70 and the standard
deviation is ≈ 12. Nonetheless, we choose to use the Independent Poisson Model as
it strikes a good balance between realism and simplicity to substantiate our claims
that novel types of statistical analyses are feasible because of the computational
savings of Phylourny.

While we do present and implement as open-source code the Independent Poisson
Model here and use this model for MCMC analyses (see below), Phylourny does by
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Figure 4.2: Diagram showing an MCMC step for Phylourny. The function L(·|H)
denotes the likelihood function and θi denotes the parameters of the model for the
matrix P . For the Independent Poisson Model, θ comprises R and ρ and L(θ|H) =
L(R, ρ) from Eq 4.4. The decision whether to accept θi+1 depends on the prior
(and in the case of a Hasting correction the proposal distribution) in addition to the
likelihood. Solid borders represent inputs to the algorithm, while dashed borders
steps of the algorithm.

no means rely on this particular model. In fact, any model which can compute a
pairwise win probability matrix P can be used. Furthermore, any parametric model
can be used to perform the MCMC analyses we describe next.

4.2.4 Sampling the P Matrix via MCMC

To generate a sample of reasonable P matrices that accurately reflect a given match
history and to quantify the uncertainty of the tournament win probabilities at the
WPV of the final, we deploy MCMC sampling via the Metropolis-Hastings algo-
rithm [57]. A diagram showing an example sampling step is given in Figure 4.2.

At each MCMC step, a new set of model parameters for the Independent Pois-
son Model is proposed yielding a new pairwise win probability matrix P ′, and the
likelihood of these parameters is computed, i.e. L(R, ρ). If the proposed model pa-
rameters are accepted, then the WPV of the tournament is computed under P ′ and
recorded as a sample together with the likelihood of the corresponding model. Op-
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tionally, the sample set can be thinned for saving disk space by taking a sample only
every n generations.

At the start of the MCMC chain, all parameters are initialized (that is, the team
strengths ri and the scale parameter ρ) to 0.5. In each MCMC step, a parameter
is selected at random with equal probability. If a team strength r is selected, then
a new strength r′

i is proposed according to a Beta distribution with α := β := 1.5.
The corresponding density function is denoted by b1.5. If the average strength ρ is
selected, then a new average strength ρ is proposed by adding a value drawn from
a Normal distribution with µ := 0.0 and σ := 0.1, or simply ρ′ ∼ N (ρ, 0.12). Both
proposal functions have no particular meaning, and could be replaced with other
proposals so long as they satisfied a few requirements. First, the average skill level
ρ must be allowed to vary to any value in R. Second, the strength parameters
can be shifted, as a group, by some constant and still have the same likelihood.
Therefore, to improve convergence of the chain, we found it best to constrain the
strength parameters by using a proposal with a single mode, which has the effect of
preferring an average relative strength of 0.5. We could have implemented this as
a prior with the same requirements on the strength parameters, however we found
it simpler to satisfy these requirements with the proposal than to implement these
requirements as a prior distribution.

The proposal process is symmetric in the average strength, but non-symmetric in
any team strength, so we calculate the Hasting’s ratio as 1 and b1.5(r)/b1.5(r′), re-
spectively. The acceptance ratio is then computed as the product of the likelihood
ratio, the prior ratio, and the Hasting’s ratio. A value for the acceptance ratio larger
than 1 is reduced to 1. We accept a proposed new team strength with a probability
that is equal to the acceptance ratio. We implemented and tested several priors
including a Normal distribution, a Beta distribution, and an Uniform Distribution.
None of the priors had a strong effect on the results, so we chose to use a Uniform
prior, for the sake of simplicity. Finally, we sample the chain every 100 genera-
tions in order to thin the samples. Thinning is performed so that some result files,
particularly the file containing the samples, do not become excessively large.

The MCMC sampling procedure should be continued until the chain has reached
“apparent convergence” as true convergence can only be attained if the MCMC sam-
pling is executed infinitely. Further, only the lack of convergence can be assessed
via appropriate diagnosis tools. Hence, as assessing the convergence of MCMC is
impossible, in our experiments, we only draw a fixed number of samples. However,
computing the WPV of a single sample using Phylourny is computationally inex-
pensive. Therefore, we are able to compute an extremely large number of samples
within an acceptable amount of time. For a football tournament with n := 16 teams
(the UEFA 2020 knock-out stage), we can evaluate 10 million proposals under the
Independent Poisson Model which result in exactly 100 thousand WPV samples
after thinning, within approximately 51 seconds using a standard laptop. This cor-
responds to approximately 1961 exact calculations of the tournament final WPV
and 196, 078 likelihood evaluations per second. We believe that using 100 thousand
samples is justified, as the state space for this specific tournament is not excessively
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large, and should be sufficiently sampled with this number of samples, particularly
since we explore the parameter space for ≈ 10 million generations.

We discard the first 10 thousand samples (10% of samples) as burn in to compute
summary statistics. Once we have obtained all sampled WPVs from the MCMC
procedure, we can compute two predictions: the maximum likelihood prediction
(MLP), or the maximum marginal posterior prediction (MMPP). The MLP is sim-
ply the prediction given by the P matrix that yielded the highest likelihood score,
whereas the MMPP is the average prediction over all samples. Because an MCMC
procedure will sample the posterior with a probability distribution hopefully approx-
imating the true posterior, the average over all samples is approximately the average
of the posterior. The difference between these two predictions is one of philosophy
rather than mathematics, as they encapsulate distinct interpretations about what
“really” matters. The school of thought advocating the MLP, claims that the only
thing that matters is the most likely outcome, regardless of the underlying distribu-
tion, whereas the school of thought supporting the MMPP claims that the totality
of evidence is what matters.

4.3 Case Studies, Experimental Setup, and Hardware
We showcase and assess the runtime and the numerical performance of our method
on two historical tournaments. We apply Phylourny to the 2020 UEFA European
Football Championship (UEFA 2020) and the 2022 NCAA Division I Men’s Bas-
ketball Tournament (NCAA 2022) to perform an uncertainty analysis on the tour-
nament results. As input to Phylourny we use historical match data from games
played prior to the elimination phase to conduct MCMC searches, as described in
Section 4.2.4.

We chose the UEFA 2020 and NCAA 2022 tournaments for several reasons which
we think best allow us to showcase our method. First, UEFA 2020 and NCAA 2022
cover different sports, which allows us to show that Phylourny is not dependent
on a specific sport. Second, UEFA 2020 and NCAA 2022 have very different sizes,
as UEFA tournaments have a small number of competitors (typically 16 teams)
while NCAA tournaments have a large number (64 teams). Finally, the amount
of historic match data available for NCAA tournaments is generally much more
extensive than that of UEFA tournaments as NCAA has an extensive playoff season
with teams which are permanently established. Therefore, UEFA 2020 is the “small”
case and NCAA 2020 is the “large” case. These two cases represent the extremes
of tournament configuration in terms of size and matches before the tournament.
Therefore they allow us to explore the entire range of Phylourny’s performance.

All input data and relevant output files of Phylourny for the experiments that we
describe in more detail below are available at https://github.com/computations/
phylourny.

4.3.1 UEFA 2020 and NCAA 2022 historical match input data

We used the group stage matches for UEFA 2020 to perform our analysis. These
matches are played in order to determine the “seeding” for the knockout round. In

https://github.com/computations/phylourny
https://github.com/computations/phylourny


46 4. Phylourny

order to support UEFA 2020 representing the “small” case, we elected to not include
qualifying round data, which are the matches played in order to determine who will
enter the group stages. There were a total of 37 games, including games played to
break ties which arose during the group stage, which we included as historical match
data in our analysis.

Because there is a more extensive pre-season to what is colloquially referred to as
“March Madness” in the U.S. when compared to qualifying rounds for football tour-
naments, there is a more extensive dataset we can use for likelihood calculations.
Therefore, a total of 1795 matches were eligible, that is involving at least one team
which participated in the NCAA 2022 tournament, for use in our uncertainty anal-
ysis.

4.3.2 MCMC Analyses

As described in Section 4.2.4, the search was conducted via the Metropolis-Hastings
algorithm [57]. For the UEFA 2020 and NCAA 2022 uncertainty analyses, 100,000
samples were collected with thinning enabled. We present summary statistics for
the most likely of these samples (the 99.9%-ile) for the UEFA 2020 and NCAA 2022
analyses in Figures 4.3 and 4.4, respectively.

4.3.3 Hardware used and Build Parameters

We used a Intel i7 CPU with 4 cores clocked at 2.8 GHz with 16 GiB of memory
for all computational experiments. We used GCC version 12.1.1 [25] and CMake
version 3.23.3 to build Phylourny. Phylourny was built using and was built as
well as executed for the purposes of analysis on Linux 5.18.16.

4.3.4 Numerical Error Assessment

We also investigate the numerical error when using simulations to compute a WPV.
To this end, we produced a sample of 1000 P matrices from an MCMC search for
each of the two tournaments. The P matrices were sampled uniformly from the
respective MCMC chains, after discarding the first 10% of samples as burn-in. For
each sampled P matrix, we compute both the exact WPV using Phylourny, as
well as an estimate using one hundred, one thousand, ten thousand, one hundred
thousand, and one million simulations. For these estimates, we report both the
relative error, which is

Mean

(∥∥∥∥∥WPVsim,i − WPVphy,i

WPVphy,i

∥∥∥∥∥
)

where WPVsim is the WPV computed using simulations and WPVphy is the WPV
computed using Phylourny. We also report the norm error, which is

∥WPVsim − WPVphy∥
∥WPVphy∥

.
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The results from these analyses are summarized in Table 4.3.

Additionally, we also conduct the same uncertainty analysis as described in Sec-
tion 4.2.4 for both the UEFA 2020 and NCAA 2022 tournaments, but using simula-
tions to estimate the WPVs instead of Phylourny. Results from these analyses are
presented in two plots in the Figs 4.6 and 4.7.

4.3.5 Run time comparison

Finally, we also compare the runtimes of Phylourny with other methods (simulations
and näıve computation) for computing the tournament WPV. Using the sample of
1000 P matrices produced in Section 4.3.4 we also recorded the execution time for
each method: Phylourny, Näıve, and Simulations. For comparison we only use 1000
simulations, which corresponds to a norm error of > 0.1 on the UEFA 2020 dataset
(see Table 4.3). While 1000 simulations are fewer simulations than one would utilize
in a rigorous analysis, it is an appropriate choice as even this inaccurate level of
simulation is less time efficient than Phylourny. The results from these runtime
experiments are summarized in Figure 4.8.

4.4 Results

The analysis of the UEFA 2020 tournament with 16 teams required 51 seconds for
100,000 samples (generated via 10,000,000 MCMC steps), by executing the paral-
lelized Poisson likelihood model using 4 cores on our test hardware system. The
likelihood model calculations accounted for 90% of overall runtime. The analysis of
the NCAA 2022 tournament required ≈ 1.5 hours for 100,000 samples (generated
via 10,000,000 MCMC steps) and also using 4 cores. The difference in runtime is
due to the substantially larger amount of data (≈ 48 times more historical match
data when compared to the UEFA 2020 analysis) used to compute likelihoods for
NCAA 2022. Approximately 80% of the runtime increase can be attributed to the
larger historical match dataset used. In addition, there are 64 instead of 16 teams in
the NCAA tournament, which increases the time required to compute tournament
WPVs and the P matrix. The NCAA 2022 MCMC search achieved an acceptance
ratio of ≈ .17, while the UEFA 2020 MCMC search achieved an acceptance ratio of
≈ .67.

In Figures 4.3 and 4.4 we summarize the results of the uncertainty analyses using the
thinned samples from the MCMC search. We plot the results from their respective
analyses, restricted to the top 0.1% (i.e., top 100 WPVs by log- likelihood) of samples
by likelihood for UEFA 2020 and NCAA 2022. Additional summary statistics for
these top 0.1% samples are shown in Table 4.1. Summary statistics for the entire
thinned sample from the MCMC search set are presented in the Table 4.2.

Notable results include the correct identification of the winner for UEFA 2020 (Italy)
and the high ranking for NCAA 2022 winner (Kansas) tournaments, who both re-
ceive a high median win probability in the uncertainty analysis. This is shown in
Fig 4.3 for UEFA 2020 and in Fig 4.4 for NCAA 2022 probabilities.
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Figure 4.3: Probabilities for each team winning the UEFA 2020 tournament. The
samples summarized are the top 0.1% percent of samples by likelihood from our
100,000 MCMC samples.

Mean STD Min Median Max

UEFA -98.92 0.27 -99.22 -98.99 -97.91
NCAA -13800.04 1.99 -13802.38 -13800.75 -13793.86

Table 4.1: Summary statistics for the samples from the uncertainty analysis. Values
shown are Log-Likelihoods of samples taken during the MCMC search for the UEFA
2020 and NCAA 2022 uncertainty analysis which have been restricted to the 99.9%-
ile.

Mean STD Min Median Max Samples

UEFA -105.18 2.45 -119.04 -104.99 -97.91 90,000
NCAA -13842.15 14.00 -13901.66 -13841.72 -13793.86 90,000

Table 4.2: Summary statistics for the full uncertainty samples. Values shown are
Log-Likelihoods of samples taken during the MCMC search for the UEFA 2020 and
NCAA 2021 uncertainty analysis.



4.4. Results 49

Figure 4.4: Probabilities for teams winning the NCAA 2022 tournament. The
samples summarized are the top 0.1% percent of samples by likelihood from our
100,000 MCMC samples.
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Dataset Simulation Samples Median Relative Error Norm Error
100 0.727 0.691

1,000 0.232 0.216
NCAA 2022 10,000 0.073 0.069

100,000 0.023 0.022
1,000,000 0.007 0.007

100 0.211 0.273
1,000 0.066 0.086

UEFA 2020 10,000 0.020 0.027
100,000 0.007 0.009

1,000,000 0.002 0.003

Table 4.3: Simulation error for computing a WPV with an increasing number of
samples for NCAA 2022 and UEFA 2020. We used a sample of 1000 P matrices
from an MCMC search for each tournament. Matrices were randomly sampled at
uniform from an MCMC chain after discarding the first 10% as burn-in. In this
table we report the mean of the 1000 samples.

Figure 4.5: Plot of simulation errors with respect to number of simulations con-
ducted for NCAA 2022 and UEFA 2020. We sampled 1000 P matrices from an
MCMC search for each tournament. Error bars represent 1 standard deviation.
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Figure 4.6: Win probabilities for the top 99.9% of samples by likelihood for UEFA
2020, computed with simulations

We present the run times of three methods of computing WPVs in Figure 4.8. Our
method, Phylourny, performs the best (mean runtime 15 µs and 599 µs for UEFA
2020 and NCAA 2022 respectively). For smaller tournaments like UEFA 2020 we
also found that it was faster to evaluate win probabilities näıvely (1413 µs) rather
than conduct 1000 simulations (2111 µs). However, this does not hold for larger
tournaments like NCAA 2022, where we were unable to obtain a result for the näıve
computation, even after 2 hours (≈ 7.2 × 109µs) of run time, whereas conducting
1000 simulations was feasible (15010 µs). To obtain these runtimes, we conducted
1000 simulations, which corresponds to a median relative error of ≈ 7% in the case
of small tournaments like UEFA 2020. Of all the methods tested here, Phylourny
remains the least computationally expensive by ≈ 2 orders of magnitude.

4.5 Discussion

We have shown that the problem of predicting tournament winners is sufficiently
similar to phylogenetic likelihood calculations such that analogous computational
techniques can be applied. We have demonstrated this by developing methods in-
spired by computational phylogenetics to predict tournaments, and that applying
these methods yields substantial computational speedups. In addition, we can cal-
culate the final WPV of a tournament exactly, instead of using simulations to ap-
proximate it. This also allows, for instance, for a seamless deployment of MCMC
methods as illustrated by our uncertainty analysis examples for the UEFA 2020 and
NCAA 2022 tournaments.

Finding the appropriate method to infer an accurate pairwise win probability matrix
P remains a challenge. Modeling sports in a way that will accurately determine the
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Figure 4.7: Win probabilities for the top 99.9% of samples by likelihood for NCAA
2022, computed with simulations. 1000 simulations per sample was utilized to
produce an estimate of the win probability of each team.
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Figure 4.8: Tournament evaluation times for the different computation methods
for 1000 sampled P matrices. Matrices were sampled according to the procedure
described in Section 4.3.4. Times are reported as µs with a log scale. UEFA 2022
Simulation mean: 2111 µs, Näıve mean: 1413 µs, Phylourny mean: 15 µs. NCAA
2022 Simulation mean: 15010 µs, Phylourny mean: 599 µs. We did not obtain a
time for the Näıve mode using NCAA 2022 as the time required to compute even
a single evaluation was prohibitive. 1,000 simulations were conducted for these run
time measurements.

probability of a specific outcome is difficult. Private industry (bookmakers) as well
as academic researchers have invested considerable effort into methods to predict
the outcome of sports matches [43, 53]. These investigations are beyond the scope
of our work, and we intentionally do not address more complicated pairwise win
models. Instead, we have showcased that comparatively simple models, such as
the Independent Poisson Model which was further simplified from its form in [50],
perform well when the uncertainty of the estimated model parameters is taken into
account.

One may also argue that using the same P matrix through all stages of the tour-
nament constitutes a simplification. In reality, the probability of a team beating
another team most likely does not remain constant in the course of a tournament.
Additionally, win probabilities might not remain constant for all matches in a “best
of k” series. For some sports, particularly in the rising field of e-sports, adapted
strategies will develop over the course of a series of repeated matches between two
teams.

Despite these two (over-)simplifications, the ability to compute a WPV for a tourna-
ment both exactly and efficiently is highly useful, as advanced methods of analysis
normally will require an exact result in order to be applicable. For example, when
sampling from a posterior using an MCMC search using a complex model, it is
desirable to have an accurate result for each sample, as this reduces the number of
samples required to produce an accurate estimate of the posterior. While a sufficient
degree of accuracy can be obtained via an appropriately large number of simulations,
this approach is computationally expensive and will eventually become prohibitive.
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Case in point, using the execution times measured in Fig 4.8, the uncertainty analysis
for NCAA 2022 which took approximately 1.5 hours with Phylourny would have
taken approximately 5 hours using 1000 simulations per sample. However, in this
case, 1000 simulations would correspond to a median relative error of ≈ 22%. To
achieve a more acceptable error level, 10,000 simulations could be used per sample,
but this would increase the expected runtime to ≈ 40 hours. We demonstrate that
we can efficiently conduct such an analysis by implementing our own comparatively
simple MCMC analysis of the UEFA EURO 2020 football tournament.

Additionally, Phylourny is model agnostic, which allows for more complicated mod-
els to be implemented. An example is to add a time element to the Independent
Poisson Model, which increases the likelihood contribution of more recent matches
when compared to older matches. In fact, this time element might be an acciden-
tal reason why our prediction of the UEFA 2020 is accurate, as we only include
the group stage matches where Italy performed surprisingly well, as opposed the ex-
tended match history including the qualifying round matches. Of course, this was not
intentional but was an incidental result of limiting the historical data. Nonetheless,
it shows how a likelihood model which incorporates match time could be advanta-
geous. The likelihood model can also be augmented by including match locations,
which models a home game advantage and incorporates this advantage into the
likelihood. A match location augmented likelihood model also has implications for
WPV computation, as the inclusion of location information for each match in the
knockout round might improve results.

The main contribution of our work consists in the introduction of the computational
method, which accelerates the exact computation of final win probabilities, given an
estimate P of pairwise win probabilities, and the surprising connection between two
seemingly unrelated branches of science.

We further demonstrate the efficiency and utility of Phylourny by implementing
our own uncertainty analysis for the UEFA 2020 tournament as well as for the
NCAA 2022 tournament. As can be seen in Figs 4.3 and 4.4, there is a remarkable
diversity of predicted outcomes. This is despite the likelihoods for these samples
being essentially equivalent, as can be seen in Table 4.1. For example the difference
between the minimum log-likelihood and the maximum log-likelihood for the 99.9%-
ile samples for the UEFA 2020 analysis only amounts to 1.30 log-likelihood units.
We interpret this as the sample containing predictions with essentially the same
amount of support from the data. Despite this, the range of outcomes predicted is
comparatively diverse, and generally contradictory. Furthermore, in the UEFA 2020
uncertainty analysis, the win probabilities for Italy range between less than 0.05 to
greater than 0.2. Likewise, the top 5 teams by median win probability in NCAA
2022 have mostly overlapping ranges for estimated win probabilities. In other words,
there is a high uncertainty as to which team is the most likely to win. However, the
forecast is clearly more certain for the NCAA 2022 sample when compared to the
UEFA 2020, despite the smaller number of teams in UEFA 2020. This is due to the
NCAA 2022 analysis using substantially more historical matches (on the order of
≈ 40 times more historical matches), and the sport of basketball being less a product
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of random chance, due to the large score size. However, NCAA tournaments are an
exception, with a large number of teams in each group, and therefore a large number
of matches in the lead up to “March Madness”. Furthermore, the amount of data in
the UEFA 2020 analysis was intentionally reduced for this work.

From this example, lessons can be learned for the practice of phylogenetics. In
particular, care should be taken when analysing a single result from phylogenetic
inference, as a given dataset might provide support for a large range of conflicting
explanations. For example COVID-19 phylogenies are difficult to estimate for this
precise reason [61], and placing stock in any single result runs the risk of ignoring
other plausible explanations. Therefore, this work is yet another reminder to in-
corporate uncertainty, particularly of parameter estimates, when performing either
phylogenetic or any model based analysis.
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5. Lagrange-NG: The next generation
of Lagrange

This chapter is based on the following peer-reviewed software article:

Ben Bettisworth, Stephen Smith, Alexandros Stamatakis. “Lagrange-NG:
The Next Generation of Lagrange ” Systematic Biology, 2023, https://doi.
org/10.1093/sysbio/syad002

The Dispersal-Extinction-Cladogenesis (DEC) model [72] is widely used to analyze
biogeographical data. However, computing likelihoods under this model is com-
putationally challenging, as (i) the geographical regions are splayed into 2r = s
states and (ii) the computation of the respective transition matrix has a time com-
plexity of O(s3). Thus, computing a single likelihood of the DEC model requires
O((2r)3) = O(23r) time. In other words, the likelihood computation is exponential
with respect to the number of regions under study. Therefore, the scalability of data
analyses under the DEC model is limited be the number of regions, that is, only a
small number of 6 to 10 regions can be analyzed in a reasonable amount of time [56].

The most expensive inference step is the computation of the transition matrix that
often accounts for 80% or more of overall runtime. As in standard likelihood-based
phylogenetics, the transition matrix is computed via a matrix exponential, albeit
on a substantially larger matrix. Substantial research effort has been invested into
finding the best way to compute the matrix exponential [59], but it still remains a
challenge to compute it efficiently and accurately. Additionally, unlike in standard
phylogenetics, the DEC model is non-reversible. The relevant implication of a non-
reversible is that the matrix to be exponentiated is generally non-symmetric, which
limits the number of applicable numerical methods for computing the matrix expo-
nential, typically to less precise ones. In the following, we present the Lagrange-NG

https://doi.org/10.1093/sysbio/syad002
https://doi.org/10.1093/sysbio/syad002
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(Lagrange-Next Generation) software, an almost complete rewrite of the popular
and widely used Lagrange software [72]. As the primary challenge to computing the
likelihood under the DEC model is to efficiently calculate the matrix exponential,
Lagrange-NG relies on a relatively recent method of computing a matrix exponential
based on Krylov Subspaces [59] for a moderate to large number of regions (6 and
more) in its default mode of operation.

Alongside the improvements to the matrix exponential, many so-called “micro-
optimizations” (for example, passing function arguments by reference instead of
value, using more efficient data structures to store regions, or eliminating unnec-
essary computation) have been implemented that further accelerate computations.
We have also implemented a task-based hybrid multi-threading approach, which in-
creases the rate of analyses by up to a factor of 8 for datasets exceeding 200 taxa.
Furthermore, we improve upon the numerical stability compared to the original
software, and fix a major bug which we discovered during development. Finally,
to verify that Lagrange-NG produces analogous results as the original implementa-
tion, we devised a novel method of comparing range distributions on trees, which
is based on the Earth mover’s distance metric. A similar application of the Earth
mover’s distance has been successfully applied to phylogenetic placement, though
this method and application is distinct [19].

5.1 Background

Lagrange-NG implements the Dispersal-Extinction-Cladogenesis (DEC) model of
geographic range evolution [72]. A geographic range, in this context, describes the
broadly defined distribution of the habitat of a particular species. The evolution of
this range is assumed to follow the phylogeny, or the biological evolution of a species
or clade. The DEC model takes as input, at a minimum, a phylogenetic tree, and
a set of regions. The phylogenetic tree is assumed to be the true phylogeny of the
included species, and the regions are the generalized areas of potential habitation
for the species in question. The DEC model constructs a list of states based on the
valid set of regions that a particular species could inhabit. With these components,
the DEC model constructs a transition matrix between states using two parameters,
an extinction parameter and a dispersion parameter. Using this transition matrix,
a likelihood of the model parameters can be computed and used to optimize the
model parameters. Once the optimal model parameters have been found, the most
likely ancestral ranges can be obtained by computing the model “backwards”.

Computation of the likelihood of a particular set of parameters under the DEC model
proceeds in a fashion similar to the standard Felsenstein pruning algorithm [21]. In
this algorithm, the computation starts from the tips and moves towards the root,
storing intermediate results in buffers called conditional likelihood vectors. Please
see Chapter 2.1.3 for a more detailed explanation, including a detailed discussion
about the savings involved with such a scheme. What is relevant for this discussion
is that the Felsenstein pruning algorithm avoids excess computation by noticing
that, at certain points in the computation of a likelihood on a tree, the only relevant
quantity is the likelihood conditioned on the current state.
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5.2 Software Description

Lagrange-NG constitutes an nearly complete rewrite of the original (unpublished)
C++ version of Lagrange. Of the 4600 lines of code, only 5% remain from the
original code base. This redesign retains the complete functionality of Lagrange,
but is computationally more efficient, and implements a parallelization of DEC cal-
culations. Lagrange-NG implements four major improvements to Lagrange. First,
it supports parallelism via a hybrid task based parallelization scheme which utilizes
both coarse and fine grained parallelism. Second, it deploys more efficient numerical
methods and algorithms which were developed relatively recently to compute the
matrix exponential, for example, an algorithm based on Krylov subspaces which we
use in Lagrange-NG. Third, it introduces general improvements and optimizations,
that is, micro-optimizations, which individually do not notably increase efficiency
but that altogether yield a substantial improvement. Finally, the fourth improve-
ment is a substantial increase in coding standards adherence and hence, software
quality, as measured by the coding standards adherence evaluation tool and bench-
mark SoftWipe [96]. The SoftWipe score of the original Lagrange software is 5.5,
while our nearly complete rewrite increases this to a score of 7.8. While the original
score of 5.5 is fairly average, the new score of 7.8 places Lagrange-NG 3rd in the
list of 51 scientific software tools written in C or C++ that are contained in the
SoftWipe benchmark.

Importantly, during the process of improving the code quality, a potentially serious
bug was discovered. In order to correct numerical instabilities, the transition matrix
was normalized such that the rows summed to 1.0 after the matrix exponential com-
putation. During normal computation, this operation will have little effect on the
results. However, if the rate matrix is sufficiently ill-conditioned, the computation
exhibits extreme numerical instabilities such that any results produced are mean-
ingless. If the matrix is then normalized at this point, then results produced with
this matrix are made to appear sensible. Therefore, any error in the computational
process is hidden from the user, and the results of the computation will be perceived
as plausible. Fortunately, as long as the matrix remains unnormalized, these errors
are easy to detect, as several analytical conditions are no longer met (such as the
rows no longer summing to 1.0). We are not aware of any approaches to recover
from these errors, but at least the user is not misled into thinking that meaningless
results are plausible. This normalization error is exceedingly rare, as the authors
never observed it in the thousands of datasets analyzed for this paper. Despite this,
the error can occur, and will by Murphy’s law. As such, we are convinced that in
the event of this bug, the user should be appropriately informed. Therefore, in this
case, Lagrange-NG simply fails, and alerts the user to what occurred.

Additionally, we identified and corrected a configuration error in the process of build-
ing Lagrange, where important compiler optimization options were not properly
utilized. Fixing this configuration error alone increased the computational efficiency
of the original Lagrange by up to 10x. While this error is easy to overlook, yet
trivial to fix, we assume that many past Lagrange analyses were conducted using
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the unoptimized code. Nonetheless, in this work when we perform benchmarks with
Lagrange, we conduct them with this configuration error fixed.

Lagrange-NG can be downloaded from GitHub at https://github.com/computations/
lagrange-ng. To build the software, the only requirements are a C++ compiler, and
CMake. Optionally, Lagrange-NG can be built with the respective system versions
of the Intel Math Kernel Library (MKL) [13] and NLOpt [40, 63]. If a system version
of MKL is not present, Lagrange-NG will build with OpenBLAS [66] instead.

5.3 Methods and Algorithms

Lagrange-NG utilizes a task based parallelization scheme in which each node of the
tree is assigned as a task. In order to compute the results for a generic node of
the tree results for its two children must first have been computed. This involves
computing

1. The right and left instantaneous rate matrices: Qr, Ql,

2. The right and left transition probability matrices: Pr = eQrtr and Pl = eQltl

respectively,

• When using the Krylov based matrix exponentiation, we do not compute
Pr and Pl and instead compute wr and wl (the result of the next step)
directly.

3. The result of the Markov process along the left and right branches: wr = Prvr

and wl = Plvl respectively,

4. The weighted combination of wr and wl, vt.

Together, these operations make up a single task for a worker. However, as it can
be seen above, the task can be further subdivided into smaller parts, which we will
call operations. For the purposes of this paper, we will label each of the operations
as

1. Make Rate Matrix Operation,

2. Expm Operation,

3. Dispersion Operation and,

4. Split Operation.

In order to more easily support parallel computation on other platforms, such as
GPUs, we have separated the operations from the memory buffers which are required
to store the intermediate results needed for likelihood computation. For example, in
Figure 5.2 we show a generic node and its associated operations. For each operation,

https://github.com/computations/lagrange-ng
https://github.com/computations/lagrange-ng
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there are a set of indices which indicate the location of the assigned memory buffer.
Additionally, they store the last execution clock point, details and purpose of which
are discussed later.

Operations are typically fast enough that they cannot be separated into parallel
tasks. However, if the model parameters and branch lengths used in the computation
are equal, the results of these operations can be shared between two tasks. For
example, consider the tree topology in Figure 5.1. Here, two of the branches have the
same branch length, 1.0. If they also share a rate matrix (which they almost always
will), then the result of the two matrix exponential operations will be identical.
Therefore, the likelihood computation on this tree can be accelerated by computing
eQt only once, and saving the result. An operation can be shared when the model
parameters (the extinction and dispersion rates) and the branch lengths are the
same between two branches.

In order to avoid such redundant computations, Lagrange-NG can share operations
between tasks. However, when computing with multiple threads, this introduces
the possibility of conducting computations with inconsistent values from dependant
operations when performing successive evaluations of the likelihood with model pa-
rameters that are altered by optimization routines.

To avoid race conditions, i.e. cases when one thread is reading data that is not ready,
we use a clock based method to enforce a partial ordering on the computation of
operations. Readers familiar with vector clocks will recognize this as a vector clock
with the number of distributed elements equal to one4. After the evaluation of each
operation, a“time”is recorded in the evaluated operation, and the clock incremented.
This time is not a true time, but instead a virtual time that is incremented every
time an operation is completed. To determine if an operation can be carried out, a
thread only needs to check if the clocks of its immediate dependant operations show
a larger value. If this is the case, then the dependant operations have already been
evaluated, and the operation can be performed on consistent input data.

By carefully dividing the tasks into operations, merging identical operations between
tasks, and enforcing a partial order on the computation of operations, we can imple-
ment an effective task-based parallelization scheme. However, this scheme does have
an unavoidable bottleneck. Since the dependencies for the operations are based on
the topology of the tree, and the tree has fewer branches near the root than near
the tips, the threads will necessarily be work starved near the end of a round of
computation. Therefore, our parallel efficiency is limited, and in fact dependant on,
the topology of the tree.

As noted briefly above, when computing wr and wl using a Krylov based method,
we can omit the computation of Pr and Pl. Therefore, the technique of combining
branches with the same branch lengths and model parameters in order to omit
redundant computation is no longer viable, as the results also depend on vr and vl.
However, when there are a sufficient number of regions (6 regions and above, for

4 In fact, the vector clock scheme was picked for the option of increasing the number of distributed
elements to allow for a cluster based version of Lagrange-NG in the future.



62 5. Lagrange-NG: The next generation of Lagrange

example) to make the Krylov based method faster, the increase in computational
efficiency is so large that the trade-off is worth it.

However, we retain the same graph structure as shown in Figure 5.3, for the ability
to fallback to a more reliable method of computing results in the case of serious
numerical errors, as the matrix exponential operation contains information about
the branch length and rate matrix for the particular branch. Instead, the result of
Prvr is computed in the dispersion operation, and the matrix exponential operation
is used just to store information about the branch.

Unfortunately, computing matrix exponentials via a Krylov subspace can be very
numerically unstable, in our experience. To compensate for this, we implemented an
adaptive mode in Lagrange-NG, which combines both the Krylov method and the
scaling and squaring method. If the number of regions is small (less than 6), then
scaling and squaring is used. Otherwise, the Krylov method is used to compute the
transition matrix. The Dispersal Operation is conducted, and we check to see if the
following conditions are true for the resulting vector:

1. All entries are less than or equal to 1.0 or,

2. All entries are greater than or equal to 0.0 or,

3. None of the entries are NaNs.

If any of these conditions are not true, we trigger a safety fallback to the scaling and
squaring method for the specific Expm Operation which will be used for the rest
of the analysis. By using this adaptive approach, we are able to avoid the major
issues with numerical stability that are the result of the Krylov method, but still
retain much of the speedup from using the Krylov method. In general, the recovered
speedup, that is the speed retained from enabling fallback, is dataset dependant, and
can be as low as 0%. However, in our experience, the recovered speedup is much
closer to 95% for almost all datasets.

5.3.1 Coarse and Fine Grained Parallelization

Most linear algebra libraries offer some form of BLAS level parallelization, which is
what Lagrange-NG uses for its “fine-grained” parallelism. However, in early testing
we found that the parallel efficiency of this mode of parallelism was quite poor
for our purposes, often making the run slower for a moderate number of threads
and a small number of regions (for example, 6 threads and 5 regions). So, we
elected to implement a coarse-grained parallelization method, which parallelized over
the available operations. To distinguish these two modes of parallelism, we named
the coarse-grained threads “workers” and the fine-grained parallelism “threads per
workers”.
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Figure 5.1: A simple ultrametric tree.
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Figure 5.2: An example set of operations for a generic unspecified node.
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Figure 5.3: Tree in Figure 5.1 decomposed into the operations used to compute the
likelihood.

5.3.2 Comparing Distributions on Trees

When comparing the results of Lagrange-NG and Lagrange, it is difficult to assess
if the numerical results are ”close enough” to be considered equivalent. By way
of example, scientific software will typically, instead of asking if two floating point
numbers are exactly identical to one another, ask if they are closer than some small
number (generally labeled ϵ). This is due to the limitations in the IEEE 754 floating
point number format, which is the format used to encode real numbers in nearly
all modern computers. A more complete explanation of this phenomenon is outside
the scope of this paper, and is extensively discussed in most textbooks on numerical
computing. For our purposes it is sufficient to say that differences in the order of
associative mathematical operations will generally yield different results.

Lagrange-NG does not escape this limitation of the IEEE 754 standard. So, in order
to appropriately compare results, we must take this into account. One can examine,
by eye, each distribution individually and compare the distributions by hand, but
this is time consuming, subjective, and error prone. Therefore, it is desirable to
construct a metric between the node base probability distributions on trees in order
to automatically compare the results.

Consider an example, where we have two sets of ancestral range distributions com-
puted by differing methods using the same tree. Let us call those distributions d1
and d2. The distribution for node n is then represented by the notation di(n). Since
the tree topology is identical for the two distributions, we can match the node level
distributions in a one-to-one mapping between the two sets of distributions. We will
index the individual elements of the distribution either by the list of region names or
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the binary notation for regions. For instance, if we have a distribution over regions
A, B, and C, then the entry for the distribution AB for node n would be indexed as
d1(n, AB). Equivalently, we can use a binary notation to write d1(n, 110). In this
case A stands for the most significant bit, B the second most significant bit, and C
the least significant bit.

In this example, the first approach would be to treat d1(n) and d2(n) as vectors,
and simply compute the cosine distance between distributions. This will indeed
produce a metric, but it has some undesirable properties. For example, suppose
we have a distribution over 5 regions: A, B, C, D, and E where d1(n, AB) = 1.0.
If we use the cosine distance to compute the distance between d1(n) and d2(n)
where d2(n, ABC) = 1.0, then the resulting distance will be 1.0, as the vectors are
orthogonal. However, this is the same distance as if we had d2(n, CDE) = 1.0
instead which is also orthogonal to d1(n). But, the prediction AB is much closer to
ABC than CDE. In the first case, the predicted ranges differ by only one region,
whereas in the second case, the predicted ranges differ by every region.

Since the cosine distance does not account for the valid transitions between states
in the DEC model, we should pick a distance that is aware of these transitions. To
accomplish this, we first embed the two distributions into a hypercube graph. A
hypercube is graph with 2n nodes and each node is connected to n other nodes (see
Figure 5.4 for an example). Importantly, the edges of a hypercube graph correspond
to the valid transitions between states in the DEC model5.

Once the distributions are embedded in a hypercube graph, we can compute the
distance between the distributions as the “amount of effort required to turn one
distribution into the other”. This is the Wasserstein metric, also known as the
Earth mover’s distance, and is what we base our distance on. Suppose we have the
distributions D1 and D2 from Figure 5.5. In order to transform D1 into D2, we
need to find a way to move 0.25 “earth” from node 10 to node 01. Two possible
example transformations can be seen in Figure 5.6. While the distance computation
in Figure 5.6 is straightforward, in general, finding the minimum transformation
distance requires the use of an optimization routine.

To find the minimum distance, we formulate the problem as a linear programming
problem. Specifically, we solve

min
x

∑
i xi

such that Ax = b (5.1)

xi ≥ 0

5 Some readers might have noticed in Figure 5.4 that the edges as shown don’t distinguish a
direction of transitions, which means that transitions out of the extinct state are valid. While
conceptually this is a problem, for the purposes of computing a distance, it will not affect the
results, as taking the path through the extinction state is equivalent to taking any other path
of equal distance. Due to the nature of the hypercube, this second path must exist.
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Where A is the matrix representation of the hypercube as a graph, also known as
an incidence matrix. A will act as the constraint matrix for the linear programming
problem, and b = d1(n)−d2(n), that is, the difference between the two distributions.
If we have a distribution with s states then we can produce A by creating s−1 rows
and s(2s − 1) columns. The rows represent the nodes of the graph, and the columns
represent the edges of the graph, split in two for each direction of flow. The entries
of A are defined as:

A(n, e) =


1 If e points to n

−1 If e points away from n

0 Otherwise.

(5.2)

Please note that there are only n − 1 rows. This is because the final row can be
expressed as a linear combination of the previous rows, and will therefore induce
no additional constraints to the problem. Additionally, we choose to suppress edges
leading away from the extinct state, to be consistent with the model. By suppressing
these edges, we remove s columns from the matrix as well.

As an example, the distance between the distributions in Figure 5.5 can be computed
with the matrix

A =

 1 0 1 0 0 0
−1 −1 0 0 1 0
0 0 −1 −1 0 1


and the vector

b =

 0
0.25
0.25

 .

To actually compute the solution, we can turn to any of a number of linear pro-
gramming solvers, for example the one in SciPy [87] which the solver we use for
this thesis. Finally, in order to normalize the distance, we divide the result by the
maximum possible path length, which is simply the number of regions.

5.3.2.1 Metric Performance

To demonstrate the performance of the Wassserstein metric, we use a case study
with 3 regions: A, B, and C. These 3 regions induce a state space with 8 states, with
the states being “Empty”, “A”, “B”, “C”, “AB”, “AC”, “BC”, and “ABC”. For each
of these states, we generated a “basis” distribution, which is a distribution vector
containing 1.0 in the entry corresponding to the state, and 0.0 everywhere else. For
example, the basis distribution representing “A” would be

(0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

We then computed the pairwise distance between all of the basis vectors. The
results of this computation is summarized in Figure 5.7. As it can be seen from this
summary, our Wasserstein metric behaves as intended, which is to say, states which
have fewer regions in common with each other are farther away than states with
more regions in common.



5.3. Methods and Algorithms 67

000 001

011010

100 101

111110

Figure 5.4: An example of a 3-dimensional hypercube with associated region names
in binary notation.
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Figure 5.5: Two example distributions, displayed as 2d-hypercubes (squares).
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Figure 5.6: Distributions from Figure 5.5 with the Wasserstein metric applied. On
the left, we choose to move 0.25 units of “mass” from node 10 to node 01. This
requires 2 transitions, shown in blue, for a total distance of 0.5. On the right, we
choose to transfer mass from node 01 to node 10, which yields the same result.

Figure 5.7: Plot showing the pairwise Wasserstein metric between the “basis” dis-
tributions on three regions: A, B, and C. Here, the “basis” distributions are a set of
distributions, one for each state, with 1.0 in the corresponding entry for that state.
Distributions are labeled by which entry contains the 1.0. States are ordered by a
Grey code for aethetic reasons only.
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5.4 Performance

To assess the performance of Lagrange-NG relative to the original implementation,
we randomly generated a large number of synthetic datasets with a varying number
of regions and executed Lagrange and Lagrange-NG to record the respective run-
times. We generated 100 random datasets with either 5, 6, or 7 regions, and 100
taxa, to obtain a total of 300 datasets. Furthermore, we ran an additional series of
parallel performance evaluations on Lagrange-NG with 8 threads assigned to coarse
grained parallelization using the same datasets. The results of this performance
assessment are shown in Figure 5.12. Additionally, we assessed the performance of
only Lagrange-NG on datasets with 8, 9, 10, 11, or 12 regions when using 8 workers.
For the experiments with 8 regions, we generated 100 datasets, for the experiments
with 9 or 10 regions, we generated 30 datasets, and for the experiments with 11
or 12 regions, we generated 10 datasets. Less datasets were generated for experi-
ments with larger region numbers to limit the total time spent running experiments.
Results from this performance assessment are shown in Figure 5.13.

5.4.1 Further Experiments

Tests and tooling for experiments in this paper are written in Python 3 [76], with
additional support from Numpy [29], SciPy [87], and seaborn [89].

5.4.1.1 Investigating the Optimal Threading Configuration

Because Lagrange-NG implements both fine- and coarse-grained parallelization, we
need to investigate the optimal threading configuration, that is, the number of fine-
grained threads per task to be used, for a given dataset. To this end, we generated
datasets with 50 or 100 taxa and 5, 6, 7, or 8 regions. This yielded a total of 8
distinct parameter sets. As the fine grained parallelization scheme is nested inside
of coarse grained threads/cores, the total number of threads used by Lagrange-NG

is the product of fine grained threads and coarse grained threads. So, in addition to
these 8 parameter sets, we also generated the 6 threading configurations with a total
number of 32 threads each, as 32 can be factored with: 1 and 32; 2 and 16; 4 and
8. Since order matters, the configuration of 2 workers and 16 threads per worker is
different than the configuration of 16 workers and 2 threads per worker. For each
of these parameter set and threading configurations, we ran 100 trials and recorded
the times. The results from these runs can be seen in Figure 5.8.

5.4.1.2 Determining the parallel efficiency of Lagrange-NG

Given the results from the previous experiment to determine the optimal threading
configuration, we choose to determine the parallel efficiency of Lagrange-NG using
only workers. This is to say, we only increased the number of threads allocated to
the coarse grained tasks. To this end we tested Lagrange-NG with 1, 4, 8, 16, and
32 threads by generating 100 datasets for each threading configuration. We did this
with datasets with 6 regions and 100 and 500 taxa. We computed the mean of the
execution times for the runs with a single thread, and used this value to compute
the respective speedups.
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Figure 5.8: Plot of the threading configurations on various dataset sizes. 100
datasets were generated for each Taxa, Region, and Threading Configuration. Each
dataset was generated randomly, similar to how datasets are constructed in the rest
of this work.

Figure 5.9: Parallel efficiency plot for a datasets with 100 taxa and 6 regions. Please
notice the log-log scaling. The actual values plotted are 2.0, 2.4 , 2.6, 2.1 for 4, 8, 16,
32 threads, respectively. The ratio of the realized speedup to the optimal speedup
is 0.51, 0.30, 0.16, 0.07 for 4, 8, 16 and 32 threads respectively.
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Figure 5.10: Parallel efficiency plot for a datasets with 500 taxa and 6 regions.
Please notice the log-log scaling. The actual values plotted are 1.7, 1.8, 2.0, 2.1
for 4, 8, 16, and 32 threads, respectively. The ratio of the realized speedup to the
optimal speedup is 0.43, 0.24, 0.13, 0.06 for 4, 8, 16, and 32 threads, respectively.

5.4.2 Biological Examples

While we conducted extensive tests on simulated data, we also verify that Lagrange-
NG behaves correctly on empirical datasets. To this end, we reproduced the results
from a previous study on sloths from [84]. Additionally, we took the opportunity
to reproduce the results using the tools specified in the paper as this gave us an
opportunity to compare with BioGeoBEARS [56], a similar tool written in R which
performs optimization via simulated annealing, and is very feature rich when com-
pared to Lagrange or Lagrange-NG.

In order to reproduce results, we downloaded the supplementary data from the Dryad
repository associated with the publication. To run the analyses with BioGeoBEARS

and Lagrange-NG, we had to slightly modify the data. This involved correcting
some taxon names so that they matched between the tree and the region data,
and also removing the outgroup from the tree as there was no region data included
for the outgroup. These modifications appear to be in line with what the original
authors must have done, because the results from both BioGeoBEARS and Lagrange-

NG match the results reported in the paper. Both BioGeoBEARS and Lagrange-

NG were run with the same dataset on the same computer. Despite the fact that
the original study limited the number of regions to 5, we decided to also measure
Lagrange-NG’s performance with no region limit, to show that Lagrange-NG can
analyse large empirical datasets without a region limit.
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Figure 5.11: Weak parallel scaling plot for Lagrange-NG. We ran Lagrange-NG 30
times with 50, 100, 200, 400, 800 and 1600 taxa and 7 regions with 1, 2, 4, 8, 16,
and 32 workers. Plotted is the efficiency, computed by taking the ratio of the time
to execute with 1 worker and the time to execute with n workers. The line labeled
”Ideal” is the plotted efficiency if Lagrange-NG had perfect scaling with respect to
workers.
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Figure 5.12: Comparison of runtimes between Lagrange (left) and Lagrange-NG

(right) with sequential Lagrange-NG (top) and parallel Lagrange-NG using 8 workers
(bot). Results were obtained by generating 100 random datasets. Note that the
original Lagrange was not run with any multi-threading, as it does not support it.
Instead, the data has been replicated for comparison’s sake. Times are in seconds.
The figure was generated using seaborn [89]
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Figure 5.13: Runtimes for Lagrange-NG on a larger number of regions when using
8 workers. Results were obtained by generated random datasets with 100 taxa and
8, 9, 10, 11, or 12 regions. We generated 100 random datasets for the 8 region case;
for the 9 and 10 region cases we generated 30 datasets; and for the 11 and 12 region
cases we generated 10 datasets. Runs were conducted with 8 workers for all cases,
and 1 thread per worker in all cases.

5.5 Validation

Lagrange-NG re-implements core numerical routines of Lagrange. Such changes
in numerical routines are often associated with difficult and subtle bugs as well as
slight numerical deviations. We sought to ensure that Lagrange-NG and Lagrange

produced the same results. To this end, we developed a pipeline to (i) generate
random datasets, (ii) run both, Lagrange, and Lagrange-NG, and (iii) compare the
results of the two programs. To compare results, we developed a measure to evaluate
the distance between ancestral range distributions on trees based on the Wasserstein
metric [85]. We have already provided the detail of this metric in Section 5.3.2.

We ran this comparison for 100 iterations on datasets comprising 10, 50, and 100
taxa, and a number of regions between 2 and 6. This yielded 15 parameter sets, for
a total of 1,500 tests.

5.6 Results

The validation of Lagrange-NG with respect to Lagrange, was surprisingly success-
ful, despite substantial modifications of nearly all critical code paths and numerical
routines. Of the 1,500 tests, 0 produced results with differences over the tolerance
of 1 × 10−4 when computed using our novel distance method, indicating that the
results are equivalent between the two tools.

The mean sequential speedup between Lagrange-NG over Lagrange on one core for
5, 6, and 7 regions is 1.54, 4.93, and 26.63, respectively. The overall time-to-solution
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speedup of Lagrange-NG with 8 cores over sequential Lagrange on one core for 5, 6,
and 7 regions is 1.88, 7.75, and 49.2, respectively. For datasets with larger regions,
Lagrange-NG analyzed these datasets with a mean time of 3.00s, 11.12s, 40.75s,
217.01s, and 1130.60s for 8, 9, 10, 11, and 12 regions, respectively.

In addition, Lagrange-NG is substantially faster than BioGeoBEARS. On the empir-
ical dataset, Lagrange-NG computed the result in about 7 seconds using 8 cores,
while BioGeoBEARS required about 14 minutes to analyze the data using 80 cores.
BioGeoBEARS and Lagrange-NG inferred different optima for model parameters, with
BioGeoBEARS achieving a slightly better log-likelihood score (-216.127 vs -224.396).
It is unclear if these likelihoods are directly comparable. Nonetheless, this does not
affect the respective qualitative results as BioGeoBEARS and Lagrange-NG agree on
the most likely distribution for every node.

The analysis of this dataset with no region limit using Lagrange-NG produced similar
results to the analysis with the 5 region limit, albeit with a better likelihood (-
217.023). The time for this analysis was about 2 seconds using 8 cores.

Comparing runtimes with RevBayes is difficult, as RevBayes and Lagrange-NG pro-
duce different kinds of results. RevBayes is a Bayesian analysis software, and as
such produces a distribution of parameter values as the posterior. On the other
hand, Lagrange-NG only finds the parameter values with the highest likelihood.
Nonetheless, the limited range of available tools to compare with necessitates us to
use RevBayes as a comparison. We let RevBayes run for ≈ 7 hours on the sloth
dataset, and in that time RevBayes managed to perform ≈ 30 iterations, which is
≈ 14 minutes per iteration. Using 3000 iterations as the default number of iterations,
a number of iterations suggested by the tutorial for DEC analysis using RevBayes,
the full analysis would take ≈ 29 days. This is far too simple of a stopping criterion
for a realistic Bayesian analysis, as normally a researcher would conduct conver-
gence analysis in order to determine that the distribution of samples has apparently
converged to the posterior. Therefore, the actual number of samples required to
perform an analysis might be less than 3000. Nonetheless, we report the estimated
total analysis time here using 3000 iterations so that readers can have a rough idea
of the comparative cost of Lagrange-NG vs RevBayes.

5.7 Discussion

We have shown that computation of likelihood-based biogeographical models can
be greatly accelerated without sacrificing result quality. An 2 to 26 fold increase in
speed over the original implementation, and over a 100 fold increase in speed over
BioGeoBEARS represents a step forward, especially when taking the time complexity
of the matrix exponential into account. Additionally, we retain this speed even on
datasets with a large number of regions and no region limit, enabling for more fine
grained as well as exploratory analyses of biogeographical data.

Readers might wonder why the execution time for the analysis of the empirical
dataset with a maximum number of regions is the slower than the analysis without
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a maximum number of regions. Ostensibly, a smaller number of regions should
lead to a faster execution, but the runtimes shown contradict this. However, for
this specific dataset, when using a a maximum number of regions Lagrange-NG’s
adaptive mode detected numerical issues on nearly all results involving the matrix
exponential, and therefore had to fall back to the slower, but safer, method of
computing results. Indeed, if we force Lagrange-NG to use the faster, but unsafe,
mode for computing the matrix exponential, the numerical errors are so excessive
that a final result cannot be computed. As a happy accident, this showcases the
utility of Lagrange-NG’s adaptive mode, where it was able pick the best method of
computation without intervention from the user.

Regarding the optimal threading configuration, Figure 5.8 shows that allocating
all the available cores to coarse-grained threads is typically optimal. Occasionally,
allocating 2 fine threads per worker is slightly faster. This is slightly surprising,
and might indicate that the linear algebra library used has potential issues with
lock contention. If this is the case, then changing the library might improve results.
However, there are still sequential parts of the likelihood computation which do not
benefit from the fine grained parallelization, so improving lock contention will have
decreasing marginal returns by Amdahl’s law.

The threading efficiency of Lagrange-NG’s coarse grained parallelization ranges be-
tween 0.51 and 0.06. We feel that this is expected, as the method of parallelization
is based on the tree topology. Children nodes must be evaluated before parent nodes
can be evaluated, which leads to dependencies which prevent optimal parallel effi-
ciency from being achieved. This means that, for every likelihood evaluation, there is
a phase in optimal the computation where there is less work available than threads.
In this case the excess threads idle. However, we expect that as the number of taxa
grows, the efficiency of this method should increase, as the proportion of time spent
in this ”work starved” phase near the root of the tree is smaller.

5.8 Availability

The software, tools, and data used for this paper are available online at https:
//github.com/computations/lagrange-ng.

https://github.com/computations/lagrange-ng
https://github.com/computations/lagrange-ng
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6.1 Conclusions
In this thesis, I have outlined some of my contributions to computational science,
particularly those in phylogenetics. I have presented the tool RootDigger which
assists in assessing the possible root locations for an unrooted phylogenetic tree.
In addition, I presented the tool and method Phylourny, which utilizes an efficient
method to compute the probable outcomes of knock-out tournaments, and also per-
forms uncertainty analysis for knock out tournaments. In turn, this allows for an
improved and more detailed summary of possible outcomes for a given tournament.
Finally, I presented Lagrange-NG, a tool to infer ancestral ranges using biogeograph-
ical models as well as a metric to verify that the results between tools are consistent
and comparable.

RootDigger, in its simplest mode, allows for a user to automatically root a previously
unrooted phylogenetic tree using the most likely root location. In the more involved
mode, it allows for a user to explore the relative likelihood of all possible root
locations. In addition, RootDigger is implemented with Message Passing Interface
(MPI) support, which allows for distributed memory parallelization, and to reduce
the time-to-solution. This acceleration allows for larger datasets to be analyzed,
such as a tree built from 8700 SARS-CoV-2 sequences [61], which enables researchers
using the tool to perform more extensive analysis.

Next, I developed Phylourny, a tool which predicts the winner of a knockout tour-
nament given historical match data. By using a dynamic programming algorithm we
can substantially accelerate the computation of win probabilities for a set of model
parameters. This substantially more efficient method also allows us to deploy more
costly models which enables us to better explore the total space of outcomes. This
in turn allows us to summarize possible outcomes more accurately, which can even
help to improve upon the accuracy of inadequate or inappropriate models. Using
Phylourny, I also performed analysis on two historical tournaments, and analyzed
their results. I found them to be accurate, even in the presence of limited data.
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Finally, I developed Lagrange-NG, re-design and substantial improvement of an older
tool which computes ancestral range distributions. This update improves the wall
time to solution by a factor of 2 for datasets with a small number of regions, and by a
factor of 20 for datasets with a large number of regions. Additionally, I implemented
a task based concurrency scheme that further improves upon the time to solution
for datasets with a large number of regions by a factor of 50. Furthermore, when
compared to a competing tool (BioGeoBEARS), Lagrange-NG is about two orders of
magnitude more efficient. In addition, I devised a novel way to compare ancestral
range distributions by developing an appropriate metric. This metric better accounts
for the underlying structure of the model, and can therefore more accurately describe
the difference or similarity between two results.

6.2 Future Work

Extension to the work presented in this thesis can proceed in several ways, which I
will outline in the following sections.

6.2.1 RootDigger

First, RootDigger can be extended to utilize additional models. These additional
models could be the non-reversible versions of models such as JC [41] or K2P [44].
These models have, maybe paradoxically, less parameters than the UNREST model
that is currently supported by RootDigger. However, having too many parameters
can lead to over-fitting of the data which in turn induces inference errors. One
option which might be conceptually simpler than manually specifying non-reversible
versions of common models is to implement the Lie-group family of non-reversible
models described in Woodhams [91], of which these common models are a member
of.

In addition to integrating more models, other data types could be supported, in
particular Amino Acid (sequence) (AA) data. In this work, we decided to not use
AA data as it would increase the number of free parameters from 12 for DNA data
to 380. Given this number, we suspect that it is too prone to over-fitting to be
useful, but this has never been investigated.

Finally, there are a few parameters that are not part of the model but that could be
heuristically set in a less näıve way. These parameters include the number of initial
candidate roots in the search mode and the number of roots to fully optimize during
each step of the search mode. In this work our default parameters were performing
well on simulations, but better results could possibly be obtained via an adaptive
strategy, such as conditionally performing more searches based on the results of a
fast initial search.

As mentioned in Chapter 3, the parallel efficiency of RootDigger could be improved
using either of two techniques: Heuristically assigning initial search locations to
nodes; or scheduling of initial search locations to compute nodes. In the first tech-
nique, we would attempt to estimate how long each root position would take in to
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compute relative terms, and then assign the initial search locations in such a way as
to better balance the computational load. Traditionally, this can be quite difficult to
do effectively, as the heuristic will often need to be finely tuned, which can cause de-
graded performance on atypical datasets. Alternatively, the initial search locations
can be assigned dynamically. In this case, the initial search locations are assigned
on demand in a dispatcher-worker scheme, when a node has no computational work
to conduct. From this point, it is not clear which method would perform better, and
both should be investigated.

6.2.2 Phylourny

Given that Phylourny is not just an algorithm, but also a set of methods to char-
acterize the uncertainty of knock-out tournaments, the possible extensions to the
work are numerous. However, they fall into two broad categories: additional and
more complex sports models; or more efficient sampling of the posterior.

At present, Phylourny only implements two models: the simplified Independent
Poisson Model, and a simple internal test model which was not discussed in Chap-
ter 4. While the Independent Poisson Model performs well, we would expect even
better performance from more elaborate models, some of which are also described in
Ley et. al. [50]. Of particular note are models which take into account match dates,
giving matches which are more recent a higher weight. Given the accuracy of the
predictions inferred by Phylourny for the UEFA 2020 tournament, which is in part
due to very recent data being used for the prediction, it seems that models which
incorporate temporal information might be even more successful once implemented
in Phylourny.

An alternative way that the performance of Phylourny could be improved is via a
different method of sampling the posterior. I implemented the Metropolis-Hastings
algorithm in Phylourny, but there are other methods which might perform better,
such as Gibbs Sampling [26] or Hamiltonian Monte Carlo [14], either of which might
require fewer iterations to converge to the posterior.

6.2.3 Lagrange-NG

Future work on Lagrange-NG includes extending the range of models that can be
computed by the DIVA/DIVALIKE and BAYAREA family of models [48, 74]. Ad-
ditionally, the current models can be further optimized in three areas, although we
expect unspectacular performance improvements.

We produced a version of Lagrange-NG that utilized GPU acceleration for the matrix
computations. Unfortunately, this method failed to produce acceptable speedups
even for large datasets (10-11 regions). This is in line with the performance results
of previous attempts to accelerate likelihood computations for phylogenetic tree
inference on GPUs [39]. The fundamental difficulty is that the tree-based nature
of the computation that induces a decreasing degree of parallelism as we approach
the root, leaves many computational units starved for work, as is the case with the
existing CPU-based course-grained parallelization of Lagrange-NG. It is possible
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that further development would produce better results, but we believe that by the
time that datasets become large enough to observe large speedups, the analysis will
simply be infeasible due to the exponential nature of the problem.

For remaining improvements to the computational efficiency of Lagrange-NG, the
first is to further refine the matrix exponential routine. While the current im-
plementation is extremely fast, the implementation in Lagrange-NG has not been
thoroughly optimized for this particular use case. In particular, the size of the
Krylov space has not been thoroughly examined to asses if significant runtime and
accuracy trade-offs can be obtained. Additionally, one could further refine the load
distribution for the coarse grained parallelization approach. The current method of
assigning tasks is straight-forward, and can be improved upon by becoming aware
of which nodes are “most blocking” of other tasks. It might be possible to devise an
algorithm that can minimize the “task starved” period of computation, either via a
clever assignment method, or via a so-called “work stealing” scheme.
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