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Zusammenfassung

Phylogenetik, die Analyse der evolutionären Beziehungen zwischen biologischen Ein-
heiten, spielt eine wesentliche Rolle in der biologischen und medizinischen Forschung.
Ihre Anwendungen reichen von der Beantwortung grundlegender Fragen, wie der
nach dem Ursprungs des Lebens, bis hin zur Lösung praktischer Probleme, wie
der Verfolgung von Pandemien in Echtzeit. Heutzutage werden Phylogenetische
Bäume typischerweise anhand molekularer Daten über wahrscheinlichkeitsbasierte
Methoden berechnet. Diese Verfahren suchen nach demjenigen Stammbaum, welcher
eine Likelihood-basierte Bewertungsfunktion unter einem gegebenen stochastischen
Modell der Sequenzevolution maximiert.

Die vorliegende Arbeit konzentriert sich auf die Inferenz Phylogenetischer Bäume von
Arten sowie Genen. Arten entwickeln sich durch Artbildungs- und Aussterbeereig-
nisse. Gene entwickeln sich durch Ereignisse wie Genduplikation, Genverlust und
horizontalen Gentransfer. Beide Ausprägungen der Evolution hängen miteinander
zusammen, da Gene zu Arten gehören und sich innerhalb des Genoms der Arten
entwickeln. Man kann Modelle der Gen-Evolution einsetzen, welche diesen Zusam-
menhang zwischen der Evolutionsgeschichte von Arten und Genen berücksichtigen,
um die Genauigkeit phylogenetischer Baumsuchen zu verbessern. Die klassischen
Methoden der phylogenetischen Inferenz ignorieren diese Phänomene und basieren
ausschließlich auf Modellen der Sequenz -Evolution.

Darüber hinaus sind aktuelle Maximum-Likelihood-Verfahren rechenaufwendig. Dies
stellt eine große Herausforderung dar, zumal aufgrund der Fortschritte in der Sequen-
zierungstechnologie immer mehr molekulare Daten verfügbar werden und somit die
verfügbare Datenmenge drastisch anwächst. Um diese Datenlawine zu bewältigen, be-
nötigt die biologische Forschung dringend Werkzeuge, welche schnellere Algorithmen
sowie effiziente parallele Implementierungen zur Verfügung stellen.

In dieser Arbeit entwickle ich neue Maximum-Likelihood Methoden, welche auf einer
expliziten Modellierung der gemeinsamen Evolutionsgeschichte von Arten und Genen
basieren, um genauere phylogenetische Bäume abzuleiten. Außerdem implementiere
ich neue Heuristiken und spezifische Parallelisierungsschemata um den Inferenzprozess
zu beschleunigen.

Mein erstes Projekt, ParGenes, ist eine parallele Softwarepipeline zum Ableiten
von Genstammbäumen aus einer Menge genspezifischer Multipler Sequenzalignments.
Für jedes Eingabealignment bestimmt ParGenes zunächst das am besten geeignete
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Modell der Sequenzevolution und sucht anschlie�end nach dem Genstammbaum mit
der h•ochsten Likelihood unter diesem Modell. Dies erfolgt anhand von Methoden,
welche dem aktuellen Stand der Wissenschaft entsprechen, parallel ausgef•uhrt werden
k•onnen und sich einer neuartigen Lastverteilungsstrategie bedienen.

Mein zweites Projekt,SpeciesRax , ist eine Methode zum Ableiten eines gewurzel-
ten Artenbaums aus einer Menge entsprechender ungewurzelter Genstammb•aume.
Ber•ucksichtigt wird die Evolution eines Gens unter Genduplikation, Genverlust und
horizontalem Gentransfer.SpeciesRax sucht den gewurzelten Artenbaum, der die
Likelihood-basierte Bewertungsfunktion unter diesem Modell maximiert. Dar•uber
hinaus f•uhre ich eine neue Methode zur Berechnung von Kon�denzwerten auf den
Kanten des resultierenden Artenbaumes ein und eine weitere Methode zur Sch•atzung
der Kantenl•angen des Artenbaumes.

Mein drittes Projekt, GeneRax , ist eine neuartige Maximum-Likelihood-Methode
zur Inferenz von Genstammb•aumen.GeneRax liest als Eingabe einen gewurzelten
Artenbaum sowie eine Menge genspezi�scher Multipler Sequenz-Alignments und
berechnet als Ausgabe einen Genstammbaum pro Eingabealignment. Dazu f•uhre ich
die sogenannteJoint Likelihood-Funktion ein, welche ein Modell der Sequenzevolution
mit einem Modell der Genevolution kombiniert. Dar•uber hinaus kannGeneRax
die Abfolge von Genduplikationen, Genverlusten und horizontalen Gentransfers
absch•atzen, die entlang des Eingabeartenbaums aufgetreten sind.



Abstract

Phylogenetics, the study of evolutionary relationships among biological entities,
plays an essential role in biological and medical research. Its applications range
from answering fundamental questions, such as understanding the origin of life, to
solving more practical problems, such as tracking pandemics in real time. Nowadays,
phylogenetic trees are typically inferred from molecular data, via likelihood-based
methods. Those methods strive to �nd the tree that maximizes a likelihood score
under a given stochastic model of sequence evolution.

This work focuses on the inference ofspeciesas well asgene phylogenetic trees.
Species evolve through speciation and extinction events. Genes evolve through events
such as gene duplication, gene loss, and horizontal gene transfer. Both processes
are strongly correlated, because genes belong to species and evolve within their
genomes. One can deploy models ofgeneevolution and to exploit this correlation
between species and gene evolutionary histories, in order to improve the accuracy of
phylogenetic tree inference methods. However, the most widely used phylogenetic
tree inference methods disregard these phenomena and focus on models ofsequence
evolution only.

In addition, current maximum likelihood methods are computationally expensive.
This is particularly challenging as the community faces a dramatically growing amount
of available molecular data, due to recent advances in sequencing technologies. To
handle this data avalanche, we urgently need tools that o�er faster algorithms, as
well as e�cient parallel implementations.

In this thesis, I develop new maximum likelihood methods, that explicitly model
the relationships between species and gene histories, in order to infer more accurate
phylogenetic trees. Those methods employ both, new heuristics, and dedicated
parallelization schemes, in order to accelerate the inference process.

My �rst project, ParGenes , is a parallel software pipeline for inferring gene family
trees from a set of per-gene multiple sequence alignments. For each input alignment,
it determines the best-�t model of sequence evolution, and subsequently searches
for the gene family tree with the highest likelihood under this model. To this end,
ParGenes uses several state-of-the-art tools, and runs them in parallel using a novel
scheduling strategy.

My second project,SpeciesRax , is a method for inferring a rooted species tree
from a set of unrooted gene family trees.SpeciesRax strives to �nd the rooted
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species tree that maximizes the likelihood score under a dedicated model ofgene
evolution, that accounts for gene duplication, gene loss, and horizontal gene transfer.
In addition, I introduce a new method for assessing the con�dence in the resulting
species tree, as well as a novel method for estimating its branch lengths.

My third project, GeneRax , is a novel maximum likelihood method for gene family
tree inference.GeneRax takes as input a rooted species tree as well as a set of
(per-gene) multiple sequence alignments, and outputs one gene family tree per input
alignment. To this end, I introduce the so-calledjoint likelihood function, which
combines both, a model of sequence evolution, and a model of gene evolution. In
addition, GeneRax can estimate the pattern of gene duplication, gene loss, and
horizontal gene transfer events that occured along the input species tree.
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1. Introduction

1.1 Motivation
The theory of evolution has played an exceptional role in our understanding of the
world. This change of perspective has not only in
uenced our culture, but has also
helped us to answer important biological questions. We now know that the diversity
of the contemporary living species is the result of complex evolutionary mechanisms
that take place at the genome level. The phenotype of a species is to a large extent
determined by its genetic material, which is inherited from generation to generation.
This genetic material evolves over time: genes evolve within species genomes, and
undergo biological events such as gene duplication, gene loss, and Horizontal Gene
Transfer (HGT). At the same time, the Deoxyribonucleic Acid (DNA) sequences that
form those genes also evolve, through mutation events such as nucleotide insertion,
deletion, and substitution.

Phylogenetic treesrepresent the evolutionary history of a group of species or of a
gene. They play a central role in many �elds of biology. Examples of their applica-
tions include explaining the origin of life [157, 158], understanding the underlying
mechanisms of evolution [90, 121], tracking pandemics [61, 106], or predicting protein
functions [68, 119]. The phylogenetic tree of a group of species is called aspecies tree,
and the phylogenetic tree of a group a genes that evolved from the same ancestral
gene is called aGene Family Tree (GFT).

Species tree andGFT topologies di�er from each other, partly because of gene
events such as gene duplication, gene loss, andHGT [145]. Species tree andGFT
reconciliation is the process of explaining this apparent con
ict between species and
gene evolutionary histories, by identifying the aforementioned gene evolutionary
events [17, 37]. A precondition for accurate species tree andGFT reconciliation
is the ability to accurately infer the species tree and theGFT topologies: indeed,
wrong (species or gene) tree topologies can lead to overestimating the number of
gene events, because tree inference error tends to arti�cially increase the topological
di�erences between the species tree and the GFT [56].
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Both, species trees, andGFTs are nowadays inferred from molecular data, that
is, from either protein or DNA sequences, that are �rst assembled into a Multiple
Sequence Alignment (MSA). Then, Maximum Likelihood (ML) approaches strive to
�nd the tree that maximizes the probability of observing this MSA under a given
stochastic model of sequence evolution. However, by solely relying on the sequences,
those methods ignore the relationship between species and gene family histories.
Understanding and exploiting this relationship between the species tree and the
GFTs currently constitutes one of the most important challenges in phylogenetics
[17].

Furthermore, in the last decades, the throughput ofDNA sequencing has dramatically
increased, while its cost has dramatically dropped at the same rate. As a result,
the quantity of available sequence data has been rising at an exponential rate [141].
This data avalanche causes a considerable computational challenge for phylogenetic
analyses. For instance, the 1KP Transcriptomes Initiative [67] sequenced the tran-
scriptomes of 1,124 plant species, and the 10KP Genome Sequencing Project [26]
plans to extend this number to 10,000 before the year 2023. In addition, it is now
common to conduct phylogenetic analyses on datasets with thousands of gene families
[21, 49, 158]. To process those increasingly large datasets, there is an urgent need
for tools that implement faster algorithms as well as more e�cient parallelization
strategies.

The goal of this thesis is to develop newML methods for both, species tree, and
GFT inference, that can exploit the intricate relationship between species and gene
evolutionary histories, and that can process thousands of gene families in a reasonable
amount of time.

1.2 Scienti�c contribution

My main contribution consists in the development of three tools (ParGenes , Gen-
eRax , and SpeciesRax ) that address some of the challenges described above. The
inputs and outputs of those tools are shown in Figure 1.1.

First, I developedParGenes , a parallel pipeline forGFT inference that can simulta-
neously process multiple gene families. It takes as input oneMSA per gene family. For
each gene family,ParGenes �rst runs Modeltest [31] to determine the model of
sequence evolution that best �ts theMSA. Then, it runs RAxML-NG [76], in order
to search for theGFT that maximizes the probability of observing the inputMSA,
under the selected model of sequence evolution. In addition,ParGenes can also
involve RAxML-NG in a way such as to compute the bootstrap support values [46]
for the output GFTs. To e�ciently and simultaneously process multiple gene families
of heterogeneous sizes,ParGenes deploys both, a novel parallelization scheme, and a
novel scheduling strategy.ParGenes was described in aBioinformatics application
note [103].

Secondly, I implementedSpeciesRax , a parallel tool that infers a rooted species
tree from a set ofGFTs (typically inferred using ParGenes ). SpeciesRax strives
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Figure 1.1: Inputs and outputs of ParGenes, SpeciesRax, and GeneRax.
ParGenes takes as input a set ofMSAs, and returns a set of unrootedGFTs by
optimizing the phylogenetic likelihood, that is, the probability of observing anMSA
given an unrootedGFT. SpeciesRax takes as input a set of unrootedGFTs, and
returns a rooted species tree by optimizing the reconciliation likelihood, that is,
the probability of observing theGFTs given the species tree.GeneRax takes as
input a set of MSAs and a rooted species tree, and returns a set of reconciled as
well as rootedGFTs by maximizing the joint likelihood, that is, the product of the
phylogenetic likelihood and the reconciliation likelihood.
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to �nd the species tree that maximizes a likelihood score under a model of gene
evolution that accounts for gene duplication, gene loss, and HGT events.

Finally, I releasedGeneRax , a parallel tool for species tree awareGFT inference.
GeneRax takes as input a rooted species tree (typically inferred usingSpeciesRax ),
and oneMSA per gene family.GeneRax infers one rootedGFT per gene family
by taking into account both the input species tree and the input gene familyMSA.
To this end, I implemented ajoint likelihood function, which is the product of two
likelihood functions: �rst, the probability of observing the MSA given theGFT, under
any standard model of sequence evolution, and second, the probability of observing
the GFT given the species tree, under a dedicated model of gene evolution. For each
gene family,GeneRax returns a rootedGFT and its most likely reconciliation with
the input species tree.GeneRax was described in the journalMolecular Biology
and Evolution [105].

Those three software tools and algorithms (ParGenes , SpeciesRax , and Gen-
eRax ) are open source and publicly available on GitHub. In the course of my thesis,
I also contributed to several projects which resulted in peer-reviewed publications,
but have not been included here.

First, I integrated the site repeats technique [74] into our libpll library. This
technique accelerates the Phylogenetic Likelihood Function (PLF) (de�ned in Sec-
tion 2.3.3) computation, which represents90� 95%of the execution time in several
standard ML phylogenetic tools, such asRAxML-NG [76], ModelTest-NG [31],
and EPA-NG [11]. My implementation of site repeats improved the overall runtime
of those tools by a factor of1:2 up to 2:0. Thanks to this contribution, I co-authored
several peer-reviewed publications describing the tools that now use site repeats:
RAxML-NG was published inBioinformatics [76], ModelTest-NG in Molecular
Biology and Evolution [31], and EPA-NG in Systematic Biology[11]. Furthermore,
the site repeats technique can introduce load imbalance when thePLF computation
is parallelized over several computational cores. Therefore, I designed a novel data
distribution algorithm to account for site repeats. I presented this method at the
2017 IEEE 19th International Conference on High Performance Computing and
Communications[102]. I also co-supervised a group of students that further improved
this data distribution strategy by using a judicious hypergraph partitioning [15]
approach. Their method was presented at the2019 IEEE International Parallel and
Distributed Processing Symposium Workshops[9].

Secondly, with Pierre Barbera (a lab member), I co-developed a pipeline for con-
ducting phylogenetic analyses on SARS-CoV-2 data. Our team used this pipeline to
demonstrate that inferring reliable phylogenetic trees on such data is di�cult. We
concluded that the results of phylogenetic analyses from large numbers of SARS-CoV-
2 sequences should be interpreted with extreme caution. In addition, we presented
several recommendations for conducting such analyses. In particular, we proposed
two tree thinning approaches, aimed to reduce the number of sequences to analyze
in a "reasonable" way. We published our results in the journalMolecular Biology
and Evolution [104]. My own contribution consisted in setting up the pipeline (with
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Pierre Barbera), and in developing and testing one of the two proposedtree thinning
methods.

Furthermore, I contributed to the development ofTreerecs , a further GFT correc-
tion tool. Treerecs produces several candidateGFT solutions using a parsimony
criterion, and subsequently computes their joint likelihood score (as de�ned above) to
select the best solution. My contribution consisted in integrating the joint likelihood
function implemented inGeneRax into Treerecs . Treerecs was published as
an application note in Bioinformatics [27].

Finally, I participated in several empirical data analysis projects. I executed several
large-scale phylogenetic analysis for a project aimed to resolve the phylogeny of
Antliophora (a clade of insects). The results of this analysis are available onbiorXiv
[95]. In addition, I ran an analysis with GeneRax in order to classify a group of
opsin (a protein involved in vision) genes belonging to a group of Cnidaria (a phylum
of aquatic animals) species. The results of this study were published in the journal
Molecular Biology and Evolution[53].

1.3 Structure of the thesis
This thesis is structured as follows: Chapter 2 introduces di�erent evolutionary
mechanisms that are relevant to this work, and presents the probabilistic models
that are used to describe these mechanisms. Chapter 3 provides an overview of
the existing methods for inferringGFTs and species trees. In Chapter 4, I present
ParGenes , a parallel tool for simultaneously inferringGFTs from multiple MSAs.
In Chapter 5, I describeSpeciesRax , a tool for inferring a rooted species tree from a
set of unrootedGFTs in the presence of paralogy. In Chapter 6, I presentGeneRax ,
a tool for species tree awareGFT correction and reconciliation. Finally, I conclude
and discuss future work in Chapter 7.
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2. Preliminaries: Models of
evolution

2.1 Species and evolution
Although a speciesis one of the most fundamental units of biology, its exact de�nition
is subject to controversy among biologists [91, 148]. In the scope of this thesis, we
consider a species to be a group of individuals that share a common gene pool and
that are able to interbreed.

Species are subject to evolutionary forces such asmutation and natural selection.
As a consequence, they evolve over time, both from a molecular and morphological
perspective. In particular, a species can either split into two new species that
subsequently evolve separately (speciation event) or go extinct (extinction event).
These events form a branching pattern than can be represented by a tree structure,
sometimes called thetree of life.

It is worth noticing that such a tree representation does not allow for reticulation
events such as hybridization or genetic recombination.Phylogenetic networks[152]
have been proposed to model such events. However, because of their simplicity, trees
are still the most widely used structure to represent phylogenetic relationships.

2.2 Phylogenetic trees
A phylogenetic treeis a tree structure that represents the evolutionary history of a
set of entities. For instance, aphylogenetic species treeor species treedescribes a
hypothetical pattern of speciation events that occurred in the past. In a species tree,
the internal nodes represent the putative speciation events, and the terminal nodes
(leavesor tips) represent living (extant) species, labelled with the corresponding
species names. Figure 2.1 shows two examples of phylogenetic trees.

Phylogenetic trees can be eitherrooted or unrooted. In rooted trees, one and only
one internal node is tagged asroot node and represents the �rst speciation event.
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(a) Language tree

(b) Species tree

Figure 2.1: Examples of rooted phylogenetic trees. (a) A phylogenetic tree
of the languages spoken in our lab, extracted from [54]. (b) A cartoon representation
of a vertebrates species tree.

Unrooted trees do not have a root node and thus do not contain information about
the chronological order of the speciation events.

A bifurcating node is an internal node of degree three or a root of degree two. A
multifurcating node or polytomy is an internal node that is not bifurcating. A binary
or bifurcating tree is a tree that does not contain any polytomy. Amultifurcating tree
is a tree that is not bifurcating. Throughout this thesis, trees are always assumed to
be binary, unless stated otherwise.

Every branchb in a tree de�nes two subtrees with two complementary sets of leavesL
and �L. Such a pair(L; �L) is called thebipartition or split induced byb. A bipartition
induced by a branch adjacent to a terminal node is said to betrivial because it is
induced by all trees that share the same leaf set. LetT1 and T2 be two trees with the
same leaf set, and letB1 and B2 be the sets of non-trivial bipartitions ofT1 and T2,
respectively. TheRobinson-Foulds (RF) distance [123] betweenT1 and T2 is de�ned
as follows:

RF (T1; T2) = jB1 [ B2j � j B1 \ B2j

An unrooted tree with n taxa inducesn � 3 non-trivial bipartitions. Therefore, the
maximal RF distance between to trees (if no partitions are shared) is2(n � 3). The
relative RF distancecan be computed as follows:
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Figure 2.2: Illustration of DNA sequence evolution.

nRF (T1; T2) =
jB1 [ B2j � j B1 \ B2j

2(n � 3)

2.3 Molecular sequence evolution
Molecular sequences such asDNA or protein sequences evolve over time. This section
provides an overview over molecular sequence evolution. First, I introduce the concept
of a sequence. Then, I present common models of sequence evolution. Finally, I
derive the formula for computing the so-calledphylogenetic likelihood functionunder
those models.

2.3.1 Sequences and mutations

In this work, sequencesare string representations ofDNA or protein molecules. For
instance, aDNA molecule is a succession ofnucleotideswhich can be represented by
a string formed by the four charactersA; C; G; T . Similarly, a protein molecule is a
succession ofamino acids. There are20 di�erent amino acids, and thus the alphabet
for protein sequences comprises20 characters.

DNA and protein sequences are subject tomutations (see Figure 2.2). Asubstitution
replaces a base (e.g.,A) by another (e.g., T). An insertion inserts a base at a
given position in the sequence. Adeletion removes a base at a given position in the
sequence. Those mutations accumulate from one generation to another and represent
one of the most important driving forces of evolution.

Homologoussequences are sequences that evolved from the same ancestral sequence.
Because insertions and deletions change the sequences, it is often necessary toalign
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homologous sequences before comparing them, by inserting gaps (� characters) into
the sequences. The result of this operation is a bi-dimensional array called anMSA,
in which the rows are the sequences with inserted gaps and the columns (sites) are
the nucleotides that have evolved from the same ancestral nucleotide.

2.3.2 Substitution models

Sequence evolution can be modeled as a Continuous-Time Markov Chain (CTMC),
where the bases are the states and the base substitutions are the transitions. For
instance,DNA sequence evolution is modeled via aCTMC with four states corre-
sponding to each of the four nucleotidesA, C, G, and T. The valuesqij of the
Q-matrix Q of the CTMC represent theinstantaneous transition ratesbetween base
pairs i and j . The diagonal values ofQ are set such that each row sums to0. For a
given positive real numbert and for the basesi and j , let pi;j (t) be the probability
that i mutates to j in time t. The elementspi;j (t) form the transition probability
matrix P(t) and can be computed by matrix exponentiation ofQ: P(t) = eQt .

Let � i denote the stationary frequency of the basei , that is, the equilibrium distri-
bution to which the process converges for large values oft. A substitution model
is said to betime reversibleif � i qij = � j qji , 8i 6= j . Time reversibility is a crucial
property because it allows mathematical simpli�cations that allows to compute values
e�ciently. Throughout this thesis, I assume that all substitution models are time
reversible.

The substitution models used for phylogenetic inference mainly di�er by the con-
straints imposed toQ. For instance, the General Time Reversible (GTR) model
[80, 125] is the most general time reversible substitution model. ForDNA models,
its transition probability matrix has the following form:

QGT R = �

0

B
B
B
@

qA;A a� C b� G c� T

a� A qC;C d� G e� T

b� A d� C qG;G f � T

c� A e� C f � G qT;T

1

C
C
C
A

(2.1)

qi;i = �
X

i 6= j

qij ; i; j 2 A; C; G; T (2.2)

where � is the mean instantaneous substitution ratethat controls how frequently
substitutions occur. The variablesa, b, c, d, e, and f are relative base parameters
and control the relative rate of each possible substitution. SimplerDNA substitution
models impose more constraints toQ, and have thus less parameters. For instance,
the Jukes-Cantor (JC or JC69) model [70] has no free parameter. It imposes equal
stationary frequencies for all bases and equal relative rates:

QJC =

0

B
B
B
@

� 3
4

1
4

1
4

1
4

1
4 � 3

4
1
4

1
4

1
4

1
4 � 3

4
1
4

1
4

1
4

1
4 � 3

4

1

C
C
C
A

(2.3)
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Figure 2.3: Conditional likelihood vectors illustration. Three nodes and
there CLVs are represented.u is the parent node ofv and w. In this example, the
MSA contains DNA data (with four states) and two sites. Dashed lines represent
potential subtrees. The Felsenstein pruning algorithm visits the tree via a post-order
traversal, and therefore computes the CLVs of nodesv and w before computing the
CLV of u.

For protein substitution models, theQ matrix is substantially larger than for DNA
data: Q has202 = 400 elements and thus substantially more parameters that need
to be estimated. For instance, theGTR model for proteins has208 free parameters:
(400� 20)=2� 1 = 189 free parameters for the relative base parameters and20� 1 = 19
free parameters for the stationary frequencies. To avoid over-parametrization, it is
common to use preexisting matrices estimated from large collections of empirical
data, such as WAG [154] or LG [82].

All these models assume that all sites evolve at the same rate. However, this
assumption is often violated, because some regions of theDNA are under higher
evolutionary pressure than others. Some more advanced models such as the� model
[160] and the free rates model [162] account for this rate heterogeneity among sites.
However, for the sake of simplicity, we assume throughout the rest of this chapter a
constant evolutionary rate among sites.

2.3.3 The phylogenetic likelihood function
2.3.3.1 De�nition

Let G be an unrooted phylogenetic tree with a length assigned to each of its branches.
Let A be anMSA from which each sequence is located at one leaf ofG. Let N be
the set of possible base states (for instance,N = f A; C; G; Tg for DNA). Let � be
the set of parameters associated to a given model of sequence substitution. The
Phylogenetic Likelihood Function (PLF) is the probability of observingA given G
and � :

LA (G; � ) = P(AjG; � ) (2.4)

2.3.3.2 The Felsenstein pruning algorithm

The Felsenstein pruning algorithm[45] evaluates thePLF of the treeG by recursively
traversing G in a post-order fashion, that is, from the tips toward the root. Since
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Figure 2.4: The virtual root placement does not a�ect the PLF. The pink
nodes represent di�erent possible placements of the virtual root to evaluate the
PLF. For instance, the root can be placed betweenu and v (r placement), onu (u
placement), or on any other branch (r 0 placement). The likelihood score is the same
for any placement. In practice, the virtual root typically coincides with a node (for
instanceu in this example).

G is unrooted, avirtual root is added toG. I discuss the virtual root placement
in Section 2.3.3.3. At each step of the traversal, the algorithm �lls the so-called
Conditional Likelihood Vector (CLV) of each node ofG. The variable CLV u denotes
the CLV of nodeu. The elementsCLV u

s;c of CLV u represent the probability that u
is in state c at site s, conditional on the subtree topology and branch lengths.

The algorithm initializes the CLVs of the tips of G by setting CLV u
s;c := 1 if the

sequence assigned to tipu is in state c at site s, and CLV u
s;c := 0 otherwise.

Now, let u be an inner node and letv and w be its child nodes. The values ofCLV u

can be computed afterCLV v and CLV w have been �lled (see Figure 2.3): letr be
the evolutionary rate andbuv be the length of the branch betweenu and v . The
estimated time between two nodesu and v is equal tot = r � buv . The probability of a
transition from a state i to a state j along the branchbuv is thus equal topi;j (r � buv ).
The entries ofCLV u can be computed using the recursive formula:

CLV u
s;c =

0

@
X

j 2 N

pc;j (r � buv ) � CLV v
s;j

1

A

0

@
X

k2 N

pc;k(r � buw ) � CLV w
s;k

1

A

The recursion is applied for every statec 2 N and every site of the alignmentA, for
all nodes inG, from the tips to the virtual root, until all CLVs have been computed.

2.3.3.3 Evaluation at the root

Under a time reversible model (see Section 2.3.2), the value of thePLF does not
depend on the virtual root placement position. Thus, it can be placed into any branch,



2.4. Gene family evolution 13

and at any position on that branch (see Figure 2.4). To simplify computations, it is
typically placed at one of the two adjacent nodes of the selected branch. Once the
values of theCLVs have been �lled, the likelihood of anMSA site s can be computed
at the virtual root level as follows:

L s =
X

i 2 N

X

j 2 N

CLV u
s;i � � i � pi;j (r � buv ) � CLV v

s;j (2.5)

Under the assumption that all sites evolve independently, thePLF is then the product
of the per-site likelihoods over the sites of the MSAA:

LA (G; � ) =
Y

s2 A

L s (2.6)

In practice, the logarithm of the likelihoods is computed to avoid numerical under
ow.
Equation 2.6 then becomes:

L �
A (G; � ) = log(LA (G; � )) =

X

s2 A

log(L s) (2.7)

2.4 Gene family evolution
This section introduces the concept of a Gene Family Tree (GFT), and how to
compute the probability of observing aGFT given a species tree under the so-called
UndatedDTL model. The UndatedDTL model is highly relevant for this thesis,
because it allows to study the relationships between species trees andGFTs. In
particular, it can be used to perform both species tree inference andGFT inference.

2.4.1 De�nitions

The de�nition of a geneis recurrently challenged with new genetic discoveries [50, 115].
In the scope of this thesis, a gene is a basic unit of heredity that belongs to a species.
A gene locusis a speci�c, �xed position on a chromosome where a particular gene
is located. A gene sequenceis a molecular sequence associated to a gene. Di�erent
gene sequences associated to the same gene locus for the same species are called
alleles (see Figure 2.5). A set ofhomologous genesis a set of genes that evolved
from a common ancestral gene. Agene family is a set of homologous genes. I use
the term gene copiesto designate several homologous genes that belong to the same
species. A gene family with at least two genes that belong to the same species is a
multiple-copy gene family. A gene family that is not a multiple-copy gene family is a
single-copygene family.

A GFT is a phylogenetic tree that represents the evolutionary history of a set of
homologous genes (see Figure 2.6(b)). Its terminal nodes correspond to the sequenced
genes and its internal nodes correspond to hypothetical ancestral genes. Each leaf in
a GFT is mapped to a species. In the case of multiple-copy gene families, several
leaves in a GFT can be mapped to the same species.
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Figure 2.5: Illustration of a multi-allele gene locus. Two �sh individuals that
belong to the same species but that have di�erent skin colors (blue and red). The
grey rectangles represent a region of the chromosomes of each individual. The red
and blue rectangles represent the two di�erent alleles located at the same gene locus,
responsible for the skin color of the �shes. Those two gene alleles have di�erent
DNA sequences and encode di�erent proteins, resulting (in this case) in a di�erent
phenotype.

2.4.2 Speciation

When an ancestral species undergoes a speciation event (see Section 2.1), it gives
rise to two new species. Every gene in the ancestral species is passed down to each
of the new children species, and then starts to evolve separately (see Figure 2.7). A
speciation event corresponds to an internal node in a GFT (see Figure 2.6).

2.4.3 Gene duplication and gene loss

Gene duplicationis a mechanism through which a region ofDNA that contains a
gene is duplicated (see Figure 2.8(a)). Gene duplication events can either duplicate
several genes, or occasionally an entire genome [35, 52, 130]. However, in this thesis,
the term gene duplicationdesignates an event that only duplicates a single gene.
Gene duplication is considered to another major force of evolution, because it allows
genomes to grow and new functions to emerge [90, 167].

Gene lossis a mechanism through which a region ofDNA that contains a gene is lost
(see Figure 2.8(b)). Such losses can occur and subsist through generations when a
gene is dispensable or redundant [4]. Surprisingly, gene loss might have played a major
role in adaption and diversi�cation: gene loss that reduces the �tness of an organism
in the short term might sometimes allow for the emergence of new, alternative genes
that yield a stronger �tness than the lost genes [60]. In this thesis,the term gene loss
always designates the loss of a single gene.

In a GFT, a duplication event corresponds to an internal node, and a gene loss is
generally not represented (see Figure 2.6)

2.4.4 Horizontal gene transfers

Horizontal Gene Transfer (HGT) is a mechanism through which a gene is transferred
from one species to another (see Figure 2.9). It is orthogonal tovertical gene events
that transmit DNA material from a parent to its o�spring. A HGT event corresponds
to an internal node in a GFT (see Figure 2.6).
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(a) Species tree (b) Unrooted GFT

(c) Rooted labeled GFT (d) Reconciliation

Figure 2.6: Illustration of a GFT evolving in a species tree. (a) The species
tree represents the evolutionary history of three species: A, B, and C. (b) TheGFT
of �ve homologous genes: a1 and a2 (belonging to species A), b1 and b2 (belonging
to species B), and c1 (belonging to species C). (c) The sameGFT, but rooted
and labeled by gene events. Circles represent speciations, squares represent gene
duplications, stars represent gene losses, and triangles representHGTs. (d) The
reconciliation of theGFT with the species tree. The species tree is represented in
black and the GFT in blue.
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Figure 2.7: Illustration of speciation event at the gene level. An ancestral
species (pink color) splits into two new species (blue and red colors). The rectangles
represent a fragment of the genomes for each species, and the colored rectangles (pink,
blue and red) represent genes. Every gene from the ancestral species is transmitted
to both new species.

(a) Gene duplication (b) Gene loss

Figure 2.8: Illustration of gene duplication and gene loss events. On each
�gure, the grey rectangles represent fragments of the genomes of an individual and
of its o�spring. Red regions represent genes. In this example, the duplication and
loss events only a�ect one gene.
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(a) Before the HGT (b) After the HGT

(c) HGT on the species tree

Figure 2.9: Illustration of a HGT. (a) Chromosome regions of two contemporary
species (Species1 and Species3) before a HGT event. Blue regions represent genes
from Species1 and red regions represent genes from Species3. (b) The same regions
after a HGT event from Species1 to Species3. After this event, Species3 has a copy of
a gene coming from Species1 in its genome. (c) The same HGT event represented on
a species tree with three species. Species2 is not a�ected by the HGT event between
Species1 and Species3.
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Figure 2.10: Illustration of incomplete lineage sorting. The species tree is
represented in dark color and the allele tree in blue and red colors, corresponding to
the alleles coding for the blue and red skin, respectively.

2.4.5 Incomplete lineage sorting

Incomplete Lineage Sorting (ILS) is a consequence of gene polymorphism (the presence
of several alleles in a population) and one of the main causes of gene and species
history discordance [89]. Let us consider a population of red �shes and let us assume
that one single gene is responsible for their skin color. In this �ctional example, at
a given time, a sequence mutation causes the emergence of a new allele that yields
a blue skin. After this event, both alleles co-exist in the �sh population. Let us
now assume that after a large number of generations, the initial �sh species evolved
into three species (�sh1, �sh2, and �sh3), and that each new species only retained
one of the two alleles (blue or red). Figure 2.9 illustrates such a scenario where
the blue allele survives in two species (�sh2 and �sh3) and the red allele survives
in the other species (�sh1). At the species level, �sh1 and �sh2 are evolutionarily
more closely related to each other than to �sh3. But at the gene level, the genes of
�sh2 and �sh3 are more closely related to each other than to the gene from �sh1.
This phenomenon is calledILS and is often modeled via the so-called Multi-Species
Coalescent Model (MSCM) [120].

2.4.6 The UndatedDTL model

The UndatedDTL model [105] is a discrete time Markov model, which starts with
a single gene copy on a branch of a given species tree. Subsequently, gene copies
evolve independently until, either all copies are observed at the leaves, or every gene
copy becomes extinct. On an arbitrary branch of the species tree a gene copy (see
also Figure 2.11):
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(a) Speciation (b) Terminal leaf

(c) Gene duplication (d) HGT (e) Gene loss

Figure 2.11: UndatedDTL model events. The �ve possible events that can
a�ect gene evolution under the UndatedDTL model. The black lines represent the
species tree. The blue lines represent theGFT. Pink shapes represent the �ve
possible events: a circle for a speciation or a terminal node, a square for a gene
duplication, a triangle for a HGT, and a star for a gene loss.

ˆ either duplicates and is replaced by two corresponding gene copies on the same
branch (Devent, with probability pD)

ˆ a new copy is transferred to a random branch that isnot ancestral to the donor
branch, but otherwise drawn uniformly at random from the species tree, while
a copy also remains at the donor branch (T event, with probability pT)

ˆ is lost (L event, with probability pL)

ˆ undergoes a speciation event on internal branches, in which case it is replaced by
a copy on each descendant branch (Sevent, with probability pS = 1 � pD� pT� pL)

ˆ is observed for terminal branches, that is, arrives in the present and is observed,
thus terminating the process (again with probabilitypS = 1 � pD � pT � pL)

2.4.7 The reconciliation likelihood

The reconciliation likelihood is the probability of observing a rootedGFT G under
the UndatedDTL model as de�ned above. It can be calculated by summing over
all possible series ofD, T, L, and S events (henceforth calledscenarios) that yield a
rooted topology that is congruent withG. The sum over all possible scenarios can
be computed in two steps [144]. The �rst step consists in calculating the extinction
probability of a gene copy that was initially present on some branch of the species
tree. The extinction probability is the sum over all scenarios that do not yield
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descendants. The second step consists in summing over all reconciliations ofG,
where a reconciliation ofG corresponds to a speci�c sequence ofD, T, S, and gene
copy extinction events, and its probability corresponds to the product over the
speci�c sequence of events.

Let � , � , and � denote the duplication, loss, and transfer intensity parameters that
parametrize theD, T, L, and S event probabilities as follows:

pD = �=(1 + � + � + � ) (2.8)

pT = �=(1 + � + � + � ) (2.9)

pL = �= (1 + � + � + � ) (2.10)

pS = 1=(1 + � + � + � ): (2.11)

To begin, let e be a branch of the species treeS, and let f and g be its descendant
branches. LetT (e) be the set of species tree branches that can receive a gene via
a HGT from e. Because the model does not assume any time information on the
species tree other than the order of descent induced by the rooted tree topology,
the set T (e) corresponds to all nodes that are not ancestors ofe. The model allows
transfers from e to its descendants, because a gene could have evolved along an
extinct or unsampled lineage and could subsequently have been transferred back to
a descendant ofe [144].

The extinction probability Ee, that is, the probability that a gene copy observed on
an internal branch e becomes extinct before being observed at the tips of the species
tree is:

Ee = pL + pS (E f Eg) + pD
�
E 2

e

�
+ pT

�
Ee

�Ee

�
: (2.12)

�Ee =
X

h2T (e)

Eh

jT (e)j
(2.13)

The terms correspond to the i) loss probability, ii) speciation and subsequent extinc-
tion probability in both descending lineages (this term must be omitted for terminal
branches), iii) duplication and subsequent extinction probability of both copies and
�nally iv) transfer and subsequent extinction probability of both, the donor copy on
branch e, and the transferred copy on branchh.

In Equation 2.12, the value ofEe depends on �Ee, and thus on the extinction
probabilities of all species in the species tree. One can estimate�Ee and Ee for all
nodese in the species tree, by initializing[Ee]

0 = 0 and computing:

[Ee]
n = pL + pS [E f ]n� 1 [Eg]n� 1 + pD([Ee]

n� 1)2

+ pT [Ee]
n� 1 X

h2T (e)

[Eh]n� 1 =jT (e)j (2.14)

The probability of observing a rootedGFT G given a rooted species treeS is the
sum over the probabilities of all reconciliations ofG with S. This includes allD, T,
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S, and gene extinction events that may have generated the observed, rootedGFT
along the species tree. The algorithm to calculate the sum over all reconciliation
histories proceeds from the tips of the rooted species tree and rootedGFT toward
their respective roots. Letv and w be descendants ofu on G, and f as well asg
be descendants ofe on the species treeS. For calculating the recursive sum over
reconciliations, considerPu;e, as the sum over all reconciliations that generate the
sub-tree below some internal nodeu of G starting from a single gene being present
on the internal branche of the species treeS. Pu;e is calculated by enumeratingall
possible singleD, T, and S events that can result fromu on e:

Pu;e = pS (Pv;gPw;f + Pw;gPv;f ) + pS (E f Pu;g + Pu;f Eg)

+ pD(Pv;ePw;e) + pD(2Pu;eEe)

+ pT
�

�Pe
wPv;e + �Pe

v Pw;e

�
+ pT

�
�Pu;eEe + �EePu;e

�
; (2.15)

�Pu;e =
X

h2T (e)

Pu;h

jT (e)j
; (2.16)

whereT (e) denotes the branches ofS that are not ancestors ofe. If both e and u
are terminal branches,Pu;e = PS.

Similar to the expression for the extinction probability,Pu;e depends on itself. This
can be solved through �xed point iteration analogously to (2.12). Apart from the
self dependence, every other term involves either descendant branches inG (u and
w), descendant branches inS (f and g), or both. This allows to devise a bottom-up
dynamic programming recursion starting at the leaves. Thereby for the leafg of the
GFT and leafs of the species treeP(g; s) = 1 , if geneg maps to speciess, and zero
otherwise.

Given the above, to calculate the reconciliation likelihood, letG be a rootedGFT, r
the root of G, S a rooted species tree,s the root of S, V(S) the set of nodes ofS,
and N = f �; �; � g the set of DTL intensity parameters. The reconciliation likelihood
can then be expressed as:

L(S; NjG) =
X

s2 V (S)

Pr;s =
X

s2 V (S)

(1 � Es); (2.17)

The division by
P

s2 V (S)(1 � Es) conditions on survival, as extinct gene families
cannot be observed.

2.5 Species and gene histories

In this section, I discuss why the evolutionary histories of species and genes seem
to disagree with each other, and how these apparently discordant histories can be
reconciled.
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2.5.1 Species tree and GFT discordance

The evolutionary history of a set of homologous genes can disagree with the evolution-
ary history of the corresponding species [89]. In other words, when homologous genes
are sampled from a set of species, theGFT related to these genes might di�er from
the species tree. First, in multiple-copy gene families, the number of genes can di�er
from the number of species. Secondly, for both multiple- and single-copy gene families,
the species tree andGFT topologies can di�er. Reasons for this discordance include
gene duplication, gene loss, andHGT (see Figure 2.6) as well asILS (see Figure 2.10).
Note that another important source of discordance isGFT reconstruction inaccuracy,
for instance because of a lack of signal in the gene sequences [103], or because �nding
the ML tree is NP-hard [69].

2.5.2 Reconciliation

Let D, T, L, andSdenote gene duplication,HGT, gene loss, and speciation, respectively.
We now assume that species tree andGFT discordance are due toD, T, and L events
only (S events also occur but are not a cause for discordance).Reconciling a species
tree and aGFT consists in labeling theGFT with gene events (D, T, L, and S) and
mapping each node in theGFT to a node in the species tree (see Figure 2.6). Species
tree and GFT reconciliation has many applications in biology, such as ancestral
genome size estimation [73], gene event rates estimation [57], gene classi�cation [53],
or species tree root inference [106, 157].



3. Preliminaries: Methods for
phylogenetic tree inference

In this chapter, I provide an overview over the state-of-the-art phylogenetic tree
inference methods that are relevant for this thesis. I �rst present Neighbor Joining
(NJ) [128], a generic method for inferring a tree from a distance matrix. Then,
I outline a standard pipeline for GFT inference. Thereafter, I introduce several
methods for species tree inference. Finally, I describe two classes of methods for
GFT correction and reconciliation.

3.1 Neighbor joining
Neighbor Joining (NJ) [128] is a distance-based algorithm for phylogenetic tree
inference. It takes as input a distance matrixD of sizen, where the elementsD i;j

are the pairwise distances between taxai and j where1 � i; j � n and i 6= j . D
is typically obtained by computing the pair-wise distances on the input sequences
[63, 153] or from a set ofGFTs [87]. The NJ algorithm �rst assigns each taxon to
its own cluster, and then works bottom-up by iteratively joining the most similar
pairs of clusters, until the whole tree has been built.

The algorithm starts from a star tree, in which all terminal nodes are connected to
the same unique internal node (see Figure 3.1(a)). Each terminal node is initially
assigned to a di�erent cluster. At each iteration of the algorithm, a matrixQ is
computed from the distance matrixD of sizen as follow:

Qi;j = ( n � 2)D i;j �
nX

k=1

D i;k �
nX

k=1

D j;k

Then, let (e; f ) be the pair of nodes such thatQe;f is the smallest element inQ.
The nodese and f are joined into a newly created nodeu which is connected to
the central node (see Figure 3.1). The nodese and f are removed from the list of
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(a) Initialization (b) After the �rst step

Figure 3.1: Illustration of the NJ algorithm. (a) Initial star tree. Every cluster
is connected to the central nodea. Dash lines represent unresolved branches. (b)
After the �rst step, e and f are joined to a new nodeu to form a new cluster, andu
is connected to the central nodea. The solid lines betweenu and e, and betweenu
and f , represent resolved branches.

clusters andu is added to the list of clusters. Finally,D is updated by calculating the
distances between the new clusteru and each of the remaining clustersk as follows:

Du;k =
1
2

(Dk;e + Dk;f � De;f )

The NJ algorithm iterates until the tree is completely resolved (e.g., until it does
not contain any polytomy). It has a cubic complexity with respect to the number of
taxa.

3.2 GFT inference

This sections describes how one can infer aGFT from its correspondingMSA using
an ML approach. I �rst describe how to select the most adequate substitution model
for a givenMSA. Then, I present the tree search heuristic that is commonly used to
infer the best-knownML GFT . Finally, I explain how to assess con�dence values for
the inferred ML GFT.

3.2.1 Model selection

The choice of the substitution model is a crucial step for phylogenetic tree inference.
A model with too many degrees of freedom can lead to over-parametrization, whereas
a model that is too constrained can fail to capture the complexity of sequence
evolution. In addition, some models might fail to represent the process being studied
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(a) Before the move (b) After the move

Figure 3.2: Illustration of a SPR move of radius 1. The subtree containing
the nodesE and F is pruned from the tree. Then, it is reattached one node away
(r = 1) from its initial position.

(model misspeci�cation). An inadequate model might negatively a�ect the quality of
the subsequent GFT inference process.

In absence of reliable prior knowledge,model selectiontools such asModelTest-NG
[31] or ModelFinder [71] automatically choose the best-�t model. These tools
start by generating a plausible (i.e., non-random) tree for theMSA. Then, for each
candidate substitution model, they optimize its parameters and the branch lengths in
order to maximize the likelihood of this tree. Since the tested models have di�erent
degrees of freedom, their likelihoods can not be directly compared. Instead, criteria
such as the Akaike Information Criterion (AIC) [2] or the Bayesian Information
Criterion (BIC) [131] are used to select the best-�t model.

3.2.2 Maximum likelihood tree search

ML phylogenetic tree inference approaches aim to �nd the unrootedGFT that
maximizes the likelihood score. It is worth noting that the number of distinct
unrooted tree topologiesN (n) =

Q n
i =3 (2i � 5) grows super-exponentially with the

number of taxa n [47]. Therefore, trying all possible tree topologies is in most cases
not possible. Furthermore, �nding theML tree has been shown to be an NP-hard
problem [124].

A tree searchis a heuristic that explores a promising subset of the tree topology space.
It starts from an initial tree and iteratively alters it in order to incrementally improve
its likelihood score. The initial tree can be either randomly generated, provided by
the user, or inferred with a faster heuristic. ASubtree Prune and Regraft (SPR)
move of radius r is an operation that consists in pruning a subtree from a tree and
regrafting it at another position that is located r nodes away from its initial position
(see Figure 3.2). The tree search strategy implemented in the toolRAxML-NG [76]
consists in testing all possibleSPR moves within a given radius and applying every
SPR move that yields a likelihood improvement. The search stops when no better
tree can be found. To avoid local maxima, the same procedure can be repeated from
di�erent starting trees.
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3.2.3 Bootstrap support values

Heuristic ML tree searches are not guaranteed to �nd the true tree topology. First,
because the search heuristic does not explore all possible tree topologies and might
fail to �nd the best tree (w.r.t. the likelihood score). Second, because this best tree
might not correspond to the true tree, for instance because of a lack of signal in the
input MSA [103]. Bootstrap support values[46] were introduced, for instance, to
assess the con�dence in an inferredML tree, or to build a consensus tree out of the
bootstrap replicates, under the assumptions that the selected substitution model is
well speci�ed and that the sequences have been correctly aligned.

The method consists in randomly subsampling the sites of the inputMSA with
replacement and to infer a so-calledbootstrap treefrom the new re-sampledMSA
using the standardML search approach. The procedure is repeated several times to
produce a set of bootstrap trees (typically100or 1000, but adaptive approaches to
determine the number of required bootstrap replicates also exist [112]). Let X uv be
the bipartition induced by a branch uv. The support value of a branchuv of the
inferred ML tree is de�ned as the fraction of bootstrap trees that induceX uv (see
Figure 3.3).

3.3 Species tree inference

This section describes the di�erent methods used to infer a species tree. First, I
present the so-called supermatrix approach, which concatenates severalMSAs into a
singleMSA, from which the species tree is subsequently inferred, for instance using
ML methods. Second, I describe severalGFT-based approaches, which involveGFT
inference as an intermediate step to infer the species tree.

3.3.1 Supermatrix methods

Supermatrix methods are currently still the most widely used methods to infer species
trees. They take as input single-copy gene families, and concatenate all the per-gene
MSAs into a single, largeMSA called the supermatrix. Then, they infer a species
tree from this supermatrix, typically using ML methods (see Section 3.2.2).

However, extracting single-copy gene families from multiple-copy gene families is a
challenging step. When paralog genes (genes that evolved from a duplication event)
are selected, the resultingMSA is likely to support a topology that disagrees with
the true species tree topology, as explained in Section 2.5.1.Orthology inference[6]
consists in selecting groups of genes that contain information about speciation events
(ortholog groups).

In addition, supermatrix methods have been shown to be statistically inconsistent
under the Multi-Species Coalescent Model (MSCM) [34, 77]: in presence ofILS (see
Section 2.4.5), and under speci�c conditions [34], they have been shown to converge
to an incorrect tree when the size of the available data grows asymptotically.
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Figure 3.3: Illustration of bootstrap support value computation. In this
example, two bootstrap trees (represented on the right) are generated to compute the
bootstrap support values on the ML tree (represented on the left). Both bootstrap
trees fully support the bipartition induced by the branch uv because they both
contain a branch that induces the bipartition X uv = ( A; B jC; D; E ). Therefore,
the normalized support value ofuv is equal to 1 (maximum support). However,
only one of the two bootstrap trees (the one on the top) supports the bipartition
X vw = ( A; B; C jD; E ): there is no branch in the bottom bootstrap tree that splits
the taxon set into A, B , and C on one side, andD and E on the other side. The
normalized support value of the branchvw is thus 0:5. Note that the branches
connected to terminal nodes are, by de�nition, always fully supported, and their
support values are usually not shown.
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Figure 3.4: The internode distance. In this example, the internode distance
between the terminal nodesA and D is Dg(A; D ) = 3 , because there are three
internal nodes along the path connectingA to D.

3.3.2 GFT methods

GFT methods aim to alleviate the pitfalls of supermatrix approaches by accounting
for the discordance between the species tree and theGFTs. SomeGFT methods try
to simultaneously estimate theGFTs and the species tree [18], while some others
�rst estimate the GFTs from the per-geneMSAs, and then infer the species tree
[87, 101, 151, 166]. In the following, I present some of these GFT methods.

3.3.2.1 NJst

NJst [87] initially computes a distance matrix from a set of unrootedGFTs and
then applies the NJ algorithm (see Section 3.1) to reconstruct the species tree.

NJst de�nes the internode distanceDg such that Dg(x; y) is the number of internal
nodes on the path between the terminal nodesx and y in a givenGFT (see Figure 3.4).
NJst computes the distance between two species as the average over the internode
distances between all pairs of gene copies mapped to those two species.

More formally, let a and b be two species. LetK be the number of GFTs. Letmak

be the terminal nodes fromGFT k mapped to speciesa. Let x iak be the i th terminal
node from theGFT k mapped to speciesa. NJst de�nes the distance matrixDNJst

as follows:

DNJst (a; b) =

KP

k=1

makP

i =1

mbkP

j =1
Dg(x iak ; x jbk )

KP

k=1
makmbk

(3.1)

The species tree is then obtained by applying theNJ algorithm to the matrix DNJst .

3.3.2.2 Quartet methods

A quartet topologyis an unrooted tree with four taxa (see Figure 3.5). LetG be a
GFT and let (a; b; c; d) be four of its taxa. The quartet topology induced by(a; b; c; d)
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Figure 3.5: Illustration of quartets. On the left, we depict an unrooted tree
with �ve taxa. On the right, the three possible quartet topologies for the set of taxa
(A; B; C; D ) are shown. The red dashed circle indicates the quartet topology that
agrees with the unrooted tree.

from G is the quartet topology obtained by removing all other taxa fromG. For a
given set of four taxa, there are three possible quartet topologies. A quartet topology
agrees with a species tree if the species tree induces this quartet topology. The
Maximum Quartet Support Species Tree (MQSST) problem [99] consists in �nding
the unrooted species tree that agrees with the largest number of quartets induced by
the set of GFTs. This problem has been shown to be NP-hard [69].

Astral [98, 99, 165] is a quartet-based method for inferring a species tree from
single-copygene families. It implements a heuristic that approximately solves the
MQSST problem in polynomial time by constraining the set of species trees to
explore. Let X be the set of bipartitions induced by the inputGFTs. Let Q be the
set of species trees whose bipartitions belong toX . Astral -I [99] implements a
dynamic programming approach to evaluate all the species trees inQ without having
to explicitly enumerate all the quartet topologies.Astral -II [ 98] and Astral -III
[165] improve the asymptotic runtime of Astral by introducing several techniques,
for instance to reduce the size ofQ, resulting in an overall time complexity of
O((n � k)2:726) where n is the number of species andk is the number of families.
Astral is statistically consistent under the MSCM [99].

Astral-Pro [166] extendsAstral to accept multiple-copy gene families as input
and to account for paralogy. In a �rst step, it approximately roots the input GFTs
and tags them with "duplication" and "speciation" nodes. Then, it adapts the original
Astral algorithm by enumerating only those quartets that are informative regarding
speciation events, using the following de�nition: a quartetQ on a rooted taggedGFT
is a speciation-driven quartet if and only if the Lowest Common Ancestor (LCA) of
any three out of four leaves ofQ is a speciation node.
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3.3.2.3 Maximum likelihood methods

ML methods search for the species tree that maximizes a likelihood score under a
given probabilistic model of evolution.

PHYLDOG [18] is an ML method that co-estimates theGFTs and the species tree.
It introduces a custom model of gene evolution that accounts for gene duplication and
gene loss (DL) events, and computes a reconciliation likelihood functionL(S; NjG)
that describes the probability of observing aGFT G given a rooted species treeS
and a setN of DLevents under this model.PHYLDOG optimizes the so-called
joint likelihood score, which is the product of the standard phylogenetic likelihood
(see Section 2.3.3) and this speci�c reconciliation likelihood function. For a given
gene familyi , let S be a species tree,A i be a geneMSA, Gi be aGFT, and N be
the rates ofDand L events. The joint likelihood of a familyi is de�ned as:

L(Gi ; S; NjA i ) = L(S; NjGi ) � L(Gi jA i ) (3.2)

Let I be a set of gene families,G be the corresponding set ofGFTs, andA be the
corresponding set of geneMSAs. The joint likelihood of I is obtained by multiplying
the joint likelihoods over all gene families:

L(G; S; NjA) =
Y

i 2I

L(Gi ; S; NjA i ) (3.3)

PHYLDOG implements a search strategy that explores the space of rooted species
trees usingSPR moves (see Section 3.2.2). For each candidate species tree obtained
via an SPR move, it optimizes eachGFT topology to maximize its joint likelihood
using anSPR tree search heuristic. The candidate species tree is accepted if the
optimized GFTs yield a better overall joint likelihood, and the procedure is repeated
until not better species tree can be found.

3.3.2.4 Parsimony methods

Parsimony methods aim to �nd the rooted species treeS that requires the least
number of gene events toreconcile (see Section 2.5.2) the inputGFTs with S.
For instance,DupTree [151] implements a heuristic to �nd the species tree with
the lowest reconciliation cost, measured in terms of number of gene duplications.
Similarly, DynaDUP [12] searches for the species tree that requires the lowest
number of gene duplication and gene loss events.

3.3.2.5 Robinson-Foulds supertree methods

Let G be a set of (uniquely labelled) unrooted trees with the same label set and let
RF be the RF distance function (see Section 2.2). TheRF supertree problem [10]
consists in �nding the tree S that minimizes:

X

G2G

RF (S; G)
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FastMulRFS [101] is a method that extends theRF distance de�nition and the RF
supertree problem tomulti-labelled trees, that is, trees that can have several leaves
with the same label. It provides an algorithm to compute theRF distance between a
single-labelled tree (the species tree) and a multi-labelled tree (aGFT, in which each
terminal gene node is labelled with the species it belongs to) in polynomial time.
FastMulRFS uses a dynamic programming approach to evaluate all the species
trees that belong to a constrained search spaceX , similarly to the quartet-based
approach described in Section 3.3.2.2, and solves the multi-labelledRF supertree
problem onX in polynomial time.

3.4 Species tree aware GFT correction and recon-
ciliation

GFTs are typically inferred from their geneMSAs via ML tree search heuristics,
as described in Section 3.2.2. However, the lack of signal in the geneMSAs often
leads toGFT reconstruction errors [103]. Species Tree Aware (STA) methods aim to
exploit the relationship between theGFT and the species tree to leverage additional
information for GFT inference. In addition, they canreconcile (see Section 2.5.2) the
resulting GFT with the species tree, providing useful insights into the gene family
history.

This section describes two standard classes of methods forSTA GFT correction and
reconciliation methods. First the parsimony methods, that aim to minimize the
number of gene duplication, gene loss, andHGT events required to reconcile the
GFT with the species tree. Secondly, the amalgamation methods, that sampleGFTs
under a joint model of sequence evolution and GFT-species tree evolution.

3.4.1 Parsimony methods

Parsimony methods take as input a rooted species tree and an unrooted, multifurcat-
ing GFT (see Figure 3.6(b)). They output a rooted binaryGFT and its reconciliation
with the input species tree. Parsimony methods aim to �nd theGFT that requires
the lowest number of gene duplication, gene loss, andHGT events to be explained.
The multifurcating input GFT is typically obtained by �rst inferring an ML GFT
with its bootstrap support values, and by subsequently contracting the branches
whose support value fall under a given arbitrary threshold. The next paragraphs
introduce several de�nitions in order to describe the minimum parsimony problem in
the context of GFT correction and reconciliation.

Let G be an unrooted multifurcating tree. An unrooted binary treeG0 agreeswith
G if it induces all the bipartitions induced by G (see Figure 3.6(c)). A rooted tree
G0 agreeswith G if its unrooted topology agrees withG.

The reconciliation cost C(RG0;S) of a reconciliationRG0;S between a rooted binary
GFT G0 and a rooted species treeS is the sum over the number of gene duplication
(nD), gene loss (nL), and HGT (nT) events involved in this reconciliation, weighted
by their respective costsCD, CL, and CT (see Figure 3.6):
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(a) Species tree

(b) Unresolved GFT

(c) Resolved GFT
(d) Most parsimonious rec-
onciliation

Figure 3.6: Illustration of most parsimonious GFT reconciliation. (a) The
rooted binary input species treeS. (b) The unrooted multifurcating input GFT G.
The gene copiesa1 and a2 belong to speciesA, b1 and b2 to speciesB , and c1 and c2

to speciesC. (c) An unrooted representation ofG0, a binary GFT that agrees with
G0. (d) A reconciliation of G0 with S: circles represent speciation events and squares
represent duplication events. There are neither gene loss norHGT events involved in
this scenario:nD = 2, nL = 0, and nD = 0. With costs CD = 10, CL = 1 and CT = 1 ,
the overall cost of this reconciliation is20. G0 is the resolution ofG that yields the
most parsimonious reconciliation withS (note that another equally parsimonious
solution can be obtained by exchanging the nodesa1 and a2).
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Figure 3.7: Estimating the conditional clade probabilities from a distri-
bution of GFTs. The �gure represents a distribution of fourGFTs. The clade

 = ( A; B; C ) is observed in the �rst three trees only. The two �rst trees split
 into
the subclades
 0

1 = ( A; B ) and 
 00
1 = ( C). The third tree splits 
 into the subclades


 0
2 = ( A; C) and 
 00

2 = ( B). Therefore,p(
 0
1; 
 00

1 j
 ) = 2
3 and p(
 0

2; 
 00
2 j
 ) = 1

3

C(RG0;S) = nDCD + nLCL + nTCT

The costsCD, CL, and CT are arbitrarily set by the user, and re
ect prior expectations
about the relative event frequencies. For instance,CD = 10, CL = 1 and CT = 1
implies that HGTs are forbidden, and that gene losses are expected to happen more
frequently than gene duplications.

The reconciliation costC(G0; S) of a rooted binaryGFT G0 and a rooted species tree
S is the minimum reconciliation cost over all possible reconciliations betweenG0 and
S. Let G be an unrooted multifurcating tree. Parsimony methods aim to �nd the
rooted GFT G� that agrees with G and that yields the minimum reconciliation cost.

One solution to this problem consists in recursively resolving each polytomy of the
input GFT via a dynamic programming approach [111] [27].

3.4.2 Amalgamation methods

ALE [143] is a method that samplesGFTs using a joint model of sequence evolution
and GFT-species tree evolution. For a given gene family, it takes as input a distribu-
tion of GFTs G estimated from the input geneMSA A, and outputs a distribution of
GFTs sampled under this joint model. The input distribution ofGFTs G is typically
obtained from tools such asMrBayes [127] or ExaBayes [1], which sampleGFTs
from an MSA proportionally to the posterior probability distribution under a given
model of sequence evolution.

3.4.2.1 PLF approximation

Let G be a rooted tree. Theclade induced by a nodeu in G is de�ned as the set of
terminal nodes ofG that descend fromu. Note that the term clade is sometimes
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used as a synonym of the termsubtreein the literature, but here, it corresponds to a
leaf set, without any topological information. Letu be an internal node ofG and
let v and w be its two child nodes. Let
 u, 
 v, and 
 w be the clades induced by the
nodesu, v, and w, respectively. The pair(
 v; 
 w) is the clade split induced by the
nodeu and its children v and w. The conditional probability qG(
 u) of observing
the subtree ofG under u is de�ned as:

qG(
 u) = p(
 v; 
 w j
 u)qG(
 v)qG(
 w) (3.4)

The term p(
 v; 
 w j
 u) is the probability of observing the clade split(
 v; 
 w) conditional
of 
 u being observed. It can be estimated from the inputGFT distribution G by
computing the ratio between the number of trees inG that contain the clade split
(
 v; 
 w) and the number of trees inG that contain the clade
 u (see Figure 3.7). Let�
be the top clade induced by the root ofG. The phylogenetic likelihood ofG, that is,
the probability of observing theMSA A given G, can be approximated by recursively
applying Equation 3.4, starting from� and stopping the recursion at the leaves by
setting qG(
 ) = 1 if 
 is a clade with only one taxon:

P(AjG) � qG(�) (3.5)

3.4.2.2 GFT sampling

Let A be anMSA, S a rooted species tree, andG a distribution of GFTs estimated
from A under a given model of sequence evolution. LetG be a GFT in G. The
reconciliation likelihood (see also Section 2.4.7) is de�ned as the probability of
observingG given S under a given model ofGFT-species tree sequence evolution
(e.g., the UndatedDTL model introduced in Section 2.4.6).ALE de�nes the joint
likelihood of A, S, and G as the product between the phylogenetic likelihoodP(AjG)
and the reconciliation likelihoodP(GjS). The joint likelihood of G is obtained by
multiplying over the GFTs in G:

L joint (A; S) =
X

G2 G

P(AjG) � P(GjS)

�
X

G2 G

qG(�) P(GjS) (3.6)

In Section 2.4.7, I described an algorithm to evaluate the reconciliation likelihood
P(GjS) under the UndatedDTL model, by recursively computing the termPu;e for
each nodeu of the GFT and each nodee of the species tree.ALE calculates this
joint likelihood by adapting this algorithm to compute the term P
;e for each nodee
of the species tree and each clade
 induced by at least one of theGFTs of G. Let
s
 be the set of clade splits(
 0; 
 00) of 
 induced by at least oneGFT in G. For the
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sake of simplicity, I only show how the duplication term of Equation 3.6 is adapted
to compute P(
; e ):

Pu;e = ... + pD(2Pu;eEe) + pDPv;ePw;e + ... (3.7)

becomes

P
;e = ... + pD(2P
;e Ee) + pD
X


 0;
 002 s


p(
 0; 
 00j
 )P
 0;eP
 00;e + ... (3.8)

ALE samples reconciledGFTs under a joint model of sequence evolution andGFT-
species tree evolution by stochastic backtracking along this sum, starting fromP� ;R ,
where� is the clade containing all gene copies andR is the root of the species tree.
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4. Gene family tree inference with
ParGenes

This chapter is based on the following peer-reviewed application note:

Benoit Morel , Alexey M. Kozlov and Alexandros Stamatakis. \ParGenes:
a tool for massively parallel model selection and phylogenetic tree inference
on thousands of genes."Bioinformatics, Volume 35, Issue 10, 15 May 2019,
Pages 1771{1773. , https://doi.org/10.1093/bioinformatics/bty839

4.1 Introduction

The availability of genomic data for an increasing number of organisms allows to
use thousands of gene families to infer evolutionary relationships between species.
Species tree inference methods can be divided into supermatrix and Gene Family
Tree (GFT) approaches. The former infer the species tree directly from a large
concatenatedMSA called thesupermatrix (see Section 3.3.1), whereas the latter infer
individual GFTs which are then reconciled into a species phylogeny (see Section 3.3.2).
Supermatrix methods are widely used due to their simplicity and availability of
e�cient implementations [ 75, 110]. However,GFT methods gain popularity as they
can model events such asILS (e.g., [98]), gene duplication and loss (e.g., [8]), as well
as HGT (e.g., [86]).

As input, GFT methods typically require a set ofGFTs (potentially also including
bootstrap trees) that shall be reconciled (e.g., [18]). Inferring this set of GFTs using
ML methods is computationally intensive and requires the use of cluster computing
resources.
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While popular parallel tools forML tree inference (e.g.,RAxML [138], IQ-TREE [110])
can e�ciently process large supermatrices, no dedicated parallel tool exists for infer-
ring per-MSA GFTs on a large set ofMSAs. In current studies users deploy ad hoc,
and thus potentially error-prone or ine�cient, scripts for submitting each individual
GFT inference to a cluster as a single job. As common cluster con�gurations typically
limit the number of sequential jobs a single user can execute in parallel, this can
substantially increase the time-to-solution.

To this end, we have developed and made available a novel tool calledParGenes .
It o�ers a simple command-line interface that allows to select the best-�t model,
infer ML GFT s, and compute bootstrap support values on thousands of per-gene
MSAs via a single parallel Message Passing Interface (MPI ) run. ParGenes relies
on ModelTest-NG [31] and RAxML-NG [76], to perform model selection and
tree inference, respectively.

In Section 4.2, we list the features supported byParGenes . Then, in Section 4.3,
we describe our scheduling strategy. In Section 4.4 and Section 4.5, we describe
the experimental setup that we used to benchmarkParGenes , and our results,
respectively. Finally, we discuss these results in Section 4.6.

4.2 Features

ParGenes encapsulates all per-gene family calculations in one singleMPI invocation.
To improve load balancing and decrease time-to-solution,ParGenes schedules per-
gene family inferences and allocates avariablenumber of cores to these inferences
within its MPI runtime environment. In the following, we describe some of the key
features.

4.2.1 Simultaneous processing of MSAs

Unlike standard tools for ML inference,ParGenes operates on multipleMSAs.
Thus, the user needs to provide a directory containing allMSAs in PHYLIP or
FASTA format. One can either specify global orMSA-speci�c options for both,
RAxML-NG and ModelTest-NG . ParGenes initially pre-processes eachMSA,
to check that the �le format is valid, compresses it, saves it in a binary �le, and
reads its number of taxa and unique site patterns (e.g., the number of non-identical
columns in the MSA).

4.2.2 Model selection

ParGenes employsModelTest-NG , a re-designed, substantially more e�cient
version of the widely usedModeltest tool [116], to select the best-�t model of
evolution for a givenMSA. If model testing is enabled inParGenes , it will �rst
executeModelTest-NG on eachMSA, and then use the best-�t model for the
subsequent ML inferences.
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4.2.3 ML searches and bootstrapping

ParGenes actively schedules the per-MSA inference jobs that are executed using
RAxML-NG [76]. ParGenes allows to run multiple RAxML-NG tree searches per
MSA from independent starting trees. This is recommended to better explore the tree
search space. Then, it identi�es the best-scoring ML tree for each gene. To increase
job granularity and thereby improve load balancing, each independent tree search is
scheduled separately.ParGenes can optionally conduct a user-speci�ed number of
bootstrap inferences. It schedules independent tree inferences of bootstrap replicates
(10 bootstrap replicates per job), and subsequently concatenates the resulting trees
into one per-MSA bootstrap tree �le. Then, it executesRAxML-NG again to map
support values to the best-scoring ML tree.

4.2.4 Checkpointing

SinceParGenes performs massively parallel and compute-intensive operations, it
also o�ers a checkpointing feature that allows to resume calculations (e.g., if program
execution was interrupted due to typical cluster run-time limitations of 24 or 48 hrs).

ParGenes keeps track of all jobs that have �nished so far, and skips them upon
restart from a checkpoint. A job typically consists of an individual per-gene ML
search, a batch of10 bootstrap replicate searches, or aModelTest-NG run.

Furthermore, RAxML-NG and ModelTest-NG also have their own intrinsic
checkpointing mechanisms:RAxML-NG writes a checkpoint after each inference
step (e.g., model optimization, topological optimization cycle, etc.) of the tree search,
and ModelTest-NG after each model it tests.ParGenes uses these checkpointing
mechanisms as well, thereby allowing for �ne-grained checkpointing.

4.2.5 Estimating the optimal number of cores

Given the dimensions of the inputMSAs, ParGenes can calculate ana priori
estimate of the number of overall cores that will yield `good' parallel e�ciency. This
is important, as it is di�cult for users to set this value prior to running the analysis.

4.3 Job Scheduling
ParGenes implements a scheduler that simultaneously executes independent jobs
with a varying number of cores per job. A job is either a per-MSA RAxML-NG
or ModelTest-NG run. We �rst outline the parallelization scheme, and then the
scheduling strategy.

4.3.1 Parallelization scheme

For a typical use case, the input data will contain thousands of independent (per-
gene)MSAs with hundreds to a few thousands sites each. While standard tools
like RAxML-NG parallelize likelihood computations overMSA sites,ParGenes
parallelizes the computations over theMSAs. Note that, the parallel e�ciency of
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the RAxML-NG parallelization is limited by MSA length (rule-of-thumb: 1,000
MSA sites per core). While most of inputMSAs are small, their size distribution
exhibits substantial variance with respect to both, the number of taxa,and sites (see
Figure 4.1). Therefore, inferring trees on large per-geneMSAs on a single core has
two drawbacks. First, theMSA size might exceed the available main memory per core.
Second, this can decrease parallel e�ciency as a long job on a largeMSA might take
longer to complete than all other jobs (see Figure 4.2(a)). To this end,ParGenes
allocates several cores for the largest jobs (i.e., for the largestMSAs) by invoking
the multi-threaded RAxML-NG executable (see Figure 4.2(c)). For eachMSA,
ParGenes �rst calls RAxML-NG in parsing mode to obtain the recommended
number of cores for optimal parallel e�ciency via the �ne-grained parallelization of
the likelihood function in RAxML-NG [139]. The actual number of cores assigned
to a job is then rounded down to the next power of two to simplify scheduling. We
also assign twice the number of recommended cores to the5% MSAs with the largest
number of taxa (we justify this choice in Section 4.5.1).

4.3.2 Scheduling strategy

ParGenes �rst sorts all jobs by (i) decreasing number of required cores and (ii)
decreasing overall number of characters perMSA. As the number of cores per job is
always a power of two (see Section 4.3.1),ParGenes can always keep all cores busy,
as long as there are jobs left to process. This works because theMSAs requiring the
largest number of cores are scheduled �rst.

4.4 Experimental Setup

4.4.1 Datasets

We benchmarkedParGenes using two empirical gene family datasets.

The �rst one1 was initially used in [7] and was extracted from the Ensembl database [164].
It contains 8; 880 gene families from15 mammalian species. The second dataset2

was obtained from the VectorBase database [51] and contains12; 000gene families
of 15 Anopheles gambiaespecies, the primary mosquito vector responsible for the
transmission of malaria in large parts of sub-Saharan Africa.

Scheduling independentML tree searches on these gene familyMSAs is challenging,
because of their varying dimensions, both, in terms of the number of sites, and
number of taxa (see Figure 4.1). Note that, we count MSA lengths in terms of
distinct MSA site patterns, as identical site patterns can be, and are compressed by
all phylogenetic inference tools in a pre-processing step.

1 Available at https://github.com/YoannAnselmetti/ADseq-Anopheles-
APBC2018/blob/master/data/FASTA/MSA/CDS/MUSCLE.tar.gz

2 Available at https://sco.h-its.org/exelixis/material/ensembl 8880 15.tar.gz
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(a) Ensembl dataset (8880 families) (b) Vectorbase dataset (12000 families)

Figure 4.1: MSA dimensions in the Ensembl (top) and VectorBase (bot-
tom) datasets. Each dot represents a per-family MSA, thex coordinate represents
the number of unique site patterns, and they coordinate represents the number of
taxa.

4.4.2 Hardware

We executed our benchmarks on our institutional cluster that is equipped with224
nodes with Intel Haswell CPUs (E5-2630v3) running at2:40GHz. Each node has
2 CPUs and each CPU has8 physical cores. The nodes have64GB RAM and are
connected via an In�niband interconnect.

4.4.3 Benchmarks

We executed two distinct benchmarking runs.

ˆ FULL Benchmark: for each gene family (each MSA), execute model testing,
then 20 ML tree searches (starting from both, random, and parsimony starting
trees) and100bootstrap tree inferences, select the bestML tree on the original
MSA, and compute the bootstrap support values on that tree.

ˆ FAST Benchmark: run a single ML tree search per gene family (per MSA).

The FULL Benchmark covers the complete feature set ofParGenes and thus
represents the realistic default use-case. The load balancing of this benchmark is likely
to be `good', even using a na•�ve scheduling strategy, as it generates a comparatively
large number of independent jobs (e.g., more than one millionRAxML-NG runs for
the 8800gene familyMSAs from Ensembl). While the FAST benchmark might also
corresponds to a realistic use case (e.g., rapid initial data exploration), it generates
substantially less inference jobs. This benchmark is thus more relevant for assessing
the quality of our load balancing strategy.
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