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Abstract

Methods for phylogenetic inference have been developed mainly for the reconstruction
of evolutionary relationships of species based on biological sequence data. However,
these methods are also made use of in linguistics for inferring phylogenies concerning
the evolution of natural languages. In the scope of this thesis, we examine the
corresponding linguistic input data. We conduct a case study on an exemplary
morphosyntactic data set, examining various methods to analyze the signal it contains
and to eliminate geographical information the data may include. Further, we perform
analyses on numerous linguistic data sets collected from various sources and assembled
in a database. We compare these data sets to morphological data from biology,
considering differences in the behavior of phylogenetic inferences with RAxML-NG.
Additionally, we investigate how it impacts the tree inferences, whether we represent
a data set by a binary or by a multi-valued MSA. We study how to model subjectivity
related with synonym selection in cognate data. We present probabilistic MSAs as a
possible solution and show on an example data set that this might be an appropriate
approach.

Deutsche Zusammenfassung

Methoden zur phylogenetischen Inferenz wurden hauptsächlich entwickelt, um mithilfe
biologischer Sequenzdaten die evolutionären Beziehungen zwischen Spezies zu rekon-
struieren. Diese Methoden werden aber auch in der Linguistik eingesetzt um Stamm-
bäume für die Evolution natürlicher Sprachen zu erhalten. Im Rahmen dieser Arbeit
untersuchen wir die entsprechenden linguistischen Eingabedaten. Wir führen eine
Fallstudie zu einem exemplarischen morphosyntaktischen Datensatz durch und unter-
suchen verschiedene Methoden, um das darin enthaltene Signal zu analysieren und
eventuell enthaltene geographische Informationen zu eliminieren. Darüber hinaus
analysieren wir zahlreiche linguistische Datensätzen, die aus verschiedenen Quellen
stammen und aus denen wir eine Datenbank zusammengestellt haben. Wir vergleichen
diese Datensätze mit morphologischen Daten aus der Biologie und betrachten die
Unterschiede im Verhalten der phylogenetischen Inferenz mit RAxML-NG. Außerdem
untersuchen wir, wie es sich auf die Inferenz auswirkt, ob wir einen Datensatz durch
ein binäres oder durch ein multi-value MSA darstellen. Wir betrachten schließlich,
wie die Subjektivität bei der Synonymauswahl in Kognat-Daten modelliert werden
kann. Wir stellen probabilistische MSAs als mögliche Lösung vor und zeigen an
einem Beispieldatensatz, dass dieser Ansatz geeignet erscheint.
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1. Introduction

1.1. Motivation
Our planet is populated by a multitude of creatures. How this diversity, and with it
mankind itself, came into existence is a fundamental question occupying us for centuries.
Charles Darwin was the first to describe the basic mechanisms of evolution in his famous
book "On the Origin of Species" published in 1859 [17]. He introduced the idea of a
"tree of life", according to which all species evolved from a common ancestor by splitting
and continuous modification (see Figure 1.1). Since then, scientists aim to reconstruct
such evolutionary trees. In the recent decades, advances in molecular biology (e.g. next
generation sequencing [5]) and computational methods [69] have spurred the development
of new approaches to this end.
The languages spoken by humans are, as well, impressively diverse. According to data
from Hammarström et al. [40] collected in 2022, there are 7636 different languages spoken
by people as their first language. Again, this raises the question, how such a impressive
variety emerged. In his book "The Descent of Man" (1871) [18] Darwin notes, that species
and languages develop in a "curiously parallel" way. Concerning the evolution of languages,
August Schleicher and Friedrich Schlegel are considered as the pioneers, using language
evolution trees even before Darwin published "On the Origin of Species" [4]. A language
evolution tree published later by Schleicher is depicted in Figure 1.2.

Species and languages can be considered as two concrete examples of evolvable systems.
According to Ladoukakis et al. [45], a system is called evolvable, if it fulfills the following
conditions: (1) it comprises populations of units, which are able to replicate, (2) replication
goes along with the inheritance of characteristics, (3) characteristics vary, because during
inheritance, there is a non-zero probability for mistakes. It is hence straight-forward to
apply the methods for the reconstruction of evolutionary relationships of species to other
evolvable systems as well. In the scope of this thesis, we pursue this approach with respect
to the evolution of languages and specifically consider the data that are used as input for
the computational methods. In the introductory part, we present all concepts relevant for
our work. We keep the descriptions as general as possible and differentiate only where
necessary by application in biology or linguistics. We briefly show where the differences
between the evolution of species and languages lie and indicate possible related challenges
for the inference methods used.
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1. Introduction

Figure 1.1.: Charles Darwin’s "tree of life" (1859) [17]

Figure 1.2.: August Schleicher’s language evolution tree of the Indo-European language
family (1863) [66]

2



1.2. Phylogenetic Trees

1.2. Phylogenetic Trees
Let T be the set of units, whose evolution we intend to study. We call these units taxa
(singular taxon). By n := |T | we denote the number of examined taxa. A phylogenetic
tree is a tree representing the hypothetical evolutionary relationships of a set of taxa T .
Each taxon is assigned to a leaf of the tree. External branches connect leaves with the tree,
all remaining branches are internal branches. The branch lengths typically correspond to
relative evolutionary distances. Phylogenetic trees are usually strictly bifurcating, that
is all inner nodes have two child nodes. Further, phylogenetic trees are usually unrooted.
However there do exist dedicated methods for rooting them (see also Section 2.2.3).

To measure topological dissimilarities between phylogenetic trees, we use the Robinson-
Foulds distance (RF distance) [63]. This metric is based on splits in trees. A split is a
partitioning of the taxa into two sets corresponding to the subtrees that arise when a
branch of the tree is removed. A split is called non-trivial, if the respective branch is an
internal one. The trivial splits are not of interest, since they all occur in every possible
topology. The absolute RF distance of two trees is the number of non-trivial splits, which
are induced by either one of the two trees but not by the other one. A binary tree with n
taxa has n − 3 internal branches, and hence, the maximum RF distance is 2(n − 3). The
relative RF distance of two trees is therefore defined as their absolute RF distance divided
by 2(n − 3). Unless otherwise stated, the given RF distances are relative. We further note
that the RF distance is a metric which only captures dissimilarities in the trees’ topologies
and ignores differences in the branch lengths.

Figure 1.3.: RF Distance of T1 and T2 with n = 5
Splits in T1: AB|CDE, ABC|DE, Splits in T2: AB|CDE, ABE|DC
RF Distance: 2

2(n−3) = 1
2

3



1. Introduction

1.3. Input data
Before the availability of large-scale DNA sequencing, lineage trees in biology were inferred
based on morphological data [46] containing information about a specie’s outer appearance
as well as features describing the structure and relationships of internal parts [76]. Due to
technical advance, it has been possible for several decades by now to obtain sequence data,
representing the genetic material which encodes the observable traits [46].

Languages however lack this type of a logical code which is expressed in observable features.
Analogous to morphological studies in biology, linguists examine structural properties of
languages, resulting in morphological linguistic data. Additionally, they obtain data by
investigating the vocabulary (cognate data) and the sounds (sound class data) occurring in
languages.

We begin with the introduction of sequence DNA data and use it to explain the input
format for phylogenetic inference. Morphological data from biology as well as the types
of data used in linguistics can be summarized under the term categorical data. In the
following, we describe sequential and categorical data for phylogenetics in more detail.
We further explain how we transform categorical data in order to use it as an input for a
phylogenetic inference.

1.3.1. Sequence Data

Sequences of Deoxyribonucleic Acid (DNA) encode the hereditary information of the species.
DNA is a large molecule consisting of long strands of base pairs [3]. The sequence strings
(reads) obtained from DNA sequencing contain symbols from Σ = (A, C, G, T), each of them
representing one of the four bases occurring in DNA [68]. Phylogenetic inference is based
on homologous sequences observed in different organisms or species. These sequences must
all originate from a common ancestor[24]. Homologous sequences of different species may
differ in length, due to base pair insertions and/or deletions that occur in the course of
evolution. Note, that substitution occur as well. However, they do not affect the sequences’
lengths. Corresponding regions are aligned by inserting gaps (−) into the sequences [68].
The resulting data structure is called a Multiple Sequence Alignment (MSA). A MSA of
DNA data is a matrix with rows corresponding to the per-taxon sequences. The columns
of this matrix are called sites. A single site contains the presumably homologous bases of
all taxa. We denote the number of sites in an MSA by m.
MSAs may contain data other than DNA data (e.g. protein data). They only differ in the
set of symbols Σ, the matrix contains.

4



1.3. Input data

1.3.2. Categorical Data

In the scope of this thesis, we mainly work on MSAs representing categorical data. This
data type occurs in a wide variety of contexts, including biology and linguistics. First, we
provide a general definition of categorical data. Then, we introduce the concrete data types
we base our analyses on. We further explain, how we obtain MSAs for categorical data
sets. This is the basis for applying phylogenetic inference methods developed for sequence
data to categorical data.

Independent of the concrete context, we represent a categorical data set as a matrix
describing the following function:

M : (T × C) → V∗

(t, c) 7→ V ⊂ Vc where κc = |Vc|

where T denotes the taxon set (i.e., languages in linguistics and species in biology) and
C the set of examined characteristics. In M , a set of values is assigned to each taxon t /
characteristic c pair. The possible values Vc depend on the characteristic c. V is the union
of the sets Vc ∀c ∈ C. We say that M is a single-state matrix, if |M(t, c)| ≤ 1 ∀(t, c) ∈ T ×C,
otherwise, we call M a multi-state matrix.

In the following, we introduce specific types of categorical data in biology and linguistics.
For each type, we provide the domains T , C, and V.

1.3.3. Categorical Data in Biology

In biology, the taxa in T are the species, for which we aim to infer, for instance, a phylogeny.
The characteristics in C are morphological traits, which biologists measure by observing
specimens [16]. For a characteristic c, Vc can take several values, if c is the color of a flower.
Sticking with this example, it is obvious, that the corresponding matrix of categorical data
can contain multi-valued entries. Some characteristics are however only concerned with
the presence or absence of a particular feature. In this case, Vc contains the two respective
values only.

1.3.4. Categorical Data in Linguistics

In linguistics, each taxon in T corresponds to a language. We distinguish between three
types of linguistic data, differing in what is considered being a characteristic and in the
domain from which the values originate.

1.3.4.1. Cognate Data

Cognate data is based on changes in the vocabulary of the considered languages. When
collecting this type of data, linguists work with lists of concepts or meanings, such as
the Swadesh List [73]. Examining a language, linguists collect everyday words describing
these concepts [21]. This results in a matrix Mcog, where a set of words is assigned to
each language / concept pair. We regard cognate data as categorical data, with the set of
characteristics C corresponding to the considered concepts. However, the data provided
in Mcog is initially not categorical. It contains the individual words in the respective
languages, which are not grouped into categories. To obtain a matrix M of categorical
data, linguists replace the words by their cognate classes [21]. Cognate classes unite words,
admitting a common ancestor [21]. Hence, in case of cognate data, the value set V contains
cognate classes. In every language, there can exist words from multiple cognate classes
for one concept. M is hence a multi-state matrix [21]. We assume, that linguists design
concept lists in a way, that there exists at least one word in every language. We interpret
it as missing information if there is no word given in Mcog.

5



1. Introduction

1.3.4.2. Sound Class Data

The aim of sound class data is to capture changes in sound accompanying vocabulary
changes [42]. If two languages admit words of different cognate classes for a certain concept,
these words also differ in their sound. However, the sounds can also be different for words
belonging to the same cognate class. Hence, sound class data is more fine-grained in this
respect.
When considering sound class data as categorical data, the set of characteristics C again
corresponds to the examined concepts. Each value in V is a tuple of a cognate class and
of a sound class taken from a phonetic alphabet (e.g. as introduced by Brown et al. [12]).
To determine M(t, c), we again consider all words describing the corresponding concept in
the respective language. For each word and for each sound occurring in this word, M(t, c)
contains the tuple of the word’s cognate class and of the corresponding sound class. Thus,
the resulting MSA M is a multi-state matrix.

1.3.4.3. Morphological Data

While the previously introduced data types focus on words, morphological data is based
on structural features of the languages under study [20]. For collecting data, linguists
evaluate the properties of the languages regarding these features. For example, they
examine the number of cases in a language or whether the verb is always at the second
position of a sentence. The resulting categorical matrix is structured in the same way as
for morphological data in biology. We further distinguish between morphosyntactic and
morphophonological data, depending on whether it contains grammatical or phonological
features. Studying morphological data is of interest, because it potentially enables going
further back in time and studying languages for which no written record exists [23].

6



1.3. Input data

1.3.5. MSA Construction

Within this section, we explain, how MSAs can be constructed for categorical data. For
a set of categorical data, we are able to obtain a binary MSA A containing the symbols
Σ = (0, 1) only. For categorical data sets with a single-state matrix, we can additionally
construct a multi-valued MSA A∗. It can contain up to 64 different symbols (more symbols
are not possible due to technical limitations of RAxML-NG [44]) provided in an ordered
list Σmulti. For categorical data with a multi-state matrix, this is however only possible
under restrictions.

Given a matrix M with categorical data, a binary MSA A can be obtained as the corre-
sponding presence-absence-matrix. Each characteristic c in M is therefore represented by
κc sites in A, each corresponding to a value v in Vc. If v ∈ M(t, c) for a certain taxon t,
the respective entry is set to 1, otherwise to 0. Special consideration is required for the
case, that M(t, c) = ∅ for some (t, c) ∈ T × C. This can semantically be interpreted in two
different ways: none of the considered values of c is present in t, or for each characteristic,
there must be at least one value present in every taxon. In this case, an empty set indicates
missing information. In the following, we use the latter interpretation. If M(t, c) = ∅, we
hence set all κc sites to −.
Next, we explain, how to obtain a multi-valued alignment A∗ representing M . We first
examine the transformation when M is a single-state matrix. In contrast to A, A∗ admits
only one site for characteristic c. To determine the symbols in this site, we order the set
of values in Vc. We obtain a vector (v[1], . . . , v[κc]). If M(t, c) = {v[i]} for a taxon t, we
set the respective entry to Σmulti[i], that is to the i-th symbol for multi-valued MSAs. If
M(t, c) = ∅ we again assume, that data is missing, and we subsequently set the entry to −.
To represent c in A∗, we require κv symbols. In the entire MSA smax := max({κc : c ∈ C})
different symbols occur. We note that the specific list of symbols Σ occurring in A∗ is the
prefix of length smax of Σmulti.

Constructing a multi-valued MSA for a multi-state matrix, would require an exponential
number of symbols. Phylogenetic inference on such an MSA is neither technically feasible
nor meaningful. However, it is possible to obtain a multi-valued MSA, which contains at
least a part of the information of M . For this purpose, we discard excess elements from
entries in the matrix in order to transform it into a single-state matrix. For each pair (t, c)
t ∈ T , c ∈ C we only keep that value in M(t, c), which occurs most frequently for c over all
taxa in T . For each characteristic, we determine the ratio of taxa, for which we discard
at least one value. If this ratio exceeds a fixed threshold h, we entirely discard c in order
to prevent distortion in downstream analyses. Like this, we obtain a single-state matrix
for which we can retrieve a multi-valued MSA containing a part of the information from
M . However, we only consider this MSA in subsequent analyses, if the ratio of discarded
characteristics does not exceed a second threshold g.
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Example illustrating MSA construction for categorical data

Matrix M with categorical data (multi-state):
C1 C2 C3 C4

Taxon1 {C} {B} {A} {A, B}
Taxon2 {B} {} {A, B} {A, B}
Taxon3 {A} {A} {C} {A}

Binary MSA A:
C1 C2 C3 C4

A B C A B A B C A B
Taxon1 0 0 1 0 1 1 0 0 1 1

Taxon1 0 1 0 − − 1 1 0 1 1

Taxon1 1 0 0 1 0 0 0 1 1 0

Matrix M after discarding excess elements:
C1 C2 C3 C4

Taxon1 {C} {B} {A} {A}
Taxon2 {B} {} {A} {A}
Taxon3 {A} {A} {C} {A}

Multi-valued MSA A∗:
C1 C2 C3 C4

Taxon1 2 1 0 0

Taxon2 1 − 0 0

Taxon3 0 0 2 0
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1.4. Phylogenetic Inference
Provided an MSA with data for a set of taxa, we can infer a phylogenetic tree with the
methods we introduce in this section. We group these methods into distance-based and
character-based methods [68]. Algorithms belonging to the first group work based on a
pair-wise distance matrix for the sequences in the MSA. They tend to be faster but less
accurate than the character-based methods, which infer a tree directly from the MSA data
itself [68]. In the scope of this thesis, we use neighbor joining, a distance-based method, as
well as Parsimony and Maximum Likelihood (ML), which are character-based. We note
that ML is generally slower but more accurate than Parsimony [27, 28].

1.4.1. Neighbor Joining

Neighbor joining (NJ) is a distance-based method for phylogenetic inference introduced by
Saitou and Nei [65]. NJ starts from a star-like tree consisting of leaves for all taxa, directly
placed below a root node. First, the algorithm calculates a distance matrix containing
the pairwise distances of the sequences provided for the examined taxa. NJ chooses the
pair with the lowest distance and places the respective nodes below a newly created inner
node. Subsequently, the algorithm updates the distance matrix by removing the entries
corresponding to the selected pair and inserting the distances to the newly created node
instead. NJ continues with selecting the next pair and proceeds like this until only one
entry remains in the distance matrix and yields the final phylogenetic tree.

1.4.2. Parsimony

Another approach for the reconstruction of phylogenetic trees was introduced by Farris [26]
and Fitch [31]. It is based on the parsimony criterion, which favors trees requiring
a minimum number of substitutions to explain the sequences. Given an MSA and a
respective phylogenetic tree, the parsimony score is obtained as the sum over the scores
calculated separately for each MSA site. The per-site parsimony score of a given tree is
the minimum number of substitutions which must occur over the entire tree to generate
the observed data at the leaves.
A parsimony heuristic performs a tree search in order to return a tree minimizing the
parsimony score. Note, that this algorithm is in general not deterministic, as there can
exist several trees yielding the same parsimony score. Further, it is not guaranteed, that a
tree with a minimum parsimony score is returned, as the problem is N P-hard [30] and the
tree search is only a heuristic.

1.4.3. Maximum Likelihood

Maximum likelihood (ML) [29] is another method for phylogenetic inference that involves
finding a tree optimizing a function. Instead of minimizing the number of necessary
substitutions, however, the goal is to maximize the likelihood L(Θ|D) for the given MSA
D. The parameter vector Θ := (T, b, M, ϕ) comprises the topology T of the tree, the vector
b containing its branch lengths, a substitution model M (see Section 1.4.3.1) and a set
of internal parameters which we denote by ϕ. We define the corresponding likelihood as
L(Θ|D) := P (D|Θ). It hence corresponds to the probability of the given MSA D to arise
under the setting described by the parameter vector Θ. In other words, ML tries to find
the tree best explaining the observed data.
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1.4.3.1. Substitution Models

Let D be an MSA containing smax symbols Σ = (Σ[1], . . . , Σ[smax]). We define a substi-
tution model M as a tuple (π, R) [80]. For i ∈ (1, . . . , smax), π[i] is the probability with
which Σ[i] initially occurs. We denote the probabilities in π as equilibrium frequencies. As
they sum up to 1, π[smax] can be given relatively to the remaining entries. The vector is
hence determined by smax − 1 values.
For each i, j ∈ (1, . . . , smax), R[i, j] provides the rate of substitution between Σ[i] and
Σ[j]. As we model evolution as a continuous time Markov Chain, this value depends on
nothing but Σ[i]. Further, we assume that evolution is a time reversible process. Hence, it
holds that π[i]R[i, j] = Π[j]R[j, i] ∀i, j ∈ (1, . . . , smax). We further note that the values of
each row of R must sum to 0. R is therefore defined by the 1

2smax(smax − 1) values in the
strict lower triangle matrix. Additionally, R is normalized. Subsequently, one value less is
required for unambiguous determination. The whole substitution model hence comprises
smax + 1

2smax(smax − 1) − 2 parameters, where smax − 1 defines π and 1
2smax(smax − 1) − 1

defines R.

Using the General Time Reversible (GTR) model [74], all parameters defining M are free
parameters which are estimated independently from the data during the tree inference.
We note that the number of free parameters of this substitution model is quadratic with
smax. This can lead to overparameterization and increased runtimes. An alternative to
this, that alleviates both potential problems, is the MK model [47]. In this model, it holds
that Π[i] = 1

smax
∀s[i] ∈ Σ and R[i][j] = 1.0 for ∀i, j ∈ (1, . . . , smax), i ≠ j. Hence, MK

does not admit any free parameter. Working with a binary MSA, we henceforth only
use the GTR model in our analyses, which we denote by BIN. As there are two different
symbols in binary MSAs, GTR only has one free parameter, one equilibrium frequency.
This prevents the aforementioned overparameterization and increased runtimes. For binary
MSAs, GTR and MK differ only regarding the stationary frequencies, so that we omit a
separate analysis under MK.

Further, we allow it, to extend a substitution model in order to incorporate rate heterogeneity
among sites to accommodate that sites of an MSA evolve under different rates [79]. For
this purpose, we multiply the rate matrix for the k-th site with a factor rk. We assume
that these factors are Γ-distributed. Modelling rate heterogeneity with this approach leads
to an additional free parameter α, which determines the shape of this Γ-distribution. Since
its introduction in the mid 1990s by Yang [79], the Γ-model is widely used approach for
modelling rate heterogeneity. We add +G to a model’s name if we aim to indicate, that we
additionally use the Γ-model.

1.4.3.2. Likelihood Computation

Based on [80], we describe how to compute the likelihood under a given MSA D for
Θ = (T, b, M, ϕ) and, in particular, for a tree with topology T and branch lengths b.
Assuming that the sites of D evolve independently, we obtain this score as the product
over the per-site likelihoods under Θ. The per-site likelihoods are usually very small. In
practice, to avoid underflow, we therefore calculate the per-site log-likelihoods, and the
final log-likelihood is the sum over all per-site log-likelihoods of the MSA.
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In order to explain the computation of the per-site likelihood for a fixed site, we first
assume, that we are given the inner states, that is, symbols observed for this site at the
inner nodes of the tree. For each branch with incident nodes n1 and n2, we determine
the probability, that the symbol observed at n1 is substituted by the symbol observed at
n2 over the time represented by the length of this branch. This probability depends on
the rate matrix R of the model M. We calculate the product over the probabilities for
all branches. Additionally, we multiply the result with the equilibrium frequency of the
symbol observed at the root. Like this, we obtain the per-site likelihood for a tree with
given inner states. During the inference, however, only trees with unknown inner states
occur. To calculate the per-site likelihood for such a tree, we sum the per-site likelihoods
over all possible trees with fixed inner states. We use the Felsenstein Pruning Algorithm
[27], which efficiently calculates the likelihood over all possible combinations of inner states
via dynamic programming.

1.4.3.3. Likelihood Optimization

Finding a tree with a maximum likelihood score requires evaluating the likelihood of all
possible trees. As the number of existing tree topologies grows super-exponentially with
the number of taxa, this results in super-exponential runtime. The optimization problem
is hence N P-hard [15]. We infer trees with the help of RAxML-NG [44] which uses the
heuristic introduced in the following. We start from an initial assignment of the parameter
vector Θ. This requires a topology, which we either obtain via parsimony (see Section 1.4.2)
or we use a random tree. In the following, we iteratively optimize Θ to improve the
likelihood. The possible adaptions are:

• Change the tree topology T with the help of topological moves [80]

• Numerical optimizations of model parameters via Brent’s method [11] or the Broy-
den–Fletcher–Goldfarb–Shanno method [32]

• Optimizations of branch lengths with the Newton-Raphson method [44]

1.4.3.4. Quantifying Difficulty

The heuristic for the inference of ML trees does not guarantee that we will find a tree with
the global maximum likelihood score. Instead, it is possible, that the search algorithm
converges to a local maximum of the likelihood distribution over the tree space. We usually
perform several independent tree inferences. If they return similar trees (i.e., topologies
that admit low RF distances to each other) this indicates that the likelihood distribution
has a clear peak, and we refer to the respective MSA as being easy to analyze. If multiple
tree inferences result in different topologies with high RF distances, the likelihood surface
is more rugged, and we observe multiple local maxima. We classify the corresponding MSA
as being more difficult.
A score for quantifying the difficulty of a phylogenetic inference on a given MSA was
introduced by Haag et al. [39]. It is based on 100 tree inferences with RAxML-NG. Among
the ML trees resulting from these inferences, we determine the best tree, that is the one
with the highest log-likelihood score. We apply all statistical significance tests implemented
in IQ-TREE [56] to these ML trees. Those trees, which are not significantly wore than the
best tree, are deemed plausible [54]. If there are more plausible trees among the ML trees,
the introduced difficulty score is lower. The score increases with the mean RF distance
among all ML trees and the mean RF distance among the plausible trees. Further, it leads
to a higher difficulty score, if there is a higher ratio of unique topologies among all ML
trees or among the plausible trees.
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1.5. Contribution
When August Schleicher got in touch with Darwin’s book "On the Origin of Species", he
recognized major parallels between the evolution of species and languages. He described
them in his letter "The Darwinian Theory and the Science of Language" [66] and proposed to
use scientific methods from evolutionary biology in historical linguistics. In the following we
discuss possible challenges of applying methods from computational biology to linguistics.
Ladoukakis et al. [45] propose a mapping of evolutionary concepts in linguistics and biology,
showing that this is only possible to a limited extent. In biology, one can distinguish
between the genetic material of an individual and its outer appearance. For languages,
there is no comparable subdivision. Characteristics can be easily transferred between
languages through contact between speakers [61], resulting in a high geographical bias in
the data. Different components of languages (lexicon, grammar, syntax) may further evolve
differently. As a consequence, it is not possible, to infer a single ground truth phylogeny
for a set of languages [38].
Moreover, we must not neglect the steps preceding the phylogenetic inference. When we
construct an MSA for a categorical data set, we lose any semantic information associated
with the values of a characteristic. If the values correspond to ordered numbers or admit
any other hierarchical relationships, this is not captured by the MSA. In binary MSAs, the
sites representing the same characteristic are negatively correlated with each other, and
thus they are not necessarily independently identically distributed. However, this is what
we typically implicitly assume when applying the inference methods presented. For cognate
data and sound class data, an additional pre-processing step is required. We determine
the words’ cognate classes in order to obtain a categorical data set. This imposes the
knowledge related with the classification on the data and can bias it. We might further
lose information due to the grouping (e.g., the degree of similarity of words in the same
class). It is also unclear, how to handle synonyms [49].
Finally, we note that biologists and linguists proceed differently when reconstructing
phylogenies. A key difference is that linguists often have reference trees available, which
they have constructed manually [40]. On the one hand, this offers the chance to assess the
result of an inference by comparing it to the reference. On the other hand, it poses the
risk of biasing the inference, for instance by tweaking parameters and data until a desired
result is achieved.

Although languages and species both form evolvable systems, there are hence substantial
differences between the evolutionary processes in the two domains. Applying methods
for phylogenetic inference is therefore related with numerous challenges, and this thesis
represents only a first step towards facing them.
In Chapter 2, we conduct a case study on a morpho-syntactic MSA, exploring several
approaches for accommodating the geographical bias in the data. In Chapter 3, we analyze
a set of linguistic MSAs and compare them to biological morphological MSAs. In this
context, we also contrast binary and multi-valued MSAs. This provides an insight into the
challenge of transforming categorical data into a format that is suitable for phylogenetic
inference. In Chapter 4, we address the issue of handling synonyms and we propose a
potential solution.
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In this chapter, we conduct a case study for a family of 46 Indo-European languages. This
language family has been well studied in classical historical linguistics and except some
minor debates, linguists arrived at a consensus about the evolution of these languages.
Using phylogenetic methods, we are able to infer a tree TC , which is in line with that
knowledge. The respective inference is based on an MSA AC of cognate data, derived
from Bouckaert et al. [10]. Additionally, we have a second MSA, A available, containing
the same set of languages, but the MSA is based on morphosyntactic data obtained from
the WALS database [20] (see Section 2.1.1). However, it is not possible to reproduce TC

using the MSA A [53]. In this chapter, we investigate alternative approaches, to determine
whether the MSA A contains signal indicative of TC .

We suspect, that not only vertical but also horizontal and convergent evolution occurs
at the sites of A. Vertical evolution refers to changes over time, whereas horizontal
evolution is contact-induced due to geographical proximity. We assume that the consensus
tree TC reflects vertical evolution. Horizontal evolution supposedly occurs according
to geographical proximity of areas, where the respective languages are spoken. These
geographical relationships are represented by a geographical tree TG. Languages which
admit similarities that are not due to a common origin but to proximity and contact among
speakers are called a Sprachbund [52]. The languages spoken in the Balkan region, for
example, share common features despite their different origins [64]. Horizontal evolution
also occurs during the evolution of species. In this context, it is referred to as horizontal or
lateral gene transfer [62]. Convergent evolution results in homoplastic sites, which means
that similar traits evolved in independent lineages [75]. This phenomenon is also common
to the evolution of languages and species.

For morphosyntactic data it is not fully studied, which characteristics evolved vertically,
horizontally, or convergently. As a consequence, phylogenetic methods do not only group
languages on the basis of having the same origin, but also based on geographical relationships.
Consequently, a Sprachbund may for example be included in the inferred phylogeny.
Reconstructing the signal for TC from A might therefore be related to classifying the sites
in the MSA into vertically and horizontally evolved.
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After introducing the materials we used (Section 2.1), in Section 2.2 we investigate to
which extent known methods provide information about the signal contained in A. In
Section 2.3, we present and evaluate an algorithm for determining sites supporting TC , and
in Section 2.4 we introduce a new mixture model for maximum likelihood computations
taking geography into account. We further examine, whether this model’s purpose to
handle the differently evolving sites in A is fulfilled.

2.1. Material
2.1.1. The MSA
The morphosyntactic MSA we analyze is based on data we obtained from the WALS
database[20]. The MSA encodes 92 characteristics (features) for 46 languages. These
features cover a variety of grammatical phenomena, classified into nine categories: phonology
(20), morphology (12), nominal categories (29), nominal syntax (8), verbal categories
(17), word order (56), simple clauses (26), complex sentences (7), and lexicon (13) [53].
All features are multi-valued, but single-state. We enrich these features by additional
information according to Michelioudakis et al. [53] and derive a binary MSA A as described
in Section 1.3.5. This MSA consists of 425 sites, with 219 being informative, meaning that
they contain at least one 1 and one 0. We denote the MSA only containing the informative
sites of A as Â.

2.1.2. Reference Tree
Within this scope, the tree TC is used as a reference for the evolution of the languages in the
considered family. The respective cladogram is provided in Figure 2.1. TC is constructed
based on the cognate MSA AC , applying Bayesian inference with BEAST [72]. Hence,
this tree is not a result from the methods of classical historical linguistics, but its coarse
structure agrees with the findings from that field.

Figure 2.1.: Cladogram of TC
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2.1.3. Geographical Tree

In order to accommodate horizontal evolution, we require a geographical tree TG represent-
ing spatial proximity.
To construct such a tree, we have to assign a location to each language. For this purpose,
we use the centroids published by Gray and Atkinson [36]. Based on these coordinates, we
determine a distance matrix, which we subsequently use to construct a tree via neighbor
joining. For calculating the distances, we apply three different methods. Firstly, we consider
the geodesic distances calculated with the haversine distance formula [19]. In addition, we
use route planning with routingpy (https://pypi.org/project/routingpy/) and com-
pute a connection route for each centroid pair. As a distance metric, we then consider both
the path length as well as the temporal duration of these routes. Each distance metric
yields a distinct tree (see Appendix A). In the following, we use the tree based on route
duration because we consider it as most suitable.
The choice of the tree based on route duration appears to be most plausible from a semantic
perspective. We aim to construct a tree capturing contact-induced transfer of language
properties. For such a transfer to occur, speakers of different languages must be in contact
with each other and therefore move away from areas where only or mainly their own
language is being spoken. In doing so, they move along roads, which is modeled by route
planning. Considering the temporal duration of routes instead of their spatial length takes
into account topographic information. If one compares two routes of equal length, one
traversing flat terrain and one mountainous terrain, the latter will require more time.
According to this, if speakers of two languages are separated by a mountain range, they are
less likely to establish contact than if there is no topographic obstacle at the same spatial
distance.
The branch lengths in the resulting geographical tree correspond to duration in seconds.
Thus, they are in a different range than the branch lengths of characteristic phylogenetic
trees, which typically lie between 0 and 1. Using the geographical tree with the original
branch lengths leads to distractions and impacts the use of phylogenetic analysis tools, for
example the branch length optimization in RAxML-NG. We therefore develop different
approaches for transforming the branch lengths to a more representative range. All our
methods are based on the branch lengths occurring in a reference tree set. This set con-
tains the plausible trees we obtained from 400 ML tree searches with RAxML-NG on the
morphosyntactic MSA A (The experiments to generate these plausible trees are introduced
in greater detail in Section 2.2.5). The branch lengths of all trees in the reference tree
set range between 0.0 and 0.46, with an average of 0.03. Our first approach is to scale
the branches of the geographical tree such that they have the same average length as the
reference trees. Our second approach is to transform the branch lengths to the same range
as branch lengths occurring in the reference tree set. With our final approach, we generate
trees having the same topology as the geographical tree, but with branch lengths randomly
sampled from the branch length distribution in the reference tree set.
We examine the effect of each branch length transformation on the likelihood of the geo-
graphical tree respective to the alignment A. Already without branch length optimization,
all trees with transformed branch lengths admit a significantly better likelihood than
the original tree. If we determine the likelihood of the trees with transformed branch
lengths using branch length optimization, they all admit exactly the same likelihood. This
is because the optimization results in exactly the same branch lengths for all of these
trees. However, it is not possible, to obtain this result if we omit the branch length
transformation. Overall, the results show that while the transformation of branch lengths
is crucial, the choice of the specific method only plays a minor role. We therefore de-
cide to scale the tree to the same average branch length as observed in the reference tree set.
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2. Case Study on a Morphosyntactic MSA

The tree we refer to as TG in the following is hence the geographical tree constructed
based on route duration, scaled to the average branch length in the reference tree set. It is
illustrated in Figure 2.2.
Note that the topologies of the geographical tree TG and the consensus tree TC are highly
distinct, with an RF distance of 0.81.

Figure 2.2.: Cladogram of TG

16



2.2. Signal Recognition

2.2. Signal Recognition
In order to analyze to which degree the information provided in the sites of the MSA A
is congruent with the consensus tree TC (representing vertical evolution) and with the
geographical tree TG (representing horizontal evolution), we deploy of several methods for
identifying this signal. We investigate two per-site metrics on A, namely per-site likelihood
(see Section 2.2.1) and weight calibration (see Section 2.2.2). Further insights are provided
from rooting the trees TC and TG (see Section 2.2.3). Additionally, we use the delta
statistics, a metric for trait association (see Section 2.2.4), and in Section 2.2.5 we assess
the results of a tree inference with RAxML-NG.

2.2.1. Per-Site Likelihood

The per-site likelihood is the likelihood of a tree for a single site of the respective MSA only.
Note that values are actual likelihoods, not log-likelihoods. Higher values indicate stronger
support of the respective site for the given tree. In Figure 2.3a, the per-site likelihoods
with respect to TC are shown on the x-axis, those with respect to TG on the y-axis. Each
marker corresponds to a site in A, with blue markers indicating that the site is informative,
and orange ones indicating that the site is not informative. For both trees, all informative
sites yield a per-site likelihood close to 0, most of the non-informative sites yield higher
per-site likelihoods (approximately 0.7 in TC , approximately 0.3 in TG). For MSA A,
the per-site likelihoods for both trees are clearly correlated, with a Pearson correlation
coefficient of 1.00 (see Figure 2.3b; p-value < 10e − 8). Considering Â with informative
sites only (corresponding to blue markers in the figure), the correlation between TC and
TG is lower, with a correlation coefficient of 0.30 (p-value 0.09). We conclude, that we are
not able to separate vertically and horizontally evolving sites based on per-site likelihoods.

(a) Linear scale (b) Logarithmic scale

Figure 2.3.: Per-site likelihoods are indicated on the x-axis for TC , on the y-axis for TG.
Each marker corresponds to a site in A, blue markers indicate informative sites,
orange markers indicate non-informative sites. The values for both trees are
clearly correlated. All informative sites admit per-site likelihoods close to 0.
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2.2.2. Weight Calibration

An alternative per-site metric is weight calibration. To calculate it, we generate 100 random
trees and determine the per-site likelihoods for each of these trees. The weight calibration
of a site corresponds to the number of random trees where its per-site likelihood is worse
than in the reference tree [7]. Hence, the values range from 0 to 100. The higher the
per-site weight, the more clearly the site is congruent with the tree. Figure 2.4 depicts the
weight calibration of the sites in A with respect to the consensus tree and the geographical
tree. In the consensus tree TC , most sites show either a weight calibration of almost 100 or
below 20. We observe similar results for the geographical tree TG, although the separation
is less pronounced. The correlation of weight calibration values between both trees is lower
than for the per-site likelihoods, with a Pearson correlation coefficient for all sites of 0.76
(p-value 0.04). This is caused by sites, which admit a high weight calibration with respect
to one tree but a low value with respect to the other tree. However, only few such sites are
additionally informative. The Pearson correlation coefficient considering informative sites
only is 0.71 (p-value 0.03). We conclude that we cannot distinguish between vertically and
horizontally evolving sites based on weight calibration.

Figure 2.4.: Weight calibration is indicated on the x-axis for TC , on the y-axis for TG.
Each marker corresponds to a site in A, informative sites are colored in blue,
non-informative sites in orange.
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2.2.3. Rooting

In the following, we present observations related to rooting the trees TC and TG. This
was primarily motivated by the fact that investigating trait association (see Section 2.2.4)
requires rooted versions of TC and TG. However, the application of Root Digger [8] to
the trees and MSAs considered provided some interesting insights on its own. The results
do not allow for immediate conclusions about which sides of A evolve horizontally and
vertically, but still provide information about the phylogenetic signal contained in the
MSAs A and AC .
Root Digger leverages ML with an non-reversible model to infer a root and requires an
MSA in addition to the tree. Concerning TC it is reasonable, to use the cognate MSA AC ,
as TC is inferred based on AC (see Section 2.1.2). Nevertheless, we also investigate, the
behavior of Root Digger, when we use MSA A instead. We constructed TG without an
MSA (see Section 2.1.3). Hence, we consider both A and AC as an input MSA for Root
Digger, and assess, how the results differ. Figure 2.5 illustrates the rooted trees.
To evaluate the confidence of the root placement as determined by Root Digger, we make
use of likelihood weight ratios (LWR) as introduced by Strimmer and Rambaut [71]. Let
Li be the likelihood we obtain, when choosing a node i as root of the tree. The LWR of
i is then determined as Li/

∑
j ̸=i Lj . The LWRs of all nodes sum up to 1. A high LWR

suggests choosing the respective node as the root.

First, we analyze the LWR distributions, we obtain, when using the MSA AC as an input
for Root Digger. For both TC and TG, the node, which is selected as the root yields an
LWR > 1 − (10e − 4). All other LWRs are comparatively close to 0. The choice of the root
is hence supported by a clear signal in the MSA.
If we do the same calculations using the morphosyntactic alignment A, the root determined
in TC yields an LWR of 0.16 only. As the LWRs sum up to one, this low maximum value
implies a more uniform (or fuzzy) distribution of the LWRs over the branches of the tree.
As a consequence, we are substantially less confident regarding the root placement. In TG,
the same effect is even more pronounced, with a maximum LWR of only 0.09 for the node
returned as a root. The fact that it is not possible to determine a confident root in both
trees indicates an insufficient signal in the morphosyntactic MSA A.
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(a) TC rooted based on A (b) TC rooted based on AC

(c) TG rooted based on A (d) TG rooted based on AC

Figure 2.5.: Trees rooted with Root Digger.
The size of the circles on the branches corresponds to the LWR score for rooting
the tree at the respective position. If there is no circle, this corresponds to
LWR = 0
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2.2.4. Trait Association

In this section, we consider an approach, which is not based on a per-site metric, but can
still be used to capture the signal contained in the sites of A. Given a phylogenetic tree
and a trait of the involved species, the phylogenetic trait association (also referred to as
phylogenetic signal) describes the degree to which species related in the tree tend to admit
the same trait characteristic [81]. We aim to identify vertically and horizontally evolving
sites in the MSA A. This problem can be regarded as a trait association question with
respect to TC and TG, respectively, with each site of the MSA being considered as an
individual trait.
Researchers developed several metrics to measure trait association [34, 1, 58]. For this case
study, we exclusively use the δ statistics introduced by Borges et al. [9]. As this metric
requires a rooted tree, we make use of the roots we obtained for TC and TG using Root
Digger and the cognate MSA AC (see Section 2.2.3).
Applying the δ statistics to the phylogenetic tree and to a trait of its taxa yields a value δ.
This value measures the entropy of the ancestral states in the tree with respect to the trait
under consideration. A higher δ implies a higher degree of trait association. This means,
the considered trait is more related to the proximity of the taxa as implied by the tree.

We treat each site of the informative subaligment Â as a binary trait, and we determine δ
with respect to TC . The results are illustrated in Figure 2.6a and Figure 2.6b. In both
figures, the y-coordinate of each marker corresponds to the value of δ for the respective
site. The x-axis depicts per-site likelihoods in Figure 2.6a and weight calibration values in
Figure 2.6b. We observe that only few sites exist which admit a high δ value. All such
sites also have a high weight calibration value and tend to admit a higher per-site likelihood.

(a) Correlation with per-site likelihood (b) Correlation with weight calibration

Figure 2.6.: Evaluation of delta statistics with respect to TC . Each marker corresponds to
a site of Â. In both plots, the y-axis represents δ regarding TC . In Figure 2.6a,
the x-axis indicates per-site likelihoods, in Figure 2.6b, it indicates weight
calibration.

Further, we determined δ for each site of Â with respect to TG instead of TC . We observe
the same tendency as for the consensus tree TC (see Figure 2.7). However, the δ values
tend to be lower and the correlation to the other metrics is less pronounced.
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(a) Correlation with per-site likelihood (b) Correlation with weight calibration

Figure 2.7.: Evaluation of delta statistics with respect to TG. Each marker corresponds
to a site of Â. In both plots, the y-axis represents δ with respect to TG. In
Figure 2.7a, the x-axis indicates per-site likelihoods, in Figure 2.7b, it indicates
weight calibration.

Given the δ values with respect to TC and TG, we subsequently analyze the relationship
between the two distributions. In Figure 2.8, δ regarding TC is indicated on the x-axis, δ
regarding TG on the y-axis. We find no correlation for the respective values of both trees
(Pearson correlation coefficient 0.08; p-value 0.25). However, the proportion of sites with a
clear phylogenetic signal is low in both trees.
If we want to identify a vertically evolving site based on the respective trait association,
we expect it to yield a high δ value regarding TC and a low δ value regarding TG. For
horizontally evolving sites, it should be the other way around. There are only 6 sites, for
which we observe δ > 200 regarding TC and δ < 50 regarding. The other way around,
there are even only 2 sites. Thus, for the vast majority of sites in the MSA A, it is not
possible to conclude from the results of the δ statistics whether they are evolving vertically
or horizontally.

Figure 2.8.: Correlation of δ values for TC and TG. The x-axis represents δ with respect to
TC , the y-axis δ with respect to TG.
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(a) Correlation with per-site likelihood (b) Correlation with weight calibration

Figure 2.9.: Evaluation of delta statistics on a set of trees, obtained from TC by selecting
each inner node as a root. Each marker corresponds to one tree and one site
of Â. In both plots, the y-axis represents δ regarding TC . In Figure 2.6a,
the x-axis indicates per-site likelihoods, in Figure 2.6b, it indicates weight
calibration.

Finally, we investigate the impact of the position of the root on the results of the δ statistics.
For this purpose, we re-root TC at every inner node, resulting in a set of trees that differ
only in the root position. For each of those differently rooted trees, we calculate δ for
all sites of Â. Figure 2.9a depicts the results of this extended analysis. Note that the
per-site likelihood and the weight calibration for a site remain the same regardless of the
root placement. Regarding δ, we only observe only slight fluctuations compared to the
evaluation on a single root. To quantify these fluctuations, we consider the distribution of
δ for each site regarding different positions of the root. We determine the coefficient of
variation, which is defined as the standard deviation divided by the mean [25]. For 206 of
216 sites, we obtain a coefficient of variation ≤ 1. The δ statistics is therefore in general
independent of the position of the root on our data.
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2.2.5. Maximum Likelihood Tree Searches

In order to gain a depper understanding of the properties and the structure of the MSA A,
we conduct ML inferences with RAxML-NG. We run 200 tree inferences, starting from
100 random and 100 parsimony starting trees. We use both BIN and BIN+G as model
of evolution in two separate settings. We restrict the analysis to A as we gain no further
insights by running the same experiments for Â, as Â only lacks the non-informative sites.
We can omit these sites since they do not contain a signal for a specific tree topology and
thus only have a minor impact on the results of the ML computations.
First, we analyze the general convergence behavior of RAxML-NG on A. We run 200
tree inferences independently, with each tree inference returning the tree with the highest
encountered ML score. This results in 200 maximum likelihood trees (ML trees) per
model. Using BIN as a model, the average RF distance between all trees in this tree set
is 0.21. There are 24 unique topologies among the ML trees, 21 of them are considered
as being plausible (see Section 1.4.3.4). Using the BIN+G model, the ML trees admit an
average RF-Distance of 0.13 with 17 distinct topologies and 13 plausible tree topologies.
These results indicate a clear convergence behavior, meaning that the tree searches tend
to converge to the same peak of the ML distribution. Additionally, we analyze the trees
RAxML-NG generates as intermediate results during the tree searches. Note that this
set of trees also contains all final ML trees. If we use BIN as a model, we observe 34
unique topologies among the intermediate trees, with BIN+G we only encounter 28 unique
topologies during the tree inferences. The relatively small number of unique topologies
compared to the large number of executed tree inferences confirms the observed clear
convergence behaviour.

In the following, we aim to examine, whether convergence occurs towards TC or TG. The
ML trees returned from the tree searches with BIN as a model exhibit an average RF
distance of 0.82 to the consensus tree TC . For trees inferred under BIN+G the average
RF distance to TC is 0.85. Concerning TG, the average RF distance of the ML trees is
0.94 under BIN and 0.93 under BIN+G, respectively. According to this high distances,
the trees retrieved with the help of ML inferences differ clearly from both reference trees.
Using this method, it is thus not possible to recover any signal from the alignment, which
would support either TC or TG.
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2.3. Pavlidis Algorithm
In this section, we present an approach, which aims to identify a subset of vertically
evolving sites of A, that is, sites evolving along the consensus tree TC . On the resulting
subalignment we conduct the same analysis as described in Section 2.2.5 and we analyze,
whether the selection of sites improves the convergence of the tree inferences towards TC .

Our work is based on an algorithm proposed by Pavlos Pavlidis. We only consider sites
of MSA Â, meaning sites that are non-informative are immediately discarded. The pro-
posed algorithm works iteratively. We initialize the algorithm with a subalignment of 150
randomly chosen sites of Â. In each round, we infer a tree for the current subalignment
and compute its RF distance to the consensus tree TC . If the current tree is closer to TC

than any tree inferred in a previous iteration, we store the current subalignment. Next, we
construct a new subalignment based on the current one by replacing a small proportion
of sites by randomly chosen sites of Â. We determine the probability of replacement
or addition of a site such that the expected size of the subalignment remains constant.
Like this, the subalignment only changes slightly in every step. This is important for the
convergence of the algorithm.
We assume that the final subalignment resulting from the algorithm only contains the ver-
tically evolving sites, while horizontally evolving sites have been eliminated. In the original
design, Pavlidis applied neighbor joining (AlgNJ) to infer a tree for each subalignment.
We further tested using maximum parsimony (AlgPars) or maximum likelihood (AlgML)
instead. We run AlgNJ and AlgPars for 10 000 000 iterations. For technical reasons, we
stop AlgML after 4 210 000 iterations. For the following evaluation, after every 10 000th
iteration we sample the tree with the minimum RF distance encountered so far and the
respective subalignment. We denote the last sampled subalignment by ANJ, APars, and
AML respectively. The trees inferred on the base of these subalignments admit a minimum
RF distance to TC compared to all trees encountered with the respective version of the
algorithm.

2.3.1. Convergence Behavior
In our first analysis, we investigate the convergence behavior of the three versions of
the algorithm and analyze the resulting MSAs ANJ, APars and AML. Figure 2.10 depicts
the size of the subalignment (y-axis) per iteration (x-axis). Figure 2.11 depicts the RF
distance of the inferred tree to the consensus tree (y-axis) per iteration (x-axis). Each color
corresponds to a distinct version of the algorithm (AlgNJ, AlgPars, and AlgML).
With AlgNJ we observe a slow convergence behavior, leading to a relatively low minimum
RF distance of 0.14, which occurs the first time within the final 100 000 iterations executed.
The resulting subalignment ANJ contains 43 sites, and thus only around 10% of the 425
sites in the original MSA. With AlgPars we observe convergence to a comparatively high
RF distance of 0.47. Figure 2.11 shows, that a tree exhibiting this distance is inferred
substantially earlier than with AlgNJ. Moreover, we observe, that the subset of chosen sites
is more stable in AlgPars. With a length of 113, APars contains more than twice as many sites
as ANJ. We are not able to observe a connection between the weight calibration of a site and
its selection by the Pavlidis Algorithm. With AlgML, we are only able to run the first 4 210
000 iterations. The minimum RF distance we observe at this point is 0.33. A corresponding
tree occurs about as early as in AlgPars (see Figure 2.11), but with AlgML, we observe more
fluctuation regarding the number of selected sites (see Figure 2.10). Considering the ML
trees inferred on the respective subalignments, we however only observe a minor effect of
these changes in which sites are selected. AML admits 44 sites, approximately as many as
ANJ.
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Figure 2.10.: Number of selected sites per iteration in the Pavlidis Algorithm. The x-axis
shows the number of iterations and the y-axis the size of the subalignment
sampled in the respective iteration. Each color corresponds to a different tree
inference method used in the respective version of the algorithm.

Figure 2.11.: RF distance to TC of the inferred tree per iteration of the Pavlidis Algorithm.
The x-axis shows the number of iterations, and the y-axis the RF distance to
TC . The colors correspond to the tree construction method applied in the
respective version of the algorithm.
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2.3.2. Result Evaluation

In the following, we conduct ML inferences on the MSAs ANJ, APars and AML. We compare
the results with those obtained using the MSA Â. We refer to Â instead of the full MSA
A, since the Pavlidis algorithm only uses the informative sites.
Note, that in case of AlgML the same tree inference method is used both in the algorithm
and for evaluation, hence some of the following observations are a straight-forward conse-
quence that simply proves the correct functionality of AlgML. Nevertheless, the analyses
show relationships to results obtained from other versions of the Pavlidis Algorithm.

First, we analyze the likelihood distribution in a given set of trees. We investigate, whether
trees with a low RF distance to TC yield a comparatively high likelihood. We expect such
an observation to indicate, that the respective MSA contains signal supporting TC . In order
to assess the alignment ANJ, we examine the trees resulting from AlgNJ by sampling every
10 000th iteration. For each tree, we determine its likelihood regarding Â and regarding
ANJ. To evaluate the results of AlgPars and AlgML, we proceed in the analogous way,
always using Â as a reference. For all three sets of sampled trees, the likelihoods with
respect to Â are positively correlated with the RF distances of the respective tree to TC .
The Pearson correlation coefficient is 0.53 for AlgNJ (p-value ≪ 10e − 100), 0.44 for AlgPars
(p-value ≪ 10e − 100), and 0.56 for AlgML (p-value ≪ 10e − 100). Thus, trees less similar
to the consensus tree are favored by ML computations on the MSA Â. Using ANJ or AML
instead, leads to a negative correlation of the obtained likelihoods and the RF distances to
TC . The Person correlation coefficients are −0.13 (p-value ≪ 10e − 100) for ANJ and −0.72
(p-value ≪ 10e − 100) for AML. Thus, the selection of sites results in better likelihoods
for trees closer to TC . These results suggest that the algorithm successfully selects sites
containing signal supporting the consensus tree. Regarding AlgPars, we do not observe such
an improvement. The likelihoods regarding APars show a slightly positively correlation
to the RF distances to TC , with a Pearson correlation coefficient 0.17 (p-value ≪ 10e−100).

To attain a deeper understanding of the quality of the resulting subalignments, we use
them as an input for inferring trees with RAxML-NG. On each of Â, ANJ, APars, and AML,
we perform 20 tree inferences using 10 random and 10 parsimony-based starting trees,
yielding a tree Tbest with the highest log-likelihood among the 20 inferred trees.

By Tbest(ANJ) we denote Tbest resulting from tree inferences on ANJ. Computing log-
likelihoods with respect to ANJ, we observe a major difference when comparing the scores
for the sampled trees from AlgNJ to the score of Tbest(ANJ) with the latter one being sub-
stantially better. The difference between log-likelihoods is smaller for the results of AlgPars.
There are trees sampled from AlgML with a low RF distance to TC , whose likelihood with
respect to AML is almost as good as the likelihood of Tbest(AML). As argued above, this is
the consequence of using the same inference method for both, algorithm, and evaluation.

Furthermore, we examine the similarity of trees resulting from the tree searches compared
to the consensus tree. Tbest(Â) yields a high RF distance of 0.88 to TC . Tbest(ANJ) and
Tbest(APars) are only slightly closer with RF distances of 0.77 and 0.81 respectively. Among
the inferred trees, Tbest(AML) stands out with an RF distance of 0.44. We assume that a
tree inference on a subalignment containing mainly sites whose signal supports the consen-
sus tree, retrieves a tree that is close to it. Under this assumption, observations related
to AlgML only indicate, that signal for TC can be retrieved from the particular subalignment.

27



2. Case Study on a Morphosyntactic MSA

It is worth noting that the RF distances of the trees Tbest are higher than those inferred
during the Pavlidis algorithm, even though the respective trees are based on the very same
subalignment. For neighbor joining and parsimony, this is a result of a divergent behavior of
the tree inference heuristics compared to ML. However, we observe differences in distances
when using ML as well. Tbest(AML) is the best tree out of 20 tree searches, however, the
tree in the Pavlidis Algorithm results from a single tree inference only. The fact that the
RF distances of these trees to TC differ, indicates instabilities, which we further investigate
in the following Section 2.3.3.

2.3.3. Instabilities

Here we describe our experiments for assessing the stability of the results obtained from
the Pavlidis algorithm. We perform a separate analysis for each of the three algorithm
versions.
For AlgNJ, we generate 100 bootstrapped alignments of ANJ. For each bootstrap replicate,
we infer a tree using NJ. Further, we compare these trees to the consensus tree TC . We
observe, that the average RF distance to TC is 0.77 with a standard deviation of 0.07. The
tree inferred on the original MSA, ANJ thus turns out to be an outlier, with an RF distance
of 0.14 to TC .

As parsimony is non-deterministic, we can obtain distinct parsimony trees with exactly
identical scores for the same MSA. We repeatedly apply the parsimony algorithm to APars,
resulting in a set of 500 unique trees. Considering the RF distances of these trees to
TC , we obtain an average distance of 0.71 and a standard deviation of 0.05. The tree
inferred during AlgPars yields an RF distance of 0.47 to TC , which again turns out to be
an exceptionally low value.

To assess the stability of AlgML, we infer a total of 400 trees for AML using RAxML-NG.
We perform 200 tree searches under BIN and BIN+G respectively. Under each model,
we initiate the tree search with 100 random and 100 parsimony starting trees. Again,
we compare the resulting trees to TC , observing an average RF distance of 0.50 with a
standard deviation of 0.06. Within AlgML, a tree is inferred whose RF distance to TC is
0.33, a value residing in the tail of the distribution.

Overall, we observe substantial instabilities, regardless of which algorithm is used for tree
inference. Each of the resulting MSAs ANJ, APars, and AML is an outlier in the analyzed
distribution. In light of these observations, the results obtained from the Pavlidis Algorithm
do not allow us to conclude that there is a clear signal in MSA A that would support TC .
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2.4. Mixture Model
In the context of maximum likelihood based methods, the phenomenon that certain sites
evolve differently is often captured by means of mixture models ([57]). Under a mixture
model, the likelihood of a site is determined as the weighted sum of its respective per-site
likelihoods under the different models considered. The respective weights are estimated
from the data by optimization. Like this, it is possible to model heterogeneity without an
explicit partitioning of the sites.
In the following, we introduce a new mixture model. We investigate, whether it is suitable
to infer trees from the MSA A, which are closer to TC . For this purpose, we consider a
fixed set of trees. We calculate each tree’s log-likelihood score under the new model and
compare the results to the distribution of the log-likelihoods under the BIN+G model. For
a more independent assessment, we extend our analysis to a simulated MSA.

Our model aims to capture, that an MSA contains sites, which provide a signal for a known
tree, in our case TG. The aim is to decrease the impact of these sites on the inferred tree
without explicitly having to identify them. According to this mixture model, the per-site
log-likelihood log L∗

T (i) for a site i and a tree T is computed as stated in Equation (2.1).
LT (i) is the per-site likelihood of site i with respect to T , LG(i) corresponds to the per-
site likelihood with respect to TG. The weight parameter w is optimized over the entire
alignment.

log L∗
T (i) = log((1 − w) · LT (i) + w · LG(i)) (2.1)

2.4.1. Evaluation

In order to evaluate the effectiveness of the mixture model, we make use of a set of trees
occurring as intermediate results during 400 ML searches on A (for details on the experiment
see Section 2.2.5). For each tree T , we calculate its log-likelihood log LT under BIN+G as
well as the log-likelihood log L∗

T under the newly introduced model, both with respect to
the MSA A. We examine, whether the new model leads to a relative improvement of the
log-likelihoods for trees, which exhibit a lower RF distance to TC .

The results are illustrated in Figure 2.12. The x-axis indicates the RF distances of the
examined trees to TC , the y-axis indicates the trees’ log-likelihoods regarding A, both under
the new mixture model (blue) and under the regular model (orange). For each considered
tree T , it holds that log L∗

T ≥ log LT which results from the definition of the mixture model.
The rank correlation of the distributions of log L and log L∗ is 1.00. Sorting the trees by
their log-likelihood hence results in the same order for both models. Thus, we cannot
observe any improvement in a way that trees closer to the consensus tree are being favored
when we use this mixture model.
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Figure 2.12.: Analysis on a set of trees

Figure 2.13.: Effect of the mixture model for MSA A. It refers to a set of trees occurring as
intermediate results during 400 ML tree inferences on A. The x-axis indicates
the RF distances of the examined trees to TC , the y-axis indicates the trees’
log-likelihoods regarding A. This is a boxplot, that is, the boxes represent
the inter-quartile range and the horizontal bar gives the median. The results
obtained under our mixture model are drawn in blue, the results obtained
under BIN+G in orange.

The mixture model is based on the assumption, that horizontally evolving sites yield a
higher per-site likelihood for the geographical tree, while the per-site likelihood of the
consensus tree is higher for vertically evolving sites. However, the per-site likelihoods of TC

and TG with respect to A are either correlated or extremely low, as depicted in Figure 2.3a.
In light of these results, it is not surprising, that our approach is not effective.

Concerning the MSA A, we have no certainty about the extent to which sites evolve
according to TC or according to TG. For a better assessment of the effectiveness of the
mixture model, we perform additional analyses on simulated data. Using Alisim [51]
we generate simulated MSAs for TG and TC under the GTR+F0 model, each of them
comprising 2000 sites. We draw sites from these MSAs at random and mix them according
to varying proportions in order to generate MSAs for our experiments. We consider MSAs
whose sites are taken at 10%, 25%, 50%, and 75%, respectively, from the MSA simulated
for TG and for the remaining proportion from the MSA simulated for TC . In the results we
cannot observe the intended effect of the mixture model. However, the per-site likelihood
of TC and TG regarding the simulated MSAs are also correlated. The exact reason for this
behaviour remains unclear, but it could be related to similarities of TC and TG. This makes
the simulated MSAs unsuitable for assessing the mixture model and hence, this additional
analysis does not lead to any further insights.

Overall, for the considered trees and MSAs, our new mixture model does not appear to be
suitable to handle MSAs which comprise a mixture of sites evolving according to different
trees. For a final assessment of the approach, more detailed experiments are required. Since
we have no evidence of the effectiveness of the mixture model, the results do not allow us
to draw any conclusions concerning the MSA A.

30



2.5. Conclusion

2.5. Conclusion
In this chapter, we conducted a thorough case study on the morphosyntactic MSA A.
We investigated several approaches to retrieve signal from the MSA A, which supports
the consensus tree TC . Related to this, we aimed to identify the sites in A, which evolve
horizontally, that is, according to the geographical tree. We leveraged several established
methods (see Section 2.2) and conducted experiments with novel ideas (see Section 2.3 and
Section 2.4). Unfortunately, we were not able to retrieve the relevant signal to distinguish
horizontal and vertically evolving sites in the MSA A. We conclude, that this signal is
most probably simply not present in the data.
Yet, the issues we explore in this case study are also of interest in a broader context. If
phylogenetic methods are applied in linguistics, where reference trees are available, this
requires methods to test, to which extent an MSA contains signal for a known tree. Further,
approaches are required to handle information in the MSA, which is not related to vertical
evolution. Assessing whether the introduced methods are suitable to handle these issues
remains subject to further analyses on additional data.

31





3. Data Analysis

Tools for phylogenetic inference (like RAxML-NG) are mainly developed and optimized for
biological MSAs, especially for DNA and protein sequence data. We are able to construct
MSAs containing linguistic data, which are in a suitable input format for such tools.
However, it is an open question, to which extent these MSAs differ from biological MSAs
and whether the differences impact the behaviour of heuristic tree search strategies.

In this context, we conduct analyses on a plethora linguistic MSAs and on a set of biological
morphological MSAs, which we use as a reference. In Section 3.1 we introduce the data
sets examined and provide information about their origin.
All MSAs under study are based on categorical data. Therefore, we can choose to represent
a data set by a binary MSA or by a multi-valued MSA (see Section 1.3.5). We first
investigate the impact of this representation on the tree inferences. For this purpose, we
consider biological and linguistic data sets separately (see Section 3.2 and Section 3.3
respectively). In Section 3.4, we subsequently compare linguistic and biological data,
restricting ourselves to binary MSAs.

3.1. Examined Data
Here we describe the data on which we perform our analyses. We indicate where we obtain
the data sets and in what format they are provided to us. We first discuss biological
data (see Section 3.1.1) and then linguistic data (see Section 3.1.2). Among the linguistic
data sets, there are also pairs of MSAs extracted from the same primary data source. In
Section 3.1.2.1 we examine these pairs in detail.

3.1.1. Biological Data

We examine 379 MSAs containing biological morphological data, provided in TreeBase
[59, 77] in multi-valued representation. Additionally, there are 122 binary MSAs available.
Such MSAs can either be the binary representation of a multi-state matrix or a multi-valued
representation of a single-state matrix, in which not more than two different values occur
for all characteristics. As we are unaware of the assembly history of these data sets, we
are not able to categorize them, such that the following analyses could be conducted in a
meaningful way. Hence, we decide to exclude the binary morphological MSAs.
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3.1.2. Linguistic Data

Several databases containing biological MSAs are available online [6, 41, 59, 77]. However,
there is no equivalent in the area of language phylogenetics, which would be suitable for
our purposes. Thus, we conducted extensive research in order to collect linguistic data
from different sources. Like this, we build a database similar to RAxML-Grove [41], on
which we conduct our analyses. We obtain the majority of data sets in linguistic databases.
For each data set, our database contains a binary MSA and, if possible, a mulit-valued
MSA as well (for details see Section 3.3).
Lexibank [48] is inspired by the GenBank database [6], but instead of nucleotide sequences,
it contains cross-linguistic lexical data. Cross-linguistic means, that the data sets contain
information concerning multiple languages [33]. Lexibank is focused on lexical data, hence
the data sets are mainly standardized word lists collected from various independent sources
[48].
We obtain further data sets from supplementary material provided for the book "Sequence
Comparison in Historical Linguistics" [50].
In both data sources, the data sets are standardized as specified by the Cross-Linguistic
Data Format (CLDF) [33]. If all necessary information is provided, we can retrieve MSAs
from these representations as described in Section 1.3.5. According to CLDF, two main
types of linguistic data are distinguished. There is congnate data, provided in the form
of wordlists. and structural data, containing morphophonological or morphosyntactic
information.
Some additional data sets in CLDF are available independent of Lexibank and Sequence-
Comparison (ewave [43], Tuled [35], sails [55] and wals [20]).
In contrast to Lexibank, the phlorest database [37] is more focused on language phyogenet-
ics. It therefore contains the MSAs from primary sources of the respective data sets (if
available).
Further, we obtain linguistic MSAs from the supplementary material of a paper by Jäger [42].
The authors provide cognate and sound class data for phylogenetic inference (available
online: https://osf.io/cufv7/). The data originates from another database, the Auto-
mated Similarity Judgment Program (ASJP) [78].
DiACL [13] contains morphosyntactic data for three language families. We derive binary
MSAs by manually converting of the files. Regarding the data provided by Carling [14], we
proceed in the same way.
Our database also contains the MSAs derived from WALS [20] and the material provided
by Bouckaert et al. [10], which we use in the case study in Chapter 2. More detailed
information on the structure of the database is provided in Appendix B.
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3.1.2.1. Duplicate Analysis

Lexibank and phlorest are two databases designed for different purposes. However, they
overlap in several data sets (for details see Appendix B.1). This means that the respective
MSAs in our database result from the same primary source. However, the MSAs we derive
from CLDF data in Lexibank are not identical with those available in phlorest. First, this
may be related to updates in the data sets. Second, it is also possible, that the authors of
the primary sources annotate or interpret the original data differently. For example, they
may group words into different cognate classes [21] or select synonyms (see Chapter 4).
The MSA which is obtained by the linguists and provided in phlorest subsequently differs
from the one we construct.

In the following, we examine the differences among MSAs generated from the same primary
data source. For 14 out of 18 considered pairs, we are able to find a mapping for the taxon
names, which means we can ensure, that both MSAs comprise the same language sets. In
two cases, the Lexibank data set contains more languages, in two other cases, the MSAs
contain languages which are not contained in the other one.
We further observe that there are duplicate pairs which differ substantially concerning the
number of sites and/or the number of patterns, but there is no clear connection between
these differences. Hence, one MSA in a pair cannot simply be a subalignment of the other
one.

We use RAxML-NG to perform 100 independent tree inferences on each MSA of such
duplicate pairs. For each MSA, we consider the tree with the best likelihood resulting from
all tree inferences. For each duplicate pair, we determine the RF distance between the trees
inferred like this on the respective MSAs. For 9 of the pairs considered, we observe an RF
distance < 0.1. Hence, even though the MSAs differ, they still appear to contain analogous
phylogenetic signals. For 8 duplicates, the RF distances are in a range between 0.1 and 0.3,
and for one pair we even observe an RF distance of 0.67 between the inferred trees. Hence,
there are also duplicate pairs in which MSAs clearly differ in the information they contain.

From our analysis, no clear conclusions can be drawn about how MSAs from the same
primary sources are related. Therefore, we decide to keep both MSAs of each duplicate
pair in our database. Furthermore, the analysis shows that inconsistency of linguistic data
sets is a problem that should not be neglected.
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3.2. Properties of Biological Binary and Multi-Valued MSAs
Let Dbio be the set of all considered biological data sets. For each data set D ∈ Dbio we
can construct a binary MSA A and multi-valued MSA A∗. We denote D by the tuple
(A, A∗). Here, we first investigate, how the properties of A and A∗ are related. We further
analyze the impact of the representation and of the related model on the tree inference
with RAxML-NG. From these results, we aim to derive recommendations for tree inferences
on categorical data.

A characteristic in a categorical data set admits a certain number of possible values. It is
represented by the corresponding number of sites in the binary MSA but only by a single
site in the multi-valued MSA. For a data set D = (A, A∗), the number of sites in A hence
increases compared to the number of sites in A∗. The increase factor corresponds to the
average number of values per characteristic in the data set.
The number of different values for a characteristic also corresponds to the number of
symbols occurring in the respective site in the multi-valued MSA. For the data sets in Dbio,
most of the characteristics admit only 2 or 3 different values. Hence, each multi-valued
MSA binary for the largest proportion of its sites.
A site is said to be invariant if it is fully conserved [39], that is, it has the same value for
all taxa. If there is a characteristic, such that the site representing it in A∗ is invariant,
all sites representing it in A are invariant as well. In the binary MSA, an invariant site
additionally arises, when there is a value for a characteristic that never occurs. Hence,
there are more invariant sites in the binary MSAs than in the multi-valued MSAs.
Further, we consider the number of patterns, that is the number of unique sites [39] in the
MSAs. Let c1 and c2 be two characteristics such that the same pattern occurs in the sites
representing them in A∗. These characteristics also yield identical representations in the
binary MSA A, consisting of as many sites as there are possible values for the characteristics.
A site corresponding to a certain value of c1 in A is identical to the site representing the
respective value of c2. In A, two sites associated with different characteristics can also
exhibit the same pattern even if the sites representing these characteristics in A∗ are
different. Relative to the number of sites, a binary MSA can therefore contain fewer
patterns than the corresponding multi-valued MSA.

We define the entropy of an MSA as the average over the per-site entropies computed
according to Shannon [67]. For a data set D = (A, A∗) ∈ Dbio, the ratio of the entropy of
A∗ and the entropy of A is correlated with the average number of values per characteristic.
The Pearson-Correlation-Coefficient of Dbio is 1.00 (p-value < 10e − 105). In a binary
MSA, the same amount of information is spread over a larger number of sites than in the
respective multi-valued MSA. It is a sparser representation, which differs more from an
equal distribution, yielding a maximum entropy. Thus, it has a lower entropy than the
multi-valued representation of the same information. This effect becomes stronger when
the characteristics yield larger sets of possible values.

We now examine, how the tree inference behaviour with RAxML-NG differs depending on
the setup. A setup M comprises a model, which is used for the tree inference, and a datatype.
The datatype indicates, whether the tree inference for a data set D = (A, A∗) ∈ Dbio is
conducted on A or A∗. We denote each setup by the name of the model used. We consider
the binary MSAs under the BIN model. For the multi-valued MSAs, we examined both the
GTR and MK models. GTR is more flexible, but can be prone to overparameterization,
especially for MSAs with a high number of symbols (see Section 1.4.3.1). For every setup
M and every data set D ∈ Dbio, we perform 100 tree inferences. We denote the best-known
ML tree by T best

M (D).

36



3.2. Properties of Biological Binary and Multi-Valued MSAs

Based on the tree inferences, we determine the difficulty score (see Section 1.4.3.4) for each
MSA under each of the three distinct setups. The respective distributions are depicted in
Figure 3.1. Under GTR, the scores are higher (that is, inferences are more difficult) than
under MK and under BIN. Thus, the difficulty of a data set is not only related with the
information contained, but also with the representation and the model which is used for
the tree inference. On the one hand, the high difficulty scores under the GTR model may
be a consequence of overparameterization. On the other hand, the BIN model may not
suffice to capture all relationships in the data set. In the following analysis we determine
the setup under which the resulting difficulty score most accurately describes the data itself.

Figure 3.1.: Distribution of difficulty scores under different setups
The x-axis indicates the difficulty score, the y-axis the number of data sets
with the respective score. The bar’s colors correspond to the setup under which
the evaluation takes place.

For each data set D ∈ Dbio we compute the pairwise RF distances between T best
BIN (D),

T best
GTR(D), and T best

MK (D). Comparing the trees inferred under BIN and MK, the average
RF distance over all data sets is 0.20. It is 0.38 for BIN and GTR and 0.40 for MK and
GTR. This shows, that the setup affects the tree inferences. In particular, GTR yields
trees, which differ substantially from those inferred under the two other setups.

For each pair of setups Mi, Mj ∈ {BIN, GTR, MK}, Mi ̸= Mj , we consider the best tree
found under Mj , evaluate its log-likelihood in Mi and compare it to the log-likelihood of
the best tree found under Mi itself. For this comparison, we introduce a metric we call
the cross difference. Let log LM (T ) be the log-likelihood of a tree T under setup M . For a
data set D ∈ D and two setups Mi, Mj , Mi ̸= Mj , we define the cross difference as follows:

diffMi,Mj (D) :=
log LMi

(T best
Mi

(D)) − log LMi
(T best

Mj
(D))

log LMi
(T best

Mi
(D))

(3.1)

We provide relative values for the cross differences, since the data sets yield a broad range
of absolute log-likelihood values (log LM (T best

M (D)) ranges between −1.34 and −27840.68).
As we report the log-likelihoods instead of the likelihoods themselves, the observed effects
are greater than the relative differences might suggest.
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Figure 3.2.: Distribution of cross differences in Dbio
The y-axis indicates cross differences. Each boxplot illustrates the distribution
of diffMi,Mj (D) for the setups (Mi, Mj) indicated on the x-axis. The boxes
represent the interquartile range, and the horizontal bar indicates the median.

Figure 3.2 illustrates, how the cross differences are distributed for the data sets in Dbio.
Each box plot refers to diffMi,Mj (D) for the setups Mi, Mj indicated on the x-axis. The
y-axis indicates the cross differences. We observe that the resulting differences are always
negative. Hence, for a fixed setup Mi ∈ {BIN, GTR, MK}, any tree inferred under another
setup Mj is never better than the tree inferred in Mi itself. Conversely, however, we
observe, that there are data sets for which the tree resulting from the inference with Mj

admits a substantially worse log-likelihood when evaluated under the model of Mi. The
effect is strongest, when GTR ∈ {Mi, Mj}.

Although the observations regarding RF distances and cross differences have a similar
structure, the metrics are not correlated at all. Hence, we conclude, that the different
setups induce substantially different likelihood distributions in tree space. This justifies
why the difficulty scores differ depending on the setup.
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We also consider the Akaike Information Criterion (AIC) score [2] suitable for the com-
parison of different models. In phylogenetics, the criterion provides an estimate of the
information, which is lost when choosing a specific model to represent the evolutionary
process. To minimize this loss, a model must neither be too simple nor too complex. A
lower AIC score indicates, that the result obtained with the respective model is superior.
We calculate an AIC Score for the result of each tree inference. For each setup M and
every set D we compute AICM (D), the average AIC score over the 100 tree inferences
performed on D under M . We observe AICGTR(D) < AICMK(D) < AICBIN(D) for 375
out of 379 data sets in Dbio. For 3 data sets we observe AICGTR(D) > AICMK(D) and for
one data set AICMK(D) > AICBIN(D). It follows, that using multi-valued MSAs and the
GTR-Model is the setup, which yields the best model fit.

Relating the AIC scores to our observation of difficulty scores depending on the setup,
we conclude, that the high difficulty scores observed with GTR do not result from over-
parametrization but merely properly capture the data set properties. We further derive the
recommendation to transform categorical data into multi-valued representation (if possible)
and to perform tree inferences under the GTR model. If GTR is technically not feasible
due to high run times, using MK instead is preferable to performing a tree inference on the
binary representation of the data set.
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3.3. Properties of Linguistic Binary and Multi-Valued MSAs
In this section, we investigate the impact of the representation of MSAs for linguistic data.
In contrast to biological data, linguistic data sets usually have a multi-state matrix in their
original representation, meaning that more than one value can be assigned to a taxon /
characteristic pair. Constructing a multi-valued MSA (that is an MSA containing more
than two different symbols) is therefore only possible under certain restrictions. For this
reason, we limit ourselves to a brief analysis confirming the results obtained for biological
data.

For the construction of multi-valued MSAs, we use the approach introduced in Section 1.3.5
with thresholds g and h. Based on preliminary experiments we decide to fix g = 0.1. In
order to obtain a multi-valued MSA for a set of data sets that are sufficient for a meaningful
analysis, we determine a value for h by experimental exploration.
For some data sets, we are only given the binary MSA A, but not the original matrix M
or any other piece of information, from which we could retrieve, which sites in the binary
MSA belong to the same characteristic. Hence, it is not possible to find a multi-valued
MSA for these data sets. Those, for which all necessary information is available, are either
supplied in CLDF (mainly in Lexibank) or retrieved from ASJP.
Several CLDF data sets exhibit a low proportion of multi-state characteristics, that are
characteristics for which there is at least one multi-state entry in the categorical data
matrix. With h := 0 we are able to find a multi-valued representation for 31 of 86 available
data sets. However, 9 of them have at most two different states. Thus, they are in fact
binary and we do not investigate them further.
In case of the data sets retrieved from ASJP, the degree of multi-state characteristics is
higher. We therefore set h := 0.1 and obtain multi-valued MSAs for 18 out of 65 data sets.
Note, that for these data sets, the degree of information loss is higher.

Among data sets for which we are able to retrieve a multi-valued MSA, the maximum
number and the average number of values per characteristic tend to be higher than in
biological data sets. This leads to a higher number of distinct symbols in the MSAs. The
multi-valued format used in RAxML-NG can represent MSAs with up to 64 different
symbols, but the inferences become highly time-consuming with an increased number of
symbols. There are 8 MSAs with ≥ 15 symbols, which we therefore exclude from the
following analyses. For the remaining 35 MSAs, we repeat the same experiments as for Dbio.

We make similar observations for linguistic data as for biological data in the previous
section. However, some trends are less clear. This may be due to the loss of information
in the multi-valued representation. In addition, the number of examined data sets is too
small to draw firm conclusions.

Considering the AIC Scores, we again observe that AICGTR < AICMK < AICBIN for all but
one data set. This implies, that, if we can construct a multi-valued MSA, using GTR with
this MSA is the best fitting model. It is hence worth to consider in future work, whether it
is possible to represent categorical data with multi-state matrices in a multi-valued manner.
Probabilistic MSAs (see Section 4.2) are a possible approach to deal with this issue.
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3.4. Comparison of Biological and Linguistic Data
In the following, we compare biological and linguistic data. We only use the MSAs in
their binary representations, because for most of the linguistic data sets we are not able to
construct a multi-valued MSA. We examine basic data properties and further investigate
differences in the context of tree inferences with RAxML-NG.

First, we compare the MSAs regarding their size. The majority of both biological and
linguistic MSAs has 40 taxa or less. However, there are groups of larger linguistic MSAs
each with a similar number of taxa among them. This is presumably related with the
number of languages in language families, which are frequently examined.
The median for the number of sites in biological MSAs is 229, for the linguistic MSAs it is
634. In this dimension, the linguistic MSAs hence tend to be larger. Additionally, in the
examined MSA collection, there are 4 exceptionally large linguistic MSAs with > 18000
sites.
Further, we consider the ratio of the number of patterns and the number of sites, which
corresponds to the ratio of unique sites. We observe, that the ratio tends to be higher in
biological MSAs. In other wordss, in linguistic MSAs, it occurs more frequently, that sites
have the same pattern.

Figure 3.3 depicts, how the entropy of the considered MSAs is distributed. We observe
lower values for the linguistic MSAs. As argued above, this is related with a higher
average number of symbols per characteristic. We make corresponding observations when
comparing these numbers for biological and linguistic data sets. Breaking this down to
the different types of language data, we observe an average entropy of 0.39 for cognate
MSAs, 0.43 for morphological MSAs, and 0.56 for sound class MSAs. Hence, there is a
relationship between the type of linguistic information encoded and the entropy of the
respective MSA. Based on the construction of sound class MSAs we expected their entropy
to be lower. Further investigating this difference remains subject of future work.

For each binary data set, we perform 100 tree inferences under the BIN model using
RAxML-NG. We examine the difficulty scores (see Section 1.4.3.4) determined based on
these inferences, and also analyze the branch lengths of the resulting trees.
Figure 3.4 depicts how the difficulty is distributed among the considered MSAs. For
linguistic and biological data, a large proportion of the MSAs yields a difficulty ≤ 0.1.
With increasing difficulty, we observe a decrease in the number of biological MSAs. In case
of linguistic data, however, there is a considerable proportion of MSAs with a difficulty
exceeding 0.5.
If we separately consider the different types of language data, we can observe different
distributions of the difficulty among the corresponding MSAs. Morphological MSAs are
classified as the most difficult, with an average score of 0.58. For cognate MSAs, the
average difficulty is 0.32, for sound class MSAs it is 0.19.
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Figure 3.3.: Entropy distribution for linguistic and biological MSAs.
The x-axis indicates the entropy, the y-axis the respective proportion of MSAs.
Blue bars correspond to biological, red bars to linguistic data.

Figure 3.4.: Difficulty score distribution for linguistic and biological MSAs.
The x-axis indicates the difficulty score, the y-axis the proportion of MSAs with
the respective score. Blue bars correspond to biological, red bars to linguistic
data.
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Additionally, we analyze how branch lengths are distributed in the trees resulting from
the tree inferences. First, we consider the external branches, which connect a leaf to
the rest of the tree. Figure 3.5 depicts, how the median of the branch lengths of these
external branches is distributed over the best trees resulting from the tree inferences on
the considered MSAs. We observe that the median is close to 0 for most of the trees
inferred on biological data, while for linguistic data, the median is more evenly distributed
(see Figure 3.5). This observation is presumably more related to data quality than to an
evolutionary phenomenon. If an MSA has a poor resolution, there are sets of taxa, for
which we are not able to infer any evolutionary relationship (e.g., because all sites are
identical for these taxa). During the inference, these taxa are however still arranged in a
binary subtree. The external branches in this subtree have a length close to 0, due to the
lack of signal in the MSA.
For the internal branch lengths, we do not observe substantial differences between trees
based on language and biological MSAs.

Figure 3.5.: Distribution of the median of external branch lengths for linguistic and biolog-
ical MSAs
The x-axis indicates the median, the y-axis the proportion of MSAs such that
the respective median occurs among lengths of the external branches in the
trees inferred on base of that MSA. Blue bars correspond to biological, red
bars to linguistic data.
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3.5. Conclusion
In this section, we presented results of analyses we performed on different types of linguistic
data, as well as on morphological data from biology. We first investigated the effects
of representing a data set as a binary MSA or as a multi-valued MSA. We observed,
that depending on the setup (i.e., the representation together with the model) a different
distribution of likelihoods in tree space results. This leads to different difficulty scores for
a data set depending on the setup. Using the AIC scores, we determined that inferring
trees on the multi-valued MSA with GTR as model leads to the best model fit. However,
there are categorical data sets for which we are only able to obtain a multi-valued MSA
with a loss of information. Developing an alternative representation for these data sets
remains subject of future work.
We further investigated how linguistic and biological data differ. We observed that, except
for some more difficult biological data sets, the difficulty scores are similarly distributed in
both groups of data. A closer look at the branch lengths of the inferred trees indicates
potential problems regarding data quality in biological data. This issue does not occur in
linguistic data.
In terms of the entropy and the difficulty score, we observed differences between the types
of linguistic data studied. MSAs containing sound class data tend to admit a higher entropy
and a lower difficulty score than those containing cognate data. The average entropy of
morphological MSAs lies inbetween the corresponding values of the other two data types.
However, morphological MSAs are on average the most difficult.
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When working with cognate data, linguists consider several semantic concepts and deter-
mine the words describing these concepts in the languages under study (see Section 1.3.4.1).
Words from multiple cognate classes can denote the same concept in a language, and
linguists might select only some of these so-called synonyms when generating MSAs. The
selection of synonyms is often subjective rather than based on statistical or other objective
criteria such as analyzing how frequently the respective words are being used [49]. In
this chapter, we investigate the influence of synonym selection on inferring phylogenies
(Section 4.1) and examine a novel approach based on probabilistic MSAs (Section 4.2).
We perform all analyses using an example data set published by Dunn [22]. Verifying our
findings on a broader set of MSAs remains the subject of future work.

4.1. Impact of Selecting Synonyms on Tree Inferences
In this section, we analyze to which extent selecting synonyms impacts the trees inferred
with RAxML-NG. We generate 1000 distinct MSAs by selecting 1000 distinct sets of
synonyms. For each generated MSA, we infer a single phylogenetic tree using RAxML-NG,
resulting in a set of 1000 trees. To quantify the impact of the selected synonyms on the
tree inference, we compute all pairwise RF distances among these trees. For each tree, we
consider the average of the pairwise RF distances to each other tree. Section 4.1 shows, how
these average distances are distributed. We observe a peak at 0.0, indicating that there is
a large subset of trees, which are very similar or even identical to each other. However, we
also observe average RF distances around 0.2. A tree hence differs on average 20% from
the trees inferred on MSAs based on other synonym selections. We conclude that the tree
inference is sensitive to the synonym selection and that this selection should not be based
on subjective decisions.
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Figure 4.1.: Trees inferred on 1000 MSAs that were created by randomly selecting distinct
sets of synonyms. The x-axis indicates average RF distances and the y-axis
indicates the number of trees, which admit the respective average RF distance
to the other trees.

4.2. Probabilistic MSAs
In the previous section, we showed for one example data set that the manual selection of
synonyms results in different tree topologies inferred with RAxML-NG on the respective
MSAs. Hence, we aim to find an approach to handle synonyms in cognate data, that
does neither require an explicit synonym selection nor ?. For this purpose, we propose
probabilistic MSAs.

4.2.1. Definition

The MSAs considered so far are all deterministic, as the underlying assumption is that a
fixed symbol is observed at each site and for each taxon. In a probabilistic MSA, we instead
assume that the various symbols can occur with certain probabilities. A probabilistic binary
MSA Aprob is a matrix providing the probabilities with which we observe the symbols
in Σ for each taxon and each site. In Aprob, missing data is represented by setting the
probabilities for all symbols to 1.0 [44]. This encoding does not contain any information,
and hence, the missing entries do not influence the likelihood score.

We can represent Aprob in a file using the CATG-Format supported by RAxML-NG [44].
The tree inference based on the probabilistic MSA differs from a standard inference in the
conditional likelihood vectors at the leaves. Usually, such a vector contains a single 1.0
entry for the observed discrete value and the remaining entries are all set to 0.0. Performing
an inference for Aprob, the conditional likelihood vectors are determined based on the
probabilities provided [44].
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4.2.2. Application for Synonyms

We can use probabilistic MSAs to circumvent synonym selection. For this purpose, we
consider cognate data in a probabilistic context. If k synonyms exist for a concept in a
language, we assume, that each of them occurs with probability 1

k . Based on this consid-
eration, we construct a binary probabilistic MSA. At a site corresponding to one of the
synonyms, we observe the symbol 1 with probability 1

k and the symbol 0 with probability
1 − 1

k for the respective language.

4.2.3. Evaluation

We evaluate the introduced approach on the data set published by Dunn [22]. We further
use Tg, a manually constructed reference tree, which we obtain by pruning a published
tree by Hammarström et al. [40]. Tg is multifurcating, hence we evaluate the generalized
quartet (GQ) distance [60] to measure dissimilarities. This topological distance metric is
based on all quartets of taxa in a tree. For each quartet, we determine the topology of the
subtree it induces. Comparing two trees, we obtain the GQ distance as the proportion of
quartets inducing the different topologies in the trees. The advantage of the metric is that
it evaluates to 0 if there are no contradictions between the inferred tree and the reference
tree, even if this reference tree contains polytomies. Note that this metric is not directly
comparable to the RF distance, as the values are distributed differently [70]. If two trees
admit a GQ distance < 0.05, we interpret them as being highly similar. A GQ distance
> 0.1 indicates substantial differences in the respective trees.

To compare the presented probabilistic approach to synonym selection, we again consider
the trees corresponding to different selections of synonyms as introduced in the previous
section. These trees admit an average GQ distance of 0.032 to the reference tree Tg. The
maximum observed GQ Distance is 0.065.

We construct a probabilistic MSA for the given data set as described above, and perform
20 independent tree inferences using RAxML-NG. The resulting tree with the best known
log-likelihood admits a GQ distance of only 0.019 to the reference tree Tg. Hence, using a
probabilistic MSA does not only allow for handling synonyms without explicit selection,
but also yields a tree that is topologically more similar to the reference tree.

4.3. Conclusion
Within this chapter, we used an exemplary data set to show, that synonym selection syn-
onyms substantially impacts the trees inferred with RAxML-NG. We tested probabilistic
MSAs as an approach to handle synonyms without explicitly selecting them. This circum-
vents biasing the phylogenetic inference by subjective decisions related to the synonym
selection process. For the examined data set, we further showed, that the tree inferred on
the probabilistic MSA is more similar to a manually constructed reference tree than trees
based on synonym selections. Verifying our findings and further assessing the advantages of
the probabilistic approach on a broader set of input data remains subject of future work. In
addition, we aim to investigate alternative probability distributions for synonym occurrence.
Instead of using the uniform distribution, we may, for example, derive probabilities from
lexicostatistical analyses.
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5.1. Discussion
Within this thesis, we considered several aspects of linguistic data in language phylogenetics.
In Chapter 2 we conducted a case study on a morphosyntactic MSA concerned with the
Indo-European language family. We assumed, that this MSA contains signal supporting
the consensus tree for this language family. We investigated various methods in order to
reveal this potential signal. Among others, we aimed to identify the sites in the MSA,
which evolve horizontally, that is according to the geographical tree. However, none of
the examined approaches lead to positive results, indicating, that there is likely no signal
supporting the consensus tree contained in the MSA under study. We conclude, that the
respective signal is not present in the data.
In Chapter 3, we presented results from analyses of a large number of data sets containing
different types of linguistic data, as well as on morphological data sets from biology. In
a first analysis, we examined, to which extent the choice of MSA representation (binary
versus multi-valued) and evolutionary model influences the results of the tree inference. We
observed a noticeable impact on the inferred trees for both factors. We recommend to use
multi-valued MSAs and the GTR model, as this leads to the best results with respect to
difficulty and model fit according to our analyses. A comparison of biological and linguistic
data revealed, that morphological MSAs in biology tend to exhibit poor signal for resolving
the leaves in the phylogenies, which does not appear to be an issue for language data.
In Chapter 4, we investigated synonyms in cognate data. With experiments on an exemplary
data set, we showed, that the selection of synonyms clearly impacts the inferred tree
topologies. We concluded, that the selection process should not be based upon subjective
decisions, and we proposed using probabilistic MSAs instead. We showed the potential
effectiveness of this approach on the exemplary data set.
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5.2. Outlook
Using methods for phylogenetic inference in the field of linguistics leads to several open
questions and new requirements. The results presented in this thesis give rise to various
topics for future work. The case study in Chapter 2 is an example, how to conduct
phylogenetic inference together with available reference trees. Our experiments suggest,
that in this context, linguists require methods for testing to which extent an MSA contains
signal for a known language tree and for handling information in the MSA, which is not
related to vertical evolution. In future work, we aim to develop such methods. This involves
examining the effectiveness of the presented approaches on additional data sets.
For the experiments in Chapter 3 we first collected linguistic data sets in a database. We
intend to further improve this database and make it publicly available. Our analyses
showed, that it is beneficial for the results of the tree inferences to represent categorical
data as multi-valued MSA. As discussed before, this is however currently not possible for
some data sets. How these data sets could be represented instead is another question to be
investigated.
In Chapter 4, we presented promising results regarding the application of probabilistic
MSAs for handling synonyms. However, our observations and results are only based on a
single data set. In our future research, we aim to prove the effectiveness of the approach
with the help of experiments on additional data.
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Appendix

A. Geographical Trees
Here we provide cladograms for different geographical trees with original branch lengths.
We obtain these trees with neighbor joining applied to the respective distance matrix.

Figure A.1.: Haversine distances
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5. Appendix

Figure A.2.: Route path lengths

Figure A.3.: Route duration
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B. Overview of Examined Linguistic Data Sets

B. Overview of Examined Linguistic Data Sets
Source MSA Construction Data Type MSA Type Number
Lexibank [48] from CLDF cognate binary 70

multi-value 14
morphological binary 4

multi-value 0
SequenceComparison [50] from CLDF cognate binary 8

multi-value 3
phlorest [37] as provided cognate binary 34

multi-value 1
morphological binary 2

multi-value 0
ASJP[42][78] as provided cognate binary 65

from clustering multi-value 14
as provided sound class binary 65

multi-value 0
Tuled [35] from CLDF cognate binary 1

multi-value 0
ewave [43] from CLDF morphological binary 1

multi-value 1
sails [55] from CLDF morphological binary 1

multi-value 1
wals [20] from CLDF morphological binary 0

multi-value 0
DiACL [13] from .csv morphological binary 3

multi-value 0
Mouton Atlas[14] from .xlsx morphological binary 1

multi-value 0
bouckaert [10] as provided cognate binary 1

multi-value 0
wals (indo-europ.)[20, 53] manually morphological binary 1

multi-value 1
ouckaert(indo-europ.) [10, 53] as provided cognate binary 1

multi-value 0
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5. Appendix

B.1. Duplicates

Dataset in Lexibank Dataset in phlorest Remark
dyenindoeuropean gray _and _atkinson2003 No Mapping for 3 taxa from phlorest

and for 11 taxa from Lexibank
grollemundbantu grollemund _et _al2015
grollemundbantu koile _et _al2022 No mapping for 5 taxa from Lexibank
kitchensemitic kitchen _et _al2009
powerma power _et _al2020
birchallchapacuran birchall _et _al2016
gerarditupi gerardi _and _reichert2021
utoaztecan greenhill _et _al _subm No mapping for 7 taxa from Lexibank
dravlex kolipakam _et _al2018
leekoreanic lee2015
leejaponic lee _and _hasegawa2011
leeainu lee _and _hasegawa2013
nagarajakhasian nagaraja _et _al2013
robinsonap robinson _and _holton2012
sagartst sagart _et _al2019 No mapping for 2 taxa from phlorest

and for 2 taxa from Lexibank
savelyevturkic savelyev _and _robbeets2020
mcelhanonhuon greenhill2015
bouckaert bouckaert_et_al2012 The version bouckaert is from the

supplementary of the paper, not from
Lexibank
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C. Software

C. Software
The following enumeration lists the software and command lines we used for our analyses.

Chapter 2:

• RAxML-NG Version 1.1.0, available at https://github.com/amkozlov/raxml-ng/
releases/tag/1.1.0, for retrieving intermediate trees and for the experiments with
a new mixture model in Section 2.4, we used an adapted version based on this release,
available at https://github.com/luisevonderwiese/raxml-ng

• standard-RAxML Version 8.2.12, available at https://github.com/stamatak/standard-RAxML/
releases/tag/v8.2.12, used for the determination of the weight calibration in Sec-
tion 2.2.2

• Root Digger Version v1.8.0-16-gc6d43e9, available at https://github.com/computations/
root_digger in Section 2.2.3

• delta_statistics available at https://github.com/mrborges23/delta_statistic
in Section 2.2.4

• IQ-TREE Version 2.2.0, available at https://github.com/iqtree/iqtree2/releases/
tag/v2.2.0, used for the determination of plausible trees in Section 2.1.3 and Sec-
tion 2.2.5 and for generating simulated MSAs with Alisim in Section 2.4

Chapter 3:

• Pythia training data pipeline as described in [39]. Note that we considered ad-
ditional metrics compared to the publication that are implemented in a sepa-
rate branch. The pipeline code is available at https://github.com/tschuelia/
difficulty-prediction-training-data/tree/tree_characterization

• For running the above pipeline we used RAxML-NG Version 1.1.0, IQ-Tree Version
2.0.6, and Pythia Version 1.0.1.

• The database containing linguistic MSAs is available at https://github.com/
luisevonderwiese/language_alignment_database_interface

Chapter 4:

• RAxML-NG Version 1.1.0, available at https://github.com/amkozlov/raxml-ng/
releases/tag/1.1.0

• qdist available at https://birc.au.dk/software/qdist for the determination of
generalized quartet distances

All scripts used for our analyses are available at https://github.com/luisevonderwiese/
mt_scripts.
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