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Abstract

Phylogenetics, the study of evolutionary relationships between organisms, uses,
among other things, algorithms for the placement of genetic data into existing
phylogenetic trees. One tool, which enables phylogenetic placement by providing
alignments of given DNA sequences to references in an existing phylogeny, is
PaPaRa. Like other alignment software, PaPaRa performs a large amount of
calculations. This thesis proposes and analyzes methods for reducing the number
of alignment operations, thus accelerating PaPaRa with limited sacrifices in
the quality of the result. The discussed screening methods rely on sequence
abstractions that count DNA fragments of specific length k called k-mers.

Deutsche Zusammenfassung

Phylogenetik, die Wissenschaft der evolutionären Verwandschaftsbeziehungen
zwischen Organismen, benötigt Methoden um genetisches Material in phylo-
genische Bäume einzuordnen. PaPaRa ist ein Werkzeug, das die Einordnung
ermöglicht indem es für gegebene DNA-Sequenzen Alignments zu Referenzse-
quenzen in Vererbungsbäumen erzeugt. Wie andere Alignment Software auch ist
PaPaRa sehr rechenaufwändig. Diese Arbeit betrachtet und analysiert diverse
k-mer basierte Verfahren, welche die Anzahl an Alignmentprozesse reduzieren
und damit beschleunigen, ohne große Qualitätsabstriche. Die in dieser Arbeit
diskutierten Methoden basieren auf Sequenzabstraktionen, die DNA Fragmente
der Länge k zählen und k-mer genannt werden.
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Chapter 1 Introduction

The field of bioinformatics applies tools and methods of computer science to further
the understanding of biology. One main focus is analyzing genetic code that lies
inside the deoxyribonucleic acid (DNA) present in organism cells. DNA encodes
all structural and functional information needed for the existence of organisms.
Chemically, it is a macro-molecule consisting of two intertwining strands that form
the well-known helix structure. Each strand is created by concatenating four smaller
building blocks, namely, the bases Adenine (A), Thymine (T), Cytosine (C) and
Guanine (G). Each of these nucleotides is connected to a partner on the opposite
strand and forms fixed base pairs of A-T or C-G respectively.

The order of the base pairs is the decisive information and can be extracted from the
physical molecule by DNA sequencing. These laboratory methods produce so called
reads or sequence strings, which are fragments of the investigated DNA. The most
popular sequencing approaches [SNC77; Kne+19] artificially trigger the biological
process of DNA replication outside the cell. Nucleotides added during the process
are modified such that they can be optically identified in the resulting duplicate.
Around the year 2008, enhancements and changes to the original sequencing process
emerged and are summarized with the term next generation sequencing (NGS) [SJ08].
Technological advances led to significantly higher throughput rates and lower costs
per read, caused mainly by new methods for simultaneous execution of multiple
sequencing processes. This is best demonstrated by the cost for sequencing the
3 billion base pairs of the human genome dropping from $10 million in 2001 to
currently $1000 [Wet]. Another application made possible by NGS is the sequencing
of meta-genomes, which refers to all genetic material present in an environmental
sample. In contrast to traditional methods NGS does not rely on separation and
cultivation of individual samples and therefore a greater diversity of species can be
analyzed.

Now the extracted sequences can be analyzed, for example, by assessing the similarity
to other species with the help of phylogenies. A phylogeny is a tree structure and
describes the evolutionary relationships between species. Every leaf node (taxon)
represents one species, inner nodes can be interpreted as a common ancestral species.
The branch lengths are an indicator for the time span it took for an ancestor to
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1. Introduction

mutate to a child species. Since the true evolution is unknown all phylogenies are
hypothetical. One use of phylogenies is the identification of related virus variants, for
example, to predict the course and possible treatments of the Ebola virus epidemic
in Sierra Leone [Par+15].

In contrast to previous methods, where the phylogeny was created from scratch, now
the focus of phylogenetic placement lies on inserting large amounts of anonymous
meta-genome sequences into a known reference tree. The Evolutionary Placement
Algorithm (EPA) [Bar+18] for example temporarily places the sequence in question
into one branch at a time, then compares and evaluates the resulting trees. The best
insertion point found is then used to classify the read.
This yields a qualitative improvement over methods simply comparing nucleotide
sequence strings [KG01] in cases where no sufficiently close relatives are documented
in a genetic database. The obtained placements are especially useful as a tool for
analyzing the structure of meta-genomes. For example, [ME13] created a method
to compare distributions of small meta-genomes among species and could confirm a
connection between an imbalance of otherwise harmless bacteria types and a bacterial
vaginosis infection [Sri+12].
In the course of phylogenetic placement, first, the region of the DNA, from which
the sequence in question may originate from, is identified. This is done by finding
the best position for the identified nucleotides in the investigated DNA, such that it
has the highest overlap with it. This process is called alignment. The part of the
DNA not matched by the smaller sequence is marked by so called gap characters,
such that the sequence with the gap characters and the DNA have the same length
in the end (e.g., see Figure 2.1).

This thesis focuses on the PaPaRa program which aims to align thousands of
short sequences to already aligned reference sequences. PaPaRa’s central idea is to
incorporate the phylogeny of the references into the alignment process.
Chapter 2 provides an introduction into the bioinformatics concepts needed in the
following chapters. Then, the PaPaRa algorithm is defined in Chapter 3. The new
idea for reducing the computation time of PaPaRa with the help of k-mer heuristics
is explained in Chapter 5. The respective implementation is discussed in Chapter
6. The methods for the evaluation of the new approach are described in Chapter 7.
The respective results are presented in Chapter 8. Chapter 9 discusses future work
and provides a conclusion.

2



Chapter 2 General Bioinformatics
Concepts

Section 2.1 Related Work
PaPaRa is used to fit DNA sequences to reference sequences, called alignment. There
exists a plethora of alternative alignment tools as shown in [Wik19b]. A short
introduction to different concepts is given here.
One of the oldest Bioinformatics algorithms is the basic local alignment search tool
(BLAST, [Alt+90]), which is still used to search for sequences in genetic databases.
It also uses a heuristic to find small matches, then looks in their surroundings for
further resemblances. However, as [KG01] suggested, BLAST does not always find
the closest relative - opposed to the better performance of PaPaRa.
Through technical advances, the amount of sequences that need identification rises
and so does the need for performant solutions. Parallel implementations are realized
in PaPaRa and others [Dai16; Rog11] by using the single instruction multiple data
(SIMD) principle, realized through designated CPU instructions. The authors of
[Ruc+18] used programmable hardware for speed up. There are also methods that
create indexes on the reference sequences to find relevant matching positions faster
[LS12].

In this thesis, an alignment-free heuristic is created to screen alignment possibilities.
Therefore, the sequences are translated to vectors, counting the frequency of fragments
of fixed length. Most alignment-free methods rely on this strategy. An alternative is
also introduced here: Chaos Game Representation [Jef90] is a graphical approach
of representing sequences, by iteratively adding the nucleotides. It constructs an
image by traversing a 2-dimensional plane, whereby each added nucleotide dictates
the direction of the subsequent point on the image. The constructed images can then
be interpreted and used to compare the corresponding sequences [Alm+01].

3



2. General Bioinformatics Concepts

Section 2.2 Bioinformatics Terminology
A short overview over common Bioinformatics expressions is given in the following:

sequence A chain of DNA characters written as a string.

sequencing The DNA extraction process, which results in a sequence.

site A column of a alignment.

phylogeny A tree that conveys evolutionary relationships between organisms.

taxon A group of organisms, e.g. a species. Also, leafs of the phylogeny.

Section 2.3 Dynamic Programming Alignment

 	A	A	G	T	A	A	G	C	T	T

	A	G	T	T

DNA Sequence 1

DNA Sequence 2

Global Alignment

		A	A	G	T	A	A	G	C	T	T

	-		-		-		-		-	A	G	-	T	T

Figure 2.1: Global alignment process. Global alignment describes the process
of finding the best fit of the short DNA sequence “AGTT” to the longer
DNA sequence “AAGTAAGCTT” by inserting gaps.

A well known problem in Bioinformatics to find a global alignment of two sequences,
which strives to identify similar regions and aligns them by inserting gaps into both
sequences (see Figure 2.1). In general this is solved with the help of a methodology
called dynamic programming, which divides a problem into overlapping sub problems
and reduces the computational effort by caching partial solutions.

Figure 2.2 sketches the idea of the Needleman-Wunsch algorithm [NW70] - one of
the first dynamic programming alignment algorithms which also forms the basis for
the alignment process used in PaPaRa.

During the setup, the two sequences are written alongside a table. The longer one
(L := AACT ) is usually on top, filling the columns, and the characters of the other
(V := AGT ) usually at the side, filling the rows.
Then a column and row of initial values are added in front. In the example, they
start with 0 and decrease by one per slot.
Now, the table is filled cell by cell starting from the top left corner and ending in the
bottom right corner, creating the similarity matrix H. Each entry describes the best
score that can be reached by aligning the prefixes of both queries to each other. So
cell H i,j contains the best score for aligning L from index 0 to j with V from index 0
to i. The crucial ingredient is the recursion step, a rule for calculating a new cell
H i,j value from the surrounding ones is as follows:

4



2.3. Dynamic Programming Alignment

H i,j = max


H i,j
pot1 = H i−1,j + GP

H i,j
pot2 = H i,j−1 + GP

H i,j
pot3 = H i−1,j−1 + Si,j

GP = −1

Si,j =

1 if V i and Lj match
−1 otherwise

(2.1)

The gap penalty GP is the punishment for inserting a gap. Si,j rewards the alignment
of nucleotides of the same type with 1 and punishes a mismatch with −1. Therefore,
the nucleotides at positions i in V and j in L have to be compared. For the score of
H i,j , three different ways to align the sub sequences have to be considered. The arrows
↑, ↖ and ← show from which H entry, H i,j is recursively calculated. Afterwards
the three possible alignments are scored using H i,j

pot. L2,2
pot and V 2,2

pot are potential
candidates for aligning the nucleotides of V from i : 0− 2 and of L from j : 0− 2, in
doing so gaps can be inserted.

In the example Figure 2.2, the score H2,2 for the alignment of AG with AA is the
maximum out of the following 3 alternatives:

↑ corresponds to the first line in the maximization of Equation 2.1. It takes the
score above H1,2, adds a gap penalty GP and results in H2,2

pot1 = 0− 1 = −1.
This is equivalent to inserting a gap into L after the character of the current
column.

L2,2
pot1 = L↑ + _ = AA_
V 2,2
pot1 = V↑ + G = A_G

↖ adds a match reward or mismatch penalty S2,2 to the diagonal value H1,1 and
gives H2,2

pot2 = 1 − 1 = 0. For the alignment construction, add the respective
character to the previous sequence.

L2,2
pot2 = L↖ + A = AA
V 2,2
pot2 = V↖ + G = AG

← Similar to the first alternative (↑), with the difference that the gap is inserted
into V instead of L. (H2,2

pot3 = 0− 1 = −1)

L2,2
pot3 = L← + A = A_A
V 2,2
pot3 = V← + _ = AG_

5



2. General Bioinformatics Concepts

inital values

H matrix

-1

A A C T

A

G

T

-1 -2 -3 -40

-1

-2

-3

1 0

0 ?
-1

-1

insert gap into top
sequence

no gap insertion,
align row and column
characters

insert gap into sequence
on the side

L

V

Figure 2.2: Needleman-Wunsch Recursion Step. Alignment of “AG” to “AA”
from “AGT” and “AACT”.

The maximum value of the three alternatives above is selected and stored in the
matrix cell H2,2 = 0 and additionally the related arrow is reversed↘ and then stored
for backtracking.

One can see the dynamic programming idea now: the cell values are reused multiple
times and are the cached partial solutions of a recursive alignment algorithm. The
best alignment is now constructed by backtracking the stored arrows from the bottom
right to the top left and using the above outlined associated sequence build up for
each step.

6



Chapter 3 PaPaRa

Parsimony-based Phylogeny-aware short Read alignment, henceforth called PaPaRa,
is a tool, first released in 2011 by Simon Berger [BS11], which is used for the alignment
of short DNA sequences to already existing reference alignments.

next generation
 sequencing

PaPaRa

metagenomic
sample

short reads aligned short reads phylogeny

curated alignment

curated tree

EPA

Figure 3.1: PaPaRa in the context of other tools. A environmental, metage-
nomic sample is taken. Short DNA sequences are read with the help
of next generation sequencing. PaPaRa takes those reads, a reliable
reference alignment and the associated tree and produces an alignment
for the short reads. The aligned reads are then used as input for
phylogenetic placement tools, such as EPA.
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3. PaPaRa

Due to the emergence of next generation sequencing techniques since the beginning of
the century, large amounts of rather short sequences between 100 and 600 base pairs
(bp) [Jün+13] are extracted. Still, the DNA regions that these sequences belong to
need to be identified. In addition to the difficulties introduced by large quantities
and high fragmentation the samples are metagenomic, meaning that they stem from
various potentially unknown species.
Figure 3.1 shows PaPaRa’s importance as an intermediate step, preparing those
short reads for the classification into evolutionary relationships, called phylogenies. It
requires a confident and well-curated reference tree (RT) and an associated reference
alignment (RA) as a model of reality. It extracts the underlying and implicit
correlations between them and emulates these in the resulting alignment. The hereby
created combined alignment of short sequences, called queries (QS), and the RA are
fed into a separate tool for phylogenetic placement, for example EPA-ng [Bar+18]
(see Chapter 1).

PaPaRa’s process consists of four steps that are explained in the following sections:
First, PaPaRa creates hypothetical ancestral sequences for each tree edge. With
the help of a gap evolution model, it simultaneously assesses how probable gaps in
each ancestral site are. Then, a dynamic programming algorithm aligns each query
pairwise against every ancestor with additional gap information and remembers the
highest similarity score. Lastly, backtracking the best pairs creates the aligned query
sequences.

Section 3.1 Ancestral Sequence Creation
PaPaRa encodes topological information in ancestral state sequences and aligns query
sequences against those in later steps. The following describes how they are created.

One starts with an unrooted reference tree with all r reference alignment sequences
as the leaves. For every branch of the overall 2r − 3 branches PaPaRa computes an
associated ancestral sequences. When a virtual root is inserted into a specific branch
a rooted tree is created. The rooted tree on the right in Figure 3.2 is the result of
adding a root to the branch leading to leaf 2 of the unrooted tree on the left.

The ancestral sequence is located at that root and one can think of it as a repre-
sentation of all possible, most probable, common ancestors for all taxa given the
evolutionary relationships as defined by that specific tree.
For its creation, one starts with 2 leaf nodes and creates a combined sequence, a
profile, at the node connecting both. This is repeated for every inner node and
emerges into the ancestral sequence at the root. This process can create sequences
with sites that represent multiple nucleotides, which make them ambiguous.

As an example, the ancestor of the branch leading to leaf 2 of the original tree shown
on the left corner of Figure 3.2 is prepared:
First create the inner sequence (I) by combining (3) and (4), next (II) is formed
from (1) and (I) and the final result is (III). In the combining step, the parent profile
is formed for each site separately by choosing either the intersection of the child
nucleotides if it is not empty or the union otherwise. In the example sequence (II)
“A AC A” (meaning: A at site 1, A or C at site 2, and A at site 3) and sequence (2)
“A C T” are combined and result in sequence “A C A”, because {A} = {A} ∩ {A},
{C} = {A,C} ∩ {C}, {A, T} = {A} ∪ {T}.

8



3.1. Ancestral Sequence Creation

Compute	ancestor
for	this	edge

1

2

3

4

	1				AAA

	3					ACC 	4					ACA

		I				A		C		AC

	II			A		AC		A	2					ACT

Ancestral
Sequence

III			A		C		AT		

root

Figure 3.2: Exemplified creation of an ancestral sequence. The ancestor for
the branch leading to leaf 2 is created by combining sequences connected
to the same parent bottom up.

Compute	ancestor
for	this	edge

root

Ancestral
Sequence

	1				AAA 	3					ACC 	4					ACA	2					ACT

	I				A		AC		AT 	II			A		C		AC

III			A		C		A				

1

2

3

4

Figure 3.3: Exemplified creation of the second ancestral sequence.

The created profile sequence represents all combinations that can be built by con-
catenating the sets, here: “ACA” and “ACT”. If only unions were applied for each
site, the ancestral state sequences would be the same for every edge, but intersecting
them ensures that the minimal required number of mutations is accounted for to
explain the data. This is modelled from the parsimony criterion described in [Fit71].
Figure 3.3 shows, how a root inserted into a another branch leads to a different
ancestor.

9



3. PaPaRa

Section 3.2 Gap Signal Propagation
During ancestral sequence creation, a corresponding gap flag vector is computed
which specifies a probability for each site to contain a gap.
Analogous to the ancestral state vector, the gap vector for each edge is built recursively,
from the leaves to the root, by combining the gap vectors of both children. A node
x holds two likelihood vectors: L(x)

gap denoting a sequence of site-wise probability of
gap occurrence and L(x)

no-gap the same for no gaps. For the leafs Lgap is initialized
as a sequence of 1s and 0s, with a 1 if the leaf sequence site contains a gap and
0, otherwise. The no-gap probability L(x)

no-gap is inverse to L(x)
gap. To track how the

manifestation of gaps changes along a branch, a continuous-time Markov process is
used. It is described by the states gap and no-gap and derives the state transition
probability matrix P (t). For details see [Ste09].

P (t) = eQt =
∣∣∣∣∣ Pgap→gap(t) Pgap→no-gap(t)
Pno-gap→gap(t) Pno-gap→no-gap(t)

∣∣∣∣∣ (3.1)

It uses the instantaneous transition rate matrix Q and the prior gap probabilities πgap
and πno-gap, where πgap is the percentage of gaps in the original reference alignment
and πno-gap = 1− πgap:

Q =
∣∣∣∣∣−πgap πgap
πno-gap −πno-gap

∣∣∣∣∣ (3.2)

Now, the probability of a site changing from gap to no-gap in time t, gap→ no-gap(t),
can be calculated by computing a concrete, time-specific transition matrix through
inserting t into eQt and selecting the specific index. The combining step, based on
the Felsenstein pruning algorithm from [Fel81], uses the time reversibility property
of Markov processes and computes the likelihoods of a parent p containing gaps in a
rooted tree from the likelihoods of both children c1 and c2:

L
(p)
k∈{gap,no-gap} = (

∑
i∈{gap,no-gap}

Pk→i(t1)L(c1)
i )(

∑
j∈{gap,no-gap}

Pk→j(t2)L(c2)
j ) (3.3)

The evolution time t1 from the gap sequence at p to the gap sequence at c1 is the
branch length between the nodes as taken from the phylogeny (t2 analogously). After
applying this step recursively, the likelihood vector at the root is translated into
gap flag vectors to limit the computational effort. The majority rule derives 1 if
Lgap > Lno-gap and 0 otherwise. When implementing Equation 3.1, PaPaRa performs
Eigenvalue decomposition on matrix Q, which results in a matrix of columns of
eigenvectors U and a diagonal matrix of eigenvalues Λ.

Q = UΛU−1 (3.4)

Since e to the power of a diagonal matrix requires raising each diagonal value
separately, P (t) is now easy to compute.

P (t) = eQt = eUΛU−1t = UeΛtU−1 (3.5)

eΛt = exp
∣∣∣∣∣λ1t 0

0 −λ2t

∣∣∣∣∣ =
∣∣∣∣∣eλ1t 0

0 eλ2t

∣∣∣∣∣ (3.6)

For more details on matrix exponentials see [HJ12].
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3.3. Alignment

Section 3.3 Alignment
Now, a query sequence can be aligned to an ancestral sequence as calculated in
Section 3.1 with additional information from the gap flag vector. To achieve this,
PaPaRa uses a dynamic programming approach similar to [NW70], described in
detail in Section 2.3, which iteratively fills a scoring table H with the ancestral
sequence L, as column labels and the query sequence V , as row labels. Additionally,
it uses a mechanism (from [Got82]) that encourages sequential gaps in contrast
to isolated gaps. This reflects the biological processes more accurately, since one
mutation can produce multiple gaps. The gap penalty, that distinguishes between
inserting a beginning gap (open) and a following gap (extend) is called affine.

In addition to smaller penalties for sequential gaps, conditional penalties based on
the gap flag vector are introduced. The resulting recursion step, taken from the
PaPaRa V.2 paper [BS12], looks like this:

CGj =

−3 if gap on site j
0 otherwise

(GPO, GPE) =(−3,−1)

(GP j
O, GP

j
E) =

(0, 0) if gap on site j
(GPO, GPE) otherwise

Si,j =

2 if Lj and V i match
0 otherwise

H i,j
I = max

H i−1,j +GPO +GPE

H i−1,j
I +GPE

H i,j
D = max

H i,j−1 +GP j
O +GP j

E

H i,j−1
D +GP j

E

H i,j = max


H i,j
I

H i,j
D

H i−1,j−1 + Si,j + CGj

(3.7)

GPO: gap insertion penalty open
GPE: gap insertion penalty extend
CG: gap deletion penalty
S: match reward
HI : insertion scoring matrix
HD: deletion scoring matrix
H: scoring matrix

In Figure 3.4, the above formulas are illustrated. Penalizing multiple sequential
gaps less than each gap on its own is the core idea of [Got82] and leads requires
maintaining three scoring matrices: H , HI and HD (visualized white, green and
blue) instead of only H.
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3. PaPaRa

HI
best score if 
gap inserted into ancestor (top)

HD
best score if 
gap inserted into query (side)

best score if 
characters are aligned

best score

gap flag in ancestor

A A

A

G

-4

-4 /  0 

-1 /  0 

-1
0 /  -3 
+
 /  2  0 

V

L

Figure 3.4: Exemplified PaPaRa alignment process. Alignment of segment
"AG" of query V to segment "AA" with gap flag vector "01" of ancestor
L. The score H2,2 (white square) is computed by maximizing H2,2

I

(green), H2,2
D (blue) and a temporary value (yellow). The arrows show

how they are in turn created from the scores of previous iteration steps.
The green value H2,2

I is created from the cell values of above matrices
by selecting the maximum of (H1,2

I − 1) and (H1,2 − 4). The blue value
H2,2
D is the maximization of (H2,1

D −0) and (H2,1−0). The value 0 (grey)
is chosen over −1 and −4 respectively, because on site 2 of ancestor L
the gap flag is set. The temporary value (yellow) is created from the
diagonal score H1,1 + 0− 3, because V 2 = G and L2 = A do not match
(red) and again the gap flag is set on site 2.

Cell H i,j
I contains the best score if a gap is inserted into the ancestral sequence after

character Lj. It can either be the first gap behind Lj, which adds the gap open
penalty GPO = −4 to the previous (above) score H i−1,j , or a following gap, which in
turn adds the extend gap penalty GPE = −1 to the previous (above) insertion score
H i−1,j
I . Each of those computations is represented by one ↓ arrow in Figure 3.4 and

the larger of the two scores is inserted into the mutual, green target square. This
arrow maximization interpretation is applicable to every arrow set that leads to the
same square.

Now, the gap flag vector created in the previous chapter comes into play. For each
position, it can tell whether aligning a gap or a character is preferable. A set gap
flag is visualized with a grey background, for instance behind the second ancestral
character L2 = A, and enables inserting gaps into V at that position with a penalty
of zero (also marked grey). This is also described by the conditional gap penalties
(GP j

O, GP
j
E) in the equations. If the gap flag is not set, the deletion score HD

behaves analogously to the insertion score HI calculation from before. A deletion
with respect to the ancestor is equivalent to inserting a gap into the query sequence.
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3.3. Alignment

The conditional penalties mentioned in the beginning can, for example, be seen in
the diagonal step, where aligning matching characters is rewarded (2 + 0 = 2) if no
gap is present, and punished (2− 3 = −1) otherwise.

It is worth remembering that characters in the ancestral sequence can be ambiguous
and therefore multiple characters are allowed to be matched against them even
though this has no effect on the way the algorithm works. Additionally, in reality,
memory can be saved by storing only one row for H and HI and only one cell value
for HD, because cell computation requires memory accesses that are at most one cell
up and one to the left.
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Chapter 4 Vectorization

PaPaRa uses vectorization to parallelize the alignment process of Section 3.3. Vec-
torization refers to the simultaneous execution of multiple basic instructions, such as
additions. This is achieved by dedicated CPU dependant instructions which operate
on separate registers. Therefore, the code needs to be adapted to use this approach.
The single instruction multiple data (SIMD) idea is accomplished by performing each
instruction on vectors of data instead of a single instance. PaPaRa utilizes vector-
ization by simultaneously and independently aligning one query sequence against
multiple ancestors as highlighted in Figure 4.1.

A C A T G

vector
width

C

T

A

ancestral sequences & gap flags

Figure 4.1: Vectorization idea of the PaPaRa alignment process. The
vector width corresponds to the number of ancestral sequences that the
query sequence is aligned to in parallel. This width depends on the
hardware.
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4. Vectorization

Instructions Published Register Width GCC flag Notes
MMX 1997 64 bit -mmmx
SSE 1999 128 bit -msse
SSE2 2000 128 bit -msse2 added 144 instructions
SSE3 2004 128 bit -msse3 added horizontal register instructions
SSSE3 2006 128 bit -mssse3 added packed integer instructions
SSE4a 2007 128 bit -msse4a only supported by AMD CPUs
SSE4.1 2007 128 bit -msse4.1 added 47 instructions
SSE4.2 2007 128 bit -msse4.2 added text processing instructions
AVX 2011 256 bit -mavx now uses 256 bit registers
AVX2 2012 256 bit -mavx2

AVX512 2016 512 bit -mavx512f
-mavx512bw

Table 4.1: Summary of the Vector Instruction Sets used by PaPaRa. The
flag column defines the flag that needs to be set when compiling with
GCC to enable the use of the specified instructions.

Section 4.1 Technical Background
The used vector instructions depend on the CPU’s manufacturer. PaPaRa supports
the following instruction sets:

The C++ header file immintrin.h specifies so called intrinsic functions that enables
calls to the processor instructions. Once the header file is included, for most compilers
(for instance GCC) the intrinsic functions also require specifying the corresponding
flag at compile time, see Table 4.1.

Section 4.2 Implementation
The original PaPaRa vectorization encapsulates the access to the processor specific
instructions inside a templated vector_unit. This templated structure vector_unit
is instantiated for any hardware dependant instruction set, listed in Table 4.1 and
therefore allows for the use of the same interface, even though different hardware is
operated each time.

The template parameter is the vector width that determines how many elements of a
given datatype the vector can contain. For example, a nucleotide of a DNA sequence
is represented by a short integer of 16 bit and thus 32 shorts can be stored within
an AVX 512 register. PaPaRa automatically selects the supported vectorization
that has the largest vector width. The appropriate code is selected with the help of
pre-processor directives which are set during configuration.

In this thesis, as part of the PaPaRa optimization, a new instance of vector_unit is
created that uses the AVX 512 instruction set. It doubles the register size from 256
bit to 512 bit. The resulting implementation is mostly analogous to existing ones,
see PaPaRa’s code [Ber16]. The alignment algorithm of PaPaRa uses the abstract
vector_unit operations and can therefore directly work with the new instance. The
adaptations are exemplified with the load function, which takes an address pointer
and loads 512 bit of data into a processor register.

16



4.3. Results

static inline const vec_t load( const T* addr ) {
return _mm512_load_si512(addr);

}

The return type vec_t is also templated and can be used in operational functions
such as the following addition. Here both registers are interpreted to contain a series
of short integers that are individually added, when adding the register values.

static inline const vec_t add( const vec_t &a, const vec_t &b )
{
return _mm512_add_epi16 ( a, b );

}

When using a different instruction set the signature does not change, but the
implementation does. Seen here for the SSE implementation:

static inline const vec_t add( const vec_t &a, const vec_t &b )
{
return _mm_add_epi16( a, b );

}

The AVX 512 implementation requires the AVX-512 Byte and Word extension for
the support of 16 bit integers.

Section 4.3 Results

The runtime improvements are analyzed in Table 4.2 with 64 threads and in Table 4.3
for 12 threads. The three data sets used are discussed further in Section 7.3.1. The
savings achieved by the AVX 512 instructions compared to AVX 256 is consistently
above 25%.

Data set Ancestors Instructions Runtime Improvement
Neotrop 1021 x 4686 bp AVX 256 276 s

AVX 512 211 s 26% faster
Tara 7493 x 3374 bp AVX 256 713 s

AVX 512 427 s 41% faster
BV 1591 x 2763 bp AVX 256 172 s

AVX 512 106 s 39% faster

Table 4.2: Runtime Analysis of Vectorization. Aligned 1000 queries per data
set with 64 threads.
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4. Vectorization

When using a more standard setup with 12 threads the improvement is around 40%
for all data sets.

Data set Ancestors Instructions Runtime Improvement
Neotrop 1021 x 4686 bp AVX 256 3343 s

AVX 512 1898 s 44% faster
Tara 7493 x 3374 bp AVX 256 7967 s

AVX 512 4512 s 44% faster
BV 1591 x 2763 bp AVX 256 1929 s

AVX 512 1136 s 48% faster

Table 4.3: Runtime Analysis of Vectorization. Aligned 1000 queries per data
set with 12 threads.
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Chapter 5 K-mer Heuristic

To restrict the amount of sequence pair-wise alignments PaPaRa has to conduct,
an efficient heuristic approach is desirable. Here, the idea is to use means that rate
similarity between the ancestral DNA and the meta-genome DNA under investigation,
without having to compute an expensive alignment - these methods are called
alignment-free. They are advantageous, because they generally require time that is
linear in the sequence length.
A large subcategory of alignment-free methods are k-mer based approaches[Sim+09;
BSB13; Zie+17]. They divide a larger DNA sequence into DNA fragments and then
store a distribution of the fragment occurrence numbers, also known as fragment
frequencies, into vectors. The fragments are of fixed length k and are usually called
k-mers. Analogously, the corresponding frequency vectors are called k-mer frequency
vectors.

The next section describes how these are created systematically from a given DNA
sequence and adjusted for use in PaPaRa. To complete the heuristic, a function
for sequence comparison (or in this case comparing the corresponding vectors) is
needed. With its help, similarity can then be quantified in terms of “distance”,
which measures the “closeness” between pairs of k-mer frequency vectors. Section
5.2 introduces different distance functions and discusses their uses and advantages
from a theoretical perspective.

Section 5.1 K-mer Frequency Vector Creation
In order to create a k-mer frequency vector for a given DNA sequence, the algorithm
iterates over the sequence one character at a time and collects every substring of
length k. Every k-mers’ occurrence is counted and stored in the entries of the
corresponding k-mer frequency vector. If a k-mer is not contained in the sequence,
the corresponding vector entry is set to zero. Each k-mer is assigned a unique index
in the vector based on its position in lexicographic order. This creation process is
exemplified in Figure 5.1 with the sequence “AAGTAAG”: It contains five k-mers of
length three (3-mers): “AAG”, “AGT”, “GTA”, “TAA”, and “AAG”. The frequency
vector lists how often each 3-mer appears, as shown on the right.
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5. K-mer Heuristic

Through this translation process, all information on the k-mers’ location is ignored.
Only a small notion of sequentiality is conserved because of the k-mer overlap.
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Figure 5.1: k-mer frequency vector creation. For the given DNA sequence
“AAGTAAG” the 3-mer frequency vector is created by iterating over
every position in the sequence.

Subsection 5.1.1 Quantifying Ambiguity
The k-mer frequency vector creation appears straight-forward at first glance, but an
additional layer of complexity is introduced by the ancestral sequences created by
PaPaRa (see Chapter 3). They can contain ambiguity characters that are placeholders
for a set of nucleotides. For example, the character M means the corresponding
DNA site can contain either an A or a C.
Each k-mer containing ambiguous characters represents multiple possible k-mers.
The number of possible k-mers represented by the ambiguous characters is denoted
by l. Then the amount, each of these l k-mers contributes to its respective position
in the frequency vector, is defined as 1/l. The idea is to attach less weight to the
position of ambiguous k-mers than that of unambiguous ones. This way, when
evaluating the closeness to a query, an ancestor that contains an exact match of the
query k-mer is explicitly preferred over an inexact match.
In the following example Figure 5.2 the 3-mer “MMG” stands for the 3-mers “AAG”,
“ACG”, “CAG” and “CCG”. As a result, each of their frequency vector entries is
incremented by 1/4.

Subsection 5.1.2 Alphabet Reduction
The results of [HR07] suggest that there are cases where translating nucleotide
characters into a smaller alphabet and performing phylogeny reconstruction on them

20



5.1. K-mer Frequency Vector Creation

M
A/C

TGM
A/C

A A G

A A G
A C G
C A G
C C G

A G T
C G T

G T A

T A A

A A G

��� : 1/4 + 1

��� : 1/4

��� : 1/2

��� : 1/2

��� : 1/4

��� : 1/2

��� : 1

��� : 1

Figure 5.2: k-mer frequency vector creation for sequences containing am-
biguity characters. For the given DNA sequence “MMGTAAG”, the
3-mer frequency vector is created. Ambiguous k-mers have less weight.

can yield similar or even better phylogenies on some data sets, even though the
smaller alphabet contains less information. A main advantage of this is that the
additional complexity added through ambiguous characters in the ancestral sequences
can be reduced and thereby runtime improvements can be achieved.

The DNA alphabet {A,C,G, T} is reduced to only two characters {0, 1} with A and
G corresponding to 0 and C and T becoming 1. This assignment is based on the
chemical similarity of these pairs [CPM18]. The complete substitution mapping is
shown in Table 5.1. The unique bases are marked grey. The rest consists of possible
subsets of them, represented as ambiguous characters. Ambiguous characters are
converted by majority rule, if the set contains more 0-characters it becomes 0 and
vice versa. In case of a tie, it turns into the ambiguous character 2 representing 0 or
1.

old
alphabet A C M G R S V T W Y H K D B *

nucletides A C A
C G G

A
G
C

G
A
C

T T
A

T
C

T
A
C

T
G

T
G
A

T
G
C

T
G
C
A

new
alphabet 0 1 2 0 0 2 0 1 2 1 1 2 0 1 2

Table 5.1: Alphabet reduction table. The DNA alphabet is reduced to {0, 1, 2}.
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5. K-mer Heuristic

Section 5.2 Distances
Now, with the techniques of Section 5.1, DNA sequences can be translated into k-mer
frequency vectors. To quantify the similarity of sequences, their vector representations
are evaluated with methods of linear algebra. Metrics are used to measure distances
between vectors. The goal is to find a metric in which the proximity of vectors
correlates with the similarity of the respective sequences.
PaPaRa assigns a high score to sequences with long, consecutive matches. Therefore,
sequences need to have close k-mer frequency vectors in the used metric. Once a
reliable approximation is found, the distance between k-mer frequency vectors can
be used as an efficient approximation for pre-filtering ancestors in order to minimize
costly PaPaRa calculations.

Distance metrics are a well studied field. The following four were chosen and tested
in the experiments, described in Chapter 8.
The first and most straight forward distance is the euclidean distance. The cosine
distance measures angles between vectors and is often used in text comparisons.
The Jensen-Shannon divergence uses information theory to compare probability
distributions. Finally the fingerprint distance was created as part of this thesis
to produce easily interpretable results. The following formulas are defined on the
vectors a and b of dimension n and a specific entry of index i is accessed via ai or bi
respectively.

Subsection 5.2.1 Euclidean Distance

The euclidean distance is a geometric approach calculating the distance between two
points in an n-dimensional space. Equation 5.1 shows how the euclidean distance is
computed. A weakness, according to [AHK01], is its behaviour on sparse vectors,
because the difference in distance between the farthest and nearest neighbour of a
vector tends to become minimal and therefore signal is lost.

eucl(a, b) =
√∑n

i=1(ai − bi)2 (5.1)

Subsection 5.2.2 Cosine Distance

The cosine distance (shown in Equation 5.2) determines 1 - the cosine of the angle
between two k-mer frequency vectors. This allows for an abstraction from the vector
magnitude, which exhibits advantages when comparing sequences of different length.
This is the case when short next-generation sequences are analyzed with respect to
around 20 times longer reference sequences. Additionally, it has favourable runtime
properties since zero entries are ignored. For positive input, it delivers results in
[0, 1]. The optimal value 0 is not only achieved in the trivial case of a = b, but also
in the case when the vectors point in the same direction (linearly dependent).

cos(a, b) = 1− a · b
||a||2||b||2

= 1−
∑n
i=1 ai · bi√∑n

i=1 a
2
i ·
√∑n

i=1 b
2
i

(5.2)
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5.2. Distances

Subsection 5.2.3 Jensen-Shannon Divergence
The Jensen-Shannon Divergence (JSD)[Lin91] is based on the Kullback-Leibler Diver-
gence (KLD)[KL51], which measures the similarity of two probability distributions.
Equation 5.3 elucidates the addition made to the KLD: the JSD is computed by
calculating the KLD of both vectors with respect to their mean vector m. This is
done to ensures symmetry, which means JS(a, b) = JS(b, a).
Through the KLD, the JSD is linked to information theory and its methods of
measuring the information contained in probability distributions. The frequency
vectors a and b are normalized, by adding all entries and then dividing them by their
sum. The results are the probability distributions p and q, which are now fit to be
analyzed via information theoretic methods.
The authors of [Sim+09] have already applied the Jensen-Shannon Divergence to the
reconstruction of phylogenies, which is a similar context as examined in this thesis.

JSD(p, q) = 1
2KLD(p,m) + 1

2KLD(q,m) (5.3)

with mean vector

m = p+ q

2

and Kullback-Leibler Divergence

KLD(p,m) =
∑n

i=1 pi log2( pi
mi

).

Subsection 5.2.4 Fingerprint Distance
As indicated above, the main purpose of any distance function is to implement an
efficient filtering of ancestral sequences for those that are likely to be similar to
a query sequence and, therefore, worth a thorough PaPaRa based alignment. As
a prerequisite for a perfect match, each k-mer of the query must show up in the
ancestral sequence as well.
Therefore, the fingerprint distance (FPD) only considers the k-mers of the query. It
checks if they occur in the ancestor at least as often as in the query. If this is the
case for every k-mer, the fingerprint distance function returns zero. If none of the
query k-mers occur in the reference, the function returns one. This would mean that
the ancestral sequence under investigation can not contain the query sequence.
The algorithm for the fingerprint distance FPD(q, a) between the frequency vector q
of the query and the frequency vector a of the ancestor is defined as:

FPD(q, a) =
∑
i fpd(qi, ai)∑

i qi

fpd(qi, ai) =


0 if qi = 0
qi − ai if qi >= ai

0 if ai > qi

(5.4)
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5. K-mer Heuristic

The value is normalized by the total amount of k-mers in the query. All entries of
the query’s k-mer frequency vector that have the value zero are ignored.

The fingerprint distance quantifies if the query perfectly matches the ancestor:

• Zero : Query sequence may perfectly match the current ancestor.

• Value between 1 and 0: Percentage of query k-mers which certainly do not
match to the ancestor.

• One: Query does not match to the current ancestor at all.

The FPD function can be compared to a criminological fingerprint investigation: If
you, for example, find a complete fingerprint on a weapon, you search for persons
with the same exact fingerprint. Maybe, however, the fingerprint on the weapon was
not complete, but only partial. Then you search for people, who match all notches
of the partial fingerprint. When not all notches match, the FPD is above 0. This
could be the effect of smudges. When none fit, the FPD is 1.

Visual interpretation. The fingerprint distance FPD(q, a) is the percentage of the
query k-mers that do not occur in the ancestor.

k-mers 

count

k-mers 
sorted by occurence
in the query

in the querycount

 query

ancestor

���(�,�) ≈ 33%

Figure 5.3: Visualization of the fingerprint distance between query and
ancestor. The k-mer frequency vectors of the query were rearranged
by frequency. The ancestral k-mer entries are compared to this.
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Chapter 6 K-mer Heuristic
Implementation

The previously described k-mer heuristic was integrated into to PaPaRa after the
ancestral sequence creation and prior to the time-consuming PaPaRa scoring, see
Figure 6.1. In there, preexisting PaPaRa elements are marked blue and the heuristic
extension introduced is marked in green.

The critical implementation details for the heuristic are as follows.
The controlling point for all methods related to k-mer frequencies is the class kmer_
frequencies. It uses the strategy pattern from [Wik19a] to manage the alternative
k-mer frequency creation methods - ambiguity quantification and alphabet reduction
- discussed in Section 5.1. The different variants are named strategies and have a
common signature defined via an interface, realized with an abstract class in C++.

class CreateFreqVecStrategyInterface
{

public:
virtual unordered_map<int, float> execute(const vector<

int> &seq, size_t k, size_t num) const = 0;
};

This signature shows that the strategies take a sequence and translate it into a k-mer
frequency vector.
The datatype for DNA sequences is vector<int>. Since the k-mer frequency vectors
were expected to be sparse, the implementation uses unordered_map<int, float>
from the standard library to represent them. It stores (key, value) pairs and supports
fast lookup through hashing mechanisms. This way, only non-zero vector entries are
stored. Also the vectors belonging to the ancestors are only computed once and are
managed by the kmer_frequencies object.
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6. K-mer Heuristic Implementation

backtracking

ancestors

gap vectors

scores
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k-mer
heuristic

ancestral sequence
creation
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parallelization
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Figure 6.1: Heuristic in context of the PaPaRa pipeline. First PaPaRa
creates the ancestral sequences and gap flag vectors with the help of a
curated reference alignment and the associated phylogeny. The k-mer
heuristic created in this thesis then filters out ancestors that are deemed
unlikely candidates for a high scoring PaPaRa alignment. For each
of the preselected ancestors, the original PaPaRa scoring procedure
is performed and the best ancestor is selected and used as a basis to
create the actual alignment.

Section 6.1 K-mer Frequency Vector Creation Ba-
sics

For the frequency vector creation, the k-mers inside a sequence need to be counted.
In this context, a mapping from k-mer to vector has been chosen which is easily
computable when indexing all possible k-mers in lexicographical order. The index of
k-mer s can be obtained by assigning the characters “A, C, G, T” a rank “0, 1, 2,
3” and then multiplying it with position dependent powers of 4 (see Equation 6.1).
For example, the index of 3-mer “GAT” is index(GAT ) = 2 · 42 + 0 · 41 + 3 · 40 =
32 + 0 + 3 = 35.
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6.2. Ambiguity Quantification

r(si) =


0 if character on position i is A
1 if si = C

2 if si = G

3 if si = T

index(s) =
k∑
i=1

r(sk−i) · 4k−i

(6.1)

Section 6.2 Ambiguity Quantification
The class AmbiguityQuantificationStrategy inherits from
CreateFreqVecStrategyInterface and implements the strategy for ambiguity quan-
tification (Section 5.1.1).

For the extraction of the unambiguous k-mers, a sequence is traversed several times.
First, each ambiguous character is translated into a set of ranks of the represented
characters. For example, the sequence “MMTGAAT” is translated into the set
sequence {0, 1}{0, 1}{3}{2}{0}{0}{3}.
The next iteration cuts out k sets in each step and processes them with another
iterative function. This function rearranges the k sets (each holding one to four
elements) into l sequences of k elements. Hereby, all possible sequential combinations
of the original sets are created. It is important that the order is preserved, because
otherwise the incorrect k-mers are created. In the example, {0, 1}{0, 1}{3} becomes
{003, 013, 103, 113}.
Now the rank representations can be translated into k-mer indices with Equation 6.1,
which are {3, 7, 19, 23} in the example. Once the index vector is created, each
computed position of the k-mer frequency vector is incremented by 1/l.

Each position of the sequence is processed k + 1 times on average. The worst
case sequence of length n would consist of only character B, which represents 4
nucleotides. In this case, 4k indices would be produced for each position, which
results in O((k + 1) · 4k · n) index computations.

Section 6.3 Distances
The various distance functions: euclidean distance, cosine distance, Jensen-Shannon
divergence, and fingerprint distance all have the same signature. They take two
k-mer frequency vectors and return a floating point value:

static float distance(const unordered_map<int, float> &freq_vec1
, unordered_map<int, float> &freq_vec2)

As a convention, they iterate only over the first frequency vector, which therefore has
to contain all the indices that shall be considered (see implementation of euclidean
distance below).
A trick of C++ is, hereby, that the []-operator will return the value of key i if it
exists and insert the pair (i,0) into the unordered_map, otherwise. This property is
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6. K-mer Heuristic Implementation

used in all distance implementations. If only the query k-mers are to be analyzed -
as, for instance, required for the fingerprint distance - it is sufficient to simply pass
the query vector as the first parameter.

static float euclidian(const unordered_map<int, float>& vec1,
unordered_map<int, float>& vec2){

float result = 0;
for (auto it = vec1.begin(); it != vec1.end(); it++)
{

float elem1 = (*it).second;
float elem2 = vec2[(*it).first];
float dist = elem1 - elem2;
result += dist * dist;

}

return result > 0.0 ? sqrt(result) : 0.0;
}

All distance functions, as well as vector normalization on unordered_map vectors,
are accumulated in the vector_utils class.

Section 6.4 Output for Data Analysis
The query-ancestor distances are stored inside the scoring_results class and can
be printed into files with the help of output_freq_vec. This functionality is only
required to analyze the created heuristic and can be omitted in the new PaPaRa
version.
In the created output file, the row indices correspond to the ancestral indices and
the pairwise distances of a query fill a column. The data output is kept as simple as
possible to allow for maximum flexibility with respect to downstream data analysis.

Section 6.5 Parallelization
The implementation supports data parallelism in the form of threading for ancestral
k-mer frequency vector creation of ancestors, as well as the distance computation. In
both cases, a thread-safe index_vector is used.
In the first task, the index vector assigns an ancestral sequence for translation to
each thread. In the second case, the threads are assigned a query for which the
thread creates pairwise distances to all ancestors.

Section 6.6 Unit Tests
To improve correctness, unit tests were created for all distances and methods related
to k-mer vector creation. For implementation, the unit test framework of the C++
library Boost [Roz] was used.
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Chapter 7 Evaluation

PaPaRa’s main computational effort is caused by having to calculate all pairwise
alignments. The approach of this thesis is to apply a heuristic to filter out unpromising
ancestral sequences and thereby reduce the number of alignment operations. In this
chapter, the performance of the heuristics is measured by analyzing their correlation
to the PaPaRa scores. More precisely, the applicability of k-mer-frequency vector
based heuristics is analyzed.

For the heuristic approach in this thesis, each sequence is translated into a vector
of dimension 4k which, for each possible fragment of length k (k-mer), records how
often it appeared in the sequence. Then, the similarity between the query and
ancestral sequence is assessed by calculating the distance between these vectors (see
Chapter 5.2). The lower it is, the more alike they are and the closer is the assumed
evolutionary relationship of the associated species.
In contrast, in the PaPaRa approach the score is higher, if the ancestor better
matches the query.

To answer the question how well a distance function approximates the PaPaRa score,
an approximation plot as in Figure 7.1 is used. It describes the alignment evaluations
of a single query to every ancestor, that is the similarity of the query to every ancestor
according to the distance function and the PaPaRa score.
Therefore, each of the points represents an ancestral sequence with the respective
PaPaRa score on the x-axis and the distance function on the y-axis. In the case of
the neotrop data set, the plot contains 1021 points.
The blue continuous line shown in the plot is the result of linear regression and gives
an indication of the relationship between both measures. A perfect linear correlation
exists if the trajectory leads downwards and all points are positioned on the line.
The correlation in Figure 7.1 is not optimal, but usually lower PaPaRa scores do
have a higher distance value as well. There are some outliers, indicating that the
respective ancestors are very close according to the distance function but attain only
a mediocre PaPaRa score.
The goal of the algorithm is to quickly find the best PaPaRa scoring ancestor pq for
a given query q, by only considering the ancestors with the shortest distances. The
best ancestor is represented by the rightmost point, marked with p7, for the plot of
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Figure 7.1: Euclidean approximation plot of query 007. The y-axis shows
the 7-mer euclidean distance and the x-axis the PaPaRa scores for
every ancestor towards query 007 for the neotrop datastet. The blue
continuous line is the result of a linear regression on the points. The
dashed line marks the points that need to be evaluated before the best
ancestor p7 is found. Here, the 7-mer euclidean distance is not optimal,
but captures the correct tendency.

query 007. Its distance is also marked via the blue horizontal dashed threshold. The
amount of points below that line indicates how many points need to be considered
to guarantee that pq is found.
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7.1. Formalization

Section 7.1 Formalization
The following notations are introduced to abbreviate frequently used terms:

q a query

pq the ancestor that achieves the best PaPaRa score for query
q

r radius

Ur(q) neighbourhood of query q
contains all ancestors with distances smaller than the radius
r to a query q with respect to a specific distance function

d(a, b) distance of two vectors a and b
with d ∈ {euclidean, cosine, Jensen-Shannon, fingerprint}

Ud(q,pq)(q) all ancestors with a lower distance d to q than pq

fd(q) := #Ud(q,pq)(q)
#ancestors percentage of ancestors closer to q than pq, according to the

distance function d

Section 7.2 Quality Measures
The analysis was performed with the help of the following three methods.

Subsection 7.2.1 Approximation Plot
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Figure 7.2: Comparison of the euclidean, cosine and fingerprint distance
approximation plots. Approximation of the PaPaRa score by 7-mer
distance functions on the neotrop data set for query 007.

The approximation plot can vary substantially with the used distance metric, see
Figure 7.2. The best ancestor p7 according to PaPaRa is also the closest ancestor
with the cosine and the fingerprint distance and is therefore found directly for them,

31



7. Evaluation

while the euclidean distance classifies about 8% of the ancestors as being closer.
But it can also be the other way around as shown in Figure 7.3, where the fingerprint
distance identifies p13 as the worst of all ancestors.

Caution is required, when comparing plots belonging to different queries. The mere
values do not contain any information by themselves. It is only relevant how they are
classified in comparison to the other points. This is a result of the queries’ irregularity
in length and nucleotide composition.
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Figure 7.3: Comparison of the euclidean, cosine and fingerprint distance
approximation plots. Approximation of the PaPaRa score by 7-mer
distance functions on the neotrop data set for query 013.
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7.2. Quality Measures

Subsection 7.2.2 Distance Quality

distance mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 6.8 0.1 61.12 7.17 14.79 23.31 26.15
Cosine 10.89 0.1 99.8 25.64 55.24 96.08 98.73
Jensen-Shannon 18.02 0.1 100.0 29.7 82.96 99.9 99.9
Fingerprint 21.18 0.1 100.0 31.68 87.56 99.9 100.0

Table 7.1: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the neotrop
data set.

Table 7.1 describes distribution properties of fd(q) = #Ud(q,pq)(q)
#ancestors , the percentage of

ancestors closer to the query q than the highest PaPaRa scoring ancestor pq, or
visually the percentage of points below the dotted line in approximation plots (e.g.
Figure 7.1). The descriptive properties are:

mean arithmetic average of fd(q) among all queries q

min minimum value

max maximum value

stddev standard deviation

90% (95%, 98%) required percentage of ancestors to pass screening, such that for
90% (95%, 98%) of all queries q, the respective pq is contained

Each row of these tables is visualized via a histogram in the following section.
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7. Evaluation

Subsection 7.2.3 Distance Efficiency Histogram

0 20 40 60 80 100
ancestors closer than corresponding pq [%]

0

20

40

60

80

100

120

140

nu
m

be
r o

f q
ue

rie
s

0

100

200

300

400

500

600

cu
m

ul
at

iv
e

90
%

95
%

98
%

Figure 7.4: Efficiency of euclidean 7-mer distance.
data set: neotrop

To assess the quality of a specific heuristic setting, a histogram plot, as in Figure 7.4
is helpful.
This plot assigns all queries into 100 bins of width 1%, based on the percentage of
ancestors that lie below the pq-threshold. In the example, for around 140 queries, the
euclidean 7-mer distance categorizes 2− 3% of the ancestors as a too close match.
Then, these bars are added up to create a cumulative histogram, shown as a red line.
Now, if PaPaRa is given a percentage (x-axis) of closest ancestors to analyze, then
the corresponding cumulative y-value will state how often pq can be found.
The 90% (95%, 98%) thresholds in Table 7.1 are visualized as vertical lines. So, in
the example, the heuristic works in 90% of all cases if 15% of ancestors are more
closely examined. This means that 85% of PaPaRa alignment runtime can be saved.
Subsequently, the influence of k, the distance function and the data set is evaluated.
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7.3. Parameters

Section 7.3 Parameters
The following properties were varied among the experiments:

data set ∈ {tara, bv, neotrop}

k ∈ {3, 4, 5, 6, 7, 8, 9, 10}
Denotes the k-mer length. The size of the k-mer vectors increases
exponentially with rising k.

distance ∈ {euclidean, cosine, Jensen-Shannon, fingerprint}
Chooses one of the described distance functions.

remove gaps ∈ {yes, no}
When the removal setting is chosen, the ancestor characters that
are on positions with set gap flag are removed. This leads to
shorter sequences and inhomogeneous lengths.

reduced alphabet ∈ {yes, no}
Enables the alphabet reduction strategy.

only query k-mers ∈ {yes, no}
If selected, the ancestor frequency vectors are filtered to contain
only entries of k-mers that exist in the query.

The test code was encapsulated in a separate header file, which can be imported and
activated through a single line of code inside PaPaRa. This header file determines
the settings and can perform numerous test runs inducing minimal overhead.

Subsection 7.3.1 Data Sets

The experiments were conducted on three separate data sets:

• neotrop, Neotropical data set [Mah+17]:
The Neotropical data set was collected from soil samples in neotropical rain-
forests in Costa Rica, Panama and Ecuador. Samples from tropical environ-
ments usually have few known references due to the hyperdiversity at the
macro- as well as microbiological level.

References: 512
Reference Length: 4686 characters
Queries: 100.000

• tara, Tara Oceans data set [Sun+15]:
The “Tara Oceans” expedition has collected immense amounts of metagenomic
data from 68 locations representing all main oceanic regions. Analyzing this
data has led to a large microbial reference catalog, mostly containing novel
sequences.

References: 3748
Reference Length: 3374 characters
Queries: 10.000
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7. Evaluation

• BV, Bacterial Vaginosis data set [Sri+12]:
For the Bacterial Vaginosis data set, 220 women’s vaginal fluid was examined.
About half of the women were diagnosed with bacterial vaginosis, using four
clinical criteria. Classifying bacterial communities helps to associate certain
bacteria with each of the disease’s diagnostic criteria.

References: 797
Reference Length: 2763 characters
Queries: 15.060

Section 7.4 Technology
The algorithm performance on the three data sets was evaluated under two different
technical settings.

Subsection 7.4.1 Evaluation Software
The evaluation was conducted via Python on a Jupyter Notebook [Klu+16]. Data
management and manipulation was done with the Python library Pandas [McK10]
and visualization was performed through the Seaborn library [Was+18], which is
based on Matplotlib [Hun07].

Subsection 7.4.2 Hardware
The experiments were run under two different settings as shown in Table 7.2.

Standard Use Laptop Multi-Core Server
Operating system Ubuntu (18.04.2) CentOS Linux (7)
Main memory 16 GB 754 GB
Processor Intel i7-8750H Intel Xeon Gold 6148
Architecture Coffee Lake Skylake (server)
Sockets 1 2
Physical Cores 6 40
Virtual Cores 12 80
Vector Intrinsics sse, sse2, ssse3, sse4_1,

sse4_2, avx, avx2
sse, sse2, ssse3, sse4_1,
sse4_2, avx, avx2,
avx512f, avx512dq,
avx512cd, avx512bw,
avx512vl

Table 7.2: Specifications of the used setups.
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Chapter 8 Results

With the methodology described in Chapter 7, the quality of the heuristics is assessed
separately on the three data sets. The differences in the data sets might lead to
varying performance.

Section 8.1 Neotropical Data Set

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 46.4 0.1 96.96 21.55 65.52 70.23 76.79
Cosine 22.48 0.1 94.32 23.28 68.66 75.12 82.76
Jensen-Shannon 20.92 0.1 98.73 24.79 68.17 75.22 86.78
Fingerprint 18.52 0.1 98.43 26.47 72.18 78.06 88.44

Table 8.1: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the neotrop
data set.

The first experiments conducted yielded similar results for all distance functions (see
Table 8.1).
These heuristics are generally not promising since in all cases only around 30% of the
ancestors can be filtered out and, therefore, around 70% of all ancestors still need
to be examined with PaPaRa (see 90%, 95% and 98% thresholds). Comparing the
percentage thresholds of the euclidean distance and the Jensen-Shannon distance
(65% < 68%, 70% < 75%), the euclidean distance seems preferable (see 90% and
95%), but the histograms suggest otherwise. The Jensen-Shannon histogram in
Figure 8.2 is closer to an ideal histogram, which has only one peak at 0%, while the
euclidean distance histogram in Figure 8.1 does not indicate a correlation.
Interestingly, for every distance there is at least one query where almost all ancestors
are estimated to be better than the actual highest PaPaRa scoring ancestor pq (see
max).
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Figure 8.1: Efficiency of euclidean 7-mer distance.
data set: neotrop
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Figure 8.2: Efficiency of Jensen-Shannon 7-mer distance.
data set: neotrop
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8.1. Neotropical Data Set

Subsection 8.1.1 Gap Vector Incorporation
PaPaRa prepares gap flag vectors to determine sites, where a gap is more probable
than no gap. During the alignment process, gap insertions into these positions are
favored, rather than characters. To account for this feature, the positions where a
gap is probable are removed from the ancestral sequences before creating the k-mer
vector. Table 8.2 shows that this setting leads to a better approximation of PaPaRa
scores for all heuristics. The best performance is reached with the cosine distance, as
shown in Figure 8.3.

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 17.69 0.2 52.69 11.45 28.4 39.57 46.23
Cosine 6.01 0.1 99.71 11.12 12.93 17.04 32.81
Jensen-Shannon 8.37 0.1 99.9 14.54 25.95 33.89 52.6
Fingerprint 16.07 0.1 100.0 25.55 66.41 72.38 86.19

Table 8.2: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the neotrop
data set. Gaps were removed from ancestors.
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Figure 8.3: Efficiency of cosine 7-mer distance.
data set: neotrop
gaps removed from ancestors
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8. Results

Subsection 8.1.2 Query Reduction

The neotrop data set contains a high amount of unknown species [Mah+17] that
can not be analyzed with high confidence. Hence, the queries are filtered to only
contain confident queries for which the subsequent phylogenetic placement with
EPA-ng [Bar+18] reaches “good” results (meaning they have a likelihood weight
ratio [MKA10] of at least 0.95). Table 8.3 shows that the euclidean distance performs
significantly better on these filtered queries, while all other metrics yield inferior
results.

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 6.8 0.1 61.12 7.17 14.79 23.31 26.15
Cosine 10.89 0.1 99.8 25.64 55.24 96.08 98.73
Jensen-Shannon 12.03 0.1 99.9 26.43 58.57 98.33 99.51
Fingerprint 21.18 0.1 100.0 31.68 87.56 99.9 100.0

Table 8.3: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the neotrop
data set. Gaps were removed from ancestors. Filtered to contain 573
confident queries.
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Figure 8.4: Efficiency of euclidean 7-mer distance.
data set: neotrop
gaps removed from ancestors
573 confident queries

When investigating the reason, the cosine histogram (Figure 8.5) shows that the
cosine still performs well in most cases, but there are also 5% of queries on the right
side of the plot, which distort the thresholds.
One of those queries (query 008) is shown in the approximation plot in Figure 8.6.
Here, p8 is an outlier for the cosine and fingerprint distance. The fingerprint distance
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8.1. Neotropical Data Set

of around 0.86 means that 86% of the query k-mers are not found in the sequence
belonging to p8. This could, for example, mean that gaps are alternating with
characters in the aligned query sequence, such that most original k-mers in the query
sequence are not present in the aligned query anymore. It remains to be determined,
how often this occurs in other data sets.
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Figure 8.5: Efficiency of cosine 7-mer distance.
data set: neotrop
gaps removed from ancestors
573 confident queries
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Figure 8.6: Comparison of the euclidean, cosine and fingerprint distance
approximation plots. Approximation of the PaPaRa score by 7-mer
distance functions on the neotrop data set for query 008.
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Section 8.2 Tara Data Set
All heuristics deliver good results on the tara data set, see Table 8.4. If a failure
rate of 10% is acceptable, all heuristics rule out at least 88% of the ancestors (see
90%). For a more accurate result (98% success rate) the euclidean distance performs
significantly better than the other heuristics. An example query distribution is shown
in Figure 8.7.

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 4.1 0.01 99.63 7.24 11.25 16.07 26.25
Cosine 2.79 0.01 99.01 11.21 4.84 13.24 41.23
Jensen-Shannon 4.02 0.01 98.93 13.84 7.71 20.89 64.58
Fingerprint 5.17 0.01 99.39 15.92 10.86 36.15 75.79

Table 8.4: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the tara
data set. Gaps were removed from the ancestors.
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Figure 8.7: Comparison of the euclidean, cosine and fingerprint distance
approximation plots. Approximation of the PaPaRa score by 7-mer
distance functions on the tara data set for query 012.

The cosine distance classifies 95% of the queries with high success rate, but performs
considerably worse for the highest threshold. In Figure 8.8, the greater effect of the
worst performing queries is visible since the 98% success rate threshold moves the
according distance to the right.
In contrast, the euclidean distance has a higher mean value, but if a more accurate
classification is desired, it is superior to the cosine distance (the 98% threshold is
further left in Figure 8.9).

This leads to the following trade-off: if faster computation is preferred over higher
success rate, then the cosine distance should be chosen. Otherwise the euclidean
distance is preferable.
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Figure 8.8: Efficiency of cosine 7-mer distance.
data set: tara
gaps removed from ancestors
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Figure 8.9: Efficiency of euclidean 7-mer distance.
data set: tara
gaps removed from ancestors
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Subsection 8.2.1 Selection of k
Since the heuristics delivered more consistent results on the tara data set, it was also
chosen for further tests on k-mer size.

With increasing k, the euclidean (Table 8.5) and the cosine distance (Table 8.6)
improve regarding all properties, until a k-mer length of 8. From k-mer length 7
onwards, both yield diminishing returns. (As a reminder: the amount of possible
k-mers is 4k, therefore the vector size increases exponentially.)
In the case of the Jensen-Shannon divergence (Table 8.7), this effect already sets in
at k := 6. Even a deterioration can be observed for k ≥ 8.
The optimal k value for the fingerprint distance (Table 8.8) is 5 or 6, depending on
the level of desired accuracy.

k-mer mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
3-mer 73.01 0.05 99.71 27.85 98.39 98.65 99.05
4-mer 58.44 0.07 99.76 31.87 97.96 98.51 99.03
5-mer 29.64 0.04 99.8 32.9 87.67 96.06 98.93
6-mer 7.53 0.01 99.79 14.15 18.23 35.07 58.25
7-mer 4.10 0.01 99.63 7.24 11.25 16.07 26.25
8-mer 3.61 0.01 53.41 5.04 9.70 14.13 18.50
9-mer 3.71 0.01 40.70 5.03 9.53 15.08 19.75

Table 8.5: Efficiency properties for the euclidean function. Distributions of
fd(q) among all queries with euclidean distance and varying k on the
tara data set.

k-mer mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
3-mer 25.41 0.01 99.48 28.82 77.49 87.09 93.90
4-mer 57.27 0.07 99.87 35.12 98.83 99.33 99.57
5-mer 6.11 0.01 98.43 15.21 16.87 38.90 69.61
6-mer 3.24 0.01 99.44 11.59 6.47 15.64 46.04
7-mer 2.79 0.01 99.01 11.21 4.84 13.24 41.23
8-mer 2.96 0.01 99.51 11.83 4.42 13.35 52.60
9-mer 3.25 0.01 99.79 12.74 5.38 14.84 56.79

Table 8.6: Efficiency properties for the cosine function. Distributions of fd(q)
among all queries with cosine distance and varying k on the tara data
set.
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8.2. Tara Data Set

k-mer mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
3-mer 24.13 0.01 99.20 27.72 73.11 86.19 93.41
4-mer 14.86 0.01 98.91 22.68 50.11 74.50 86.05
5-mer 6.17 0.01 98.68 14.83 18.28 39.22 64.27
6-mer 4.24 0.01 99.43 13.85 7.55 26.66 68.88
7-mer 4.02 0.01 98.93 13.84 7.71 20.89 64.58
8-mer 4.44 0.01 99.01 14.85 7.65 25.10 70.80
9-mer 4.88 0.01 99.76 15.91 8.82 38.01 75.98

Table 8.7: Efficiency properties for the Jensen-Shannon function. Distri-
butions of fd(q) among all queries with Jensen-Shannon divergence and
varying k on the tara data set.

k-mer mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
3-mer 98.62 18.36 100.00 6.76 99.84 99.92 99.96
4-mer 22.15 0.05 95.18 20.00 51.05 64.37 76.30
5-mer 4.16 0.01 92.91 11.63 10.76 24.62 44.72
6-mer 4.17 0.01 99.48 13.82 7.71 25.58 68.46
7-mer 5.17 0.01 99.39 15.92 10.86 36.15 75.79
8-mer 5.87 0.01 99.87 17.49 15.43 43.13 81.18
9-mer 6.21 0.01 99.77 18.29 16.50 53.53 82.69

Table 8.8: Efficiency properties for the fingerprint function. Distributions
of fd(q) among all queries with fingerprint distance and varying k on the
tara data set.
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8. Results

Subsection 8.2.2 Alphabet Reduction
The idea from Section 5.1.2 turns out to be a dead end, since the performance of all
heuristics decrease on sequences comprising a reduced alphabet for each data set.
Only the results for the tara data set (see Table 8.9) are discussed in the following.
The results for the other data sets are comparably bad.

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 14.55 0.03 95.45 19.84 54.98 60.88 67.13
Cosine 45.11 0.01 99.92 38.57 98.31 99.27 99.6
Jensen-Shannon 80.21 0.09 99.97 28.92 99.29 99.52 99.72
Fingerprint 97.1 44.07 99.99 6.32 99.75 99.85 99.93

Table 8.9: Efficiency properties per distance function. Distributions of fd(q)
among all queries in the different 7-mer distance functions on the tara
data set. Gaps were removed from the ancestors. The reduced alphabet
was used.

The overall worse results with the reduced alphabet can be seen for the otherwise
well performing euclidean (Figure 8.10) and cosine distance (Figure 8.11).
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8. Results

Section 8.3 Bacterial Vaginosis Data Set
For the Bacterial Vaginosis data set, Table 8.10 shows remarkable performance by all
heuristics except for the euclidean distance, even though the euclidean approximation
shows analogous performance on other data sets. The histograms do not convey
more information than Table 8.10, but are included in the appendix for the sake of
completeness.

If the cosine distance is the heuristic of choice, then analyzing only 2% of the ancestors
with PaPaRa suffices to find the optimal alignment for 98% of all queries. Even
the worst query requires considering only 3.58% of the ancestors to find the optimal
alignment.

Distances mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
Euclidean 6.84 0.06 28.79 7.09 18.86 22.44 23.19
Cosine 0.87 0.06 3.58 0.43 1.19 1.19 1.26
Jensen-Shannon 0.6 0.06 3.52 0.44 1.13 1.19 1.51
Fingerprint 1.02 0.06 3.27 0.46 1.45 1.45 1.45

Table 8.10: Efficiency properties per distance function. Distributions of
fd(q) among all queries in the different 7-mer distance functions on the
bv data set. Gaps were removed from the ancestors.

The fingerprint distance in Figure 8.12 shows that the distribution of query k-mers
found in the ancestors, varies substantially for different ancestors. For low PaPaRa
scores almost no query k-mer is found in the ancestor (left points are near 0.9
fingerprint distance) and high PaPaRa scoring ancestors contain almost all query
k-mers (fingerprint distance is close to 0). In comparison, the fingerprint distance
results in a much more narrow span of the ancestor distribution when applied to the
neotrop data set (see Figure 8.6).

Interestingly, when varying the value for k for the cosine distance on this data set,
near-optimal values are already achieved with k := 3 (see Table 8.11) as opposed to
the tara data set. This is probably a result of the BV data set’s properties.

k-mer mean[%] min[%] max[%] stddev[%] 90%[%] 95%[%] 98%[%]
2-mer 6.34 0.13 59.27 5.49 10.94 14.52 22.69
3-mer 2.20 0.06 26.46 2.38 3.21 4.71 7.98
4-mer 1.21 0.06 6.60 0.82 2.07 2.39 3.02
5-mer 0.99 0.06 3.52 0.52 1.38 1.51 1.63
6-mer 0.95 0.06 3.71 0.49 1.38 1.38 1.51
7-mer 0.87 0.06 3.58 0.43 1.19 1.19 1.26
8-mer 0.85 0.06 3.65 0.42 1.19 1.19 1.32

Table 8.11: Efficiency properties for the cosine function. Distributions of
fd(q) among all queries with cosine distance and varying k on the BV
data set.
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8.3. Bacterial Vaginosis Data Set
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8. Results

Section 8.4 Summary
There are several takeaways from analyzing the heuristics on the different data sets:

• The best performing heuristic among the three data sets is the cosine distance,
as observed in Table 8.2, Table 8.4 and Table 8.10.

• There is no “perfect” heuristic. One has to decide on how many queries are
allowed to produce worse results than an unfiltered PaPaRa would have. Small
adjustments to the threshold can result in large gains in computation time. This
effect can be seen most prominently in the cosine distance (see, for example,
Figure 8.3).

• The Jensen-Shannon divergence requires approximately twice as many compu-
tations as the other metrics. This additional cost is not justified by the results,
as can, for example, be seen in Table 8.10.

• The intuitive idea to consider only mutual k-mers between the query and
the ancestor and disregard the ancestor’s excess k-mers, turns out to worsen
the result for the neotrop and tara data sets. The fingerprint distance, which
utilizes this concept, is mostly inferior to the euclidean distance (see for example
Table 8.4).

• The most impactful parameter is removing characters from the ancestors that
are marked by the gap flag vector. Comparing, for example, Table 8.1 and
Table 8.2 leads to this conclusion. This is due to the fact that the heuristic
tries to specifically imitate PaPaRa’s behaviour.

• In the case of the mostly superior cosine and euclidean heuristics, generally
longer k-mers lead to better results. Since increasing k can lead to an expo-
nential increase in computation time and yields diminishing returns, a value
greater than 8 is not recommended.

• Reducing the alphabet, albeit useful in other applications, consistently leads to
worse results in approximating PaPaRa.

• For the BV data set, it is conjectured that considering mutual k-mer matches
between query and ancestor suffices to assess similarity. Unlike the other data
sets, where there are fewer mutual k-mers (as can be seen by the fingerprint
distance’s behaviour), the distinct ancestor k-mers are of little consequence
for PaPaRa. Having fewer and more distinct ancestors as in the BV data set,
might explain the difference in behaviour among the data sets.

• To achieve a success rate of 95%, the following settings prove to work reliably
among all three data sets:

– metric: cosine

– k-mer length: 3

– remove gaps

– rule out the 80% most distant ancestors
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Chapter 9 Conclusion and Future
Work

In this thesis, an improvement for the alignment tool PaPaRa was developed and
analyzed. The discussed heuristics attempt to approximate PaPaRa’s evaluation,
in order to reduce costly PaPaRa alignment calculations. Since the results vary
substantially among data sets, a reliable prediction on the heuristics performance for
other data sets cannot be made. Specific properties of the data sets could be the
reason for those varying results. Formalizing these properties and finding correlations
between the nature of the data and PaPaRa’s behaviour open up a line of further
investigations. This could also be done on simulated data, where the properties are
controllable. The recommended settings in this thesis could be used as a starting
point.

The benchmark for the quality of the heuristics was PaPaRa. It remains to be
investigated, if failing to find the highest PaPaRa scoring ancestor necessarily leads
to a worse phylogenetic placement.

As with all k-mer based approaches, the algorithm does not take into account potential
mutations which may have happened during evolution. This could be a weakness,
that can not be improved through different distance measures. PaPaRa, however,
takes this into account with the help of a costly calculation. In other words, there is
a certain chance of ancestors receiving a good rating by PaPaRa, which is missed by
k-mer based screening methods.

Furthermore, the fingerprint distance FPD value may be used to determine a promis-
ing value of k for the k-mer based approaches, and to estimate the mutation rate
a query DNA sequence may have undergone. It may be useful to analyze other
alignment-free methods that are not based on k-mer representations.

Certainly, the implementation has room for optimization. For example the resolution
of the ambiguous k-mers sometimes produces densely filled vectors, so using the C++
unordered map as a sparse vector representation may yield sub-optimal runtimes.
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Figure .1: Efficiency of euclidean 7-mer distance.
data set: bv
gaps removed from ancestors
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Figure .2: Efficiency of cosine 7-mer distance.
data set: bv
gaps removed from ancestors
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