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Abstract

Phylogenetic trees represent hypothetical evolutionary relationships between organisms. Ap-
proaches for inferring phylogenetic trees include the Maximum Likelihood (ML) method. This
method relies on numerical optimization routines that use internal numerical thresholds. We
analyze the in�uence of these thresholds on the likelihood scores and runtimes of tree infer-
ences for the ML inference tools RAxML-NG, IQ-Tree, and FastTree. We analyze 22 empirical
datasets and show that we can speed up the tree inference in RAxML-NG and IQ-Tree by
changing the default values of two such numerical thresholds. Using 15 additional simulated
datasets, we show that these changes do not a�ect the accuracy of the inferred phylogenetic
trees. For RAxML-NG, increasing the likelihood thresholds lh_epsilon and spr_lh_epsilon to
10 and 103 respectively results in an average speedup of 1.9 ± 0.6. Increasing the likelihood
threshold lh_epsilon in IQ-Tree results in an average speedup of 1.3 ± 0.4. In addition to the
numerical analysis, we attempt to predict the di�culty of datasets, with the aim of preventing
an unnecessarily large number of tree inferences for datasets that are easy to analyze. We
present our prediction experiments and discuss why this task proved to be more challenging
than anticipated.
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Zusammenfassung

Phylogenetische Bäume repräsentieren hypothetische evolutionäre Beziehungen zwischen
Organismen. Ein Ansatz zur Berechnung phylogenetischer Bäume ist die Maximum Likelihood
(ML) Methode. Implementierungen zur Baumsuche anhand der MLMethode nutzen numerische
Optimierungsverfahren, die interne numerische Schwellenwerte benutzen. In dieser Arbeit
untersuchen wir den Ein�uss dieser numerischen Schwellenwerte auf die Güte und Laufzeit
von Baumsuchen dreier ML Programme RAxML-NG, IQ-Tree und FastTree. Wir analysieren 22
empirische Datensätze und zeigen, dass wir die Baumsuche von RAxML-NG und IQ-Tree durch
Verändern zweier numerischer Schwellenwerte beschleunigen können. Unter Verwendung von
15 zusätzlichen, simulierten Datensätzen zeigen wir, dass diese Änderungen keinen Ein�uss auf
die Genauigkeit der berechneten phylogenetischen Bäume haben. Für RAxML-NG empfehlen
wir, den Schwellenwert lh_epsilon auf 10 zu erhöhen und den Schwellenwert spr_lh_epsilon auf
103. Unter diesen Änderungen beobachten wir eine durchschnittliche Laufzeitbeschleunigung
von 1.9 ± 0.6 auf den empirischen Datensätzen. Für IQ-Tree empfehlen wir, den Schwellenwert
lh_epsilon ebenfalls auf 10 zu erhöhen. Auf den empirischen Datensätzen beobachten wir durch
diese Änderung eine durchschnittliche Beschleunigung von 1.3 ± 0.4. Zusätzlich zu dieser
numerischen Analyse, versuchen wir vorherzusagen, ob ein Datensatz schwer oder einfach zu
analysieren ist. Das Ziel dabei ist es, für einfache Datensätze eine unnötig hohe Anzahl von
Baumsuchen zu vermeiden. In der vorliegenden Arbeit präsentieren wir unsere Experimente zur
Vorhersage der Schwierigkeit und diskutieren, warum sich diese Aufgabe als herausfordernder
erwies als erwartet.
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1. Introduction

Over the last two decades, the amount of available biological sequence data was increasing
exponentially [23]. Novel sequencing techniques allow for faster and cheaper sequencing of
long DNA strands and entire genomes [46]. The cost for sequencing a human genome has
decreased at a higher pace, than the cost of compute power according to Moore’s Law [7]
(Figure 1.1).

Figure 1.1.: Costs to sequence a human genome and costs for processing power according to
Moore’s Law (log scale). Figure obtained from The Cost of Sequencing a Human
Genome [34].

This growing gap between compute power and available biological sequence data calls for
fast and systematic analyses of these data. One use case of biological sequence data is the
inference of phylogenetic trees. These trees represent hypothetical evolutionary relationships
between a group of organisms or species. The number of possible phylogenetic trees grows
exponentially with the number of organisms. In September 2021, the catalog of life, a list of
currently known species, contained approximately 2.3 million living species [2]. Even for 51
organisms, the number of possible phylogenetic trees already exceeds the estimated number of
atoms in the universe [43]. In this thesis, we focus on one particular phylogenetic inference
method, the Maximum Likelihood (ML) model. As �nding the best ML tree is NP-hard [10],
we have to rely on search heuristics when inferring phylogenetic trees. Inferring trees under
the ML model is time-consuming, with large datasets requiring several days of CPU time
[39]. This is problematic, not only due to the limits of available compute power. With climate
change being one of the biggest challenge of our time [73], we, as computer scientists and
researchers, have the responsibility to limit the amount of computational resources required to
solve a problem to a reasonable amount. In phylogenetics, this means that we should attempt

2



1. Introduction

to decrease the amount of computing time necessary to infer equally likely trees, and also
not run unnecessary tree inferences. In this thesis, we address both problems. In Part II we
investigate whether the internal numerical thresholds of the tree search heuristics in�uence
the runtime and ML scores. We show that by changing the default settings for two numerical
thresholds, we can improve the runtimes, while yielding equally likely trees for two widely
used ML inference tools. Additionally, in Part III we attempt to predict how di�cult a dataset
is to analyze. For easy-to-analyze datasets, we need to conduct fewer tree searches than for
datasets that are di�cult to analyze. Predicting this correctly could prevent the execution of
unnecessary tree inferences. By the time of �nishing this thesis, this task remains unsolved, as
it proved to be more challenging than anticipated.
We start this thesis by explaining the fundamentals of phylogenetic trees (Chapter 2) and

tree inference under the ML model (Chapter 3). In Chapter 4, we motivate the analysis of the
numerical thresholds, and proceed to explain our analysis work�ow in Chapter 5. In Chapter
6, we present the result of our numerical analysis, and show that we can speed up the tree
inferences for two ML inference tools by changing two default numerical threshold settings.
We further compare three ML inference tools according to ML scores and runtimes (Chapter 7).
In Chapters 8 to 11, we demonstrate our e�orts to predict how di�cult a dataset is to analyze,
provide an explanation on why this task is challenging, and suggest further experiments.
Finally, in Chapter 12 we summarize the �ndings of this thesis, and in Chapter 13 we discuss
possible future work.

3



2. Phylogenetic Inference

A phylogenetic tree represents hypothetical evolutionary relationships for a group of organisms
[13]. The leafs of a phylogenetic tree are extant organisms called taxa. The inner nodes represent
extinct hypothetical common ancestors. Phylogenetic trees have many important applications
in biology and medicine, for example in drug development research [27], forensics [47], or the
analysis of SARS-CoV-2 genomes [49]. Figure 2.1 shows an exemplary phylogenetic tree of
animals.

Reptiles

Fishes

Amphibians

Avians

Rodents

Monkeys

Primates

Figure 2.1.: Phylogenetic tree of animals. Based on Fig. 9 in Encyclopedia of Bioinformatics and
Computational Biology: ABC of Bioinformatics [55].

When inferring phylogenies, we reconstruct unrooted, strictly binary trees [63]. Rooted
phylogenetic trees contain a common ancestor for all taxa. In contrast, unrooted trees merely
show the relationships among the taxa without identifying the common ancestor [13]. A
binary tree represents an evolutionary branching process, where a lineage always splits into
two sublineages. We can represent multifurcations (splits into more than two sublineages)
by connecting multiple bifurcating branches via a branch of length zero or close-to-zero [12].
The branch lengths of the tree typically indicate a relative evolutionary distance between two
nodes.

In the past, researchers used to build phylogenetic trees based on morphological traits [42].
During the last decades, researchers developed a variety of computer-based phylogenetic
inference methods [64]. These methods rely on biological sequence data of the organisms,
usually Deoxyribonucleic Acid (DNA) or Amino Acid (AA) data. Using sequence data instead
of morphological data, we can infer phylogenies with higher statistical con�dence [42]. In this
thesis, we focus on aspects of phylogenetic tree inference under the maximum likelihood (ML)
model. We explain the ML model in the following chapter.

4



3. Maximum Likelihood Tree Inference

The starting point for inferring a phylogenetic tree is a set of homologous sequences from the
organisms under study. Sequences are homologous if they share a common ancestor. Researches
have developed di�erent methods to reconstruct trees given homologous sequences [76]. Many
of these methods operate on a data structure called Multiple Sequence Alignment (MSA). In
an MSA, regions with a hypothetical common evolutionary history are aligned to each other
(more on MSA in the next section) [43]. Methods using the MSA as input can be categorized
into two classes: distance-based methods, such as the neighbor-joining algorithm [57], and
character-based methods, such as maximum parsimony [15, 18] and maximum likelihood (ML)
[17]. Distance-based approaches build trees based on the assumption that the fewer changes
there are between two sequences, the closer related the respective organisms are. This, however,
does not account for multiple substitutions along the same branch (⌧ ! � ! ) )[76].

Instead of trying to minimize the number of mutations, the ML method tries to �nd the most
likely tree among all possible trees given an explicit statistical model of sequence evolution.
This is the tree that best explains the given data. Note that the likelihood of a tree is not the
probability of this tree being the correct one. The likelihood is the probability of observing the
data J given the parameter vector ) :

!() |J) = % (J |) ) (3.1)

In case of phylogenetic tree inference, the parameter vector ) = () ,1,",q) comprises the tree
topology) , the set of branch lengths1 and the substitution model" with internal parameters q .

3.1. Multiple Sequence Alignment

To obtain the Multiple Sequence Alignment (MSA) from a set of homologous sequences, the
sequences are �lled with gaps, such that the regions that likely share a common evolutionary
history are aligned to each other [43]. A simple heuristic for computing the MSA is to minimize
the distance between aligned sequence sites. The resulting MSA data J can be represented as
a matrix

J =

26666664

B11 B12 · · · B1"
B21 B22 · · · B2"
· · · · · · · · · · · ·

B#1 B#2 · · · B#"

37777775
(3.2)

where B:8 denotes the 8-th character of the :-th aligned sequence. In the following, we will refer
to the 8-th column as 8-th site B8 .
The properties of the MSA impact the dataset analysis [66]. The higher the proportion of

gaps in the alignment, the more di�cult it is to analyze. Despite their higher proportion of
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3. Maximum Likelihood Tree Inference

gaps, multi-gene MSAs with few taxa are, easier to analyze than MSAs with many taxa and few
genes. Alignments with a larger number of sites are in general easier to analyze. The higher
the so-called phylogenetic signal of the data, the more accurate the inferred phylogenetic tree.
This phylogenetic signal is a measurement of how informative the data is about the underlying
evolutionary process [43].
Based on an MSA, we can attempt to infer a phylogenetic tree, using, for example, the

maximum parsimony approach [15, 18]. But, to infer a ML tree, we need to model sequence
evolution. This is done via a so-called substitution model.

3.2. Substitution Models

The substitution model describes the change of sequences over evolutionary time. It consists
of the equilibrium frequencies Æ⇧ and the substitution rates ' [76].

The equilibrium frequencies describe the prior probability of occurrence for each character
in the sequence data. For example, for DNA data, this vector contains four frequencies:
Æ⇧ = (c�, c⇠, c⌧ , c) ) where c� denotes the probability of a nucleotide being the character �.
Molecular sequence evolution is modeled as a continuous time Markov Chain, where state

transitions represent character substitutions and where the current state depends only on the
previous state. Substitution rates are represented as a matrix '.

In phylogenetics, we assume time reversibility. This means that the probability of starting in
state 8 and mutating into state 9 over time C is the same as starting in state 9 and mutating into
state 8 over time C :

88, 9 2 {�,⇠,⌧,) } : c8%8! 9 (C) = c9%9!8 (C) (3.3)

Various models exist for describing the equilibrium frequencies Æ⇧ and the substitution rates
'. These models di�er in the number of free parameters. The most �exible and general model
for DNA data is the General Time Reversible (GTR) model [72]:

88, 9 2 {�,⇠,) ,⌧} : c8 < c9 ' =
©≠≠≠
´
U
V W
X n Z

™ÆÆÆ
¨

(3.4)

The GTR model has 10 free parameters. If we set the equilibrium frequencies in Æ⇧ and the
rates in R relative to each other, we can reduce the degrees of freedom to 8. All other models,
for example the Jukes-Cantor (JC) model [35] with only a single free parameter, are a subset of
the GTR model. In our analyses, we therefore only use the GTR model.
As di�erent regions of the DNA encode di�erent structures or functions, they underlie

di�erent evolutionary pressures [75]. This leads to di�erences in the mutation rates among
sites. This phenomenon is called rate heterogeneity. To accommodate this, we multiply the rate
matrix ' for site B8 with a factor A8 . We model the factors for the di�erent sites, by assuming
that they are � distributed. The shape of the � distribution is determined by a parameter U .
The smaller the U value, the higher the rate heterogeneity [75].

Given the MSA and the substitution model, we can evaluate the likelihood of a given tree
topology. We explain how we can compute this likelihood in the following section.
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3.3. Likelihood Computation

With the MLmethod, we only evaluate the likelihood of a given topology rather than suggesting
a topology [76]. Therefore, in addition to the MSA and the substitution model, we need a
candidate tree topology. During the ML search, we iteratively optimize this topology to
obtain a tree with a good ML score. We can obtain such a candidate tree topology using, for
example, the randomized stepwise addition order algorithm [8] or maximum parsimony [15,
18]. The explanation of the likelihood computation in this chapter is based on the explanation
in Computational Molecular Evolution [76].

We compute the likelihood of the topology ) with branch lengths 1, and model parameters
q (summarized as parameter ) ) given the MSA data J as:

!() |J) = % (J |) ) (3.5)
To simplify the computation, we assume that sites evolve independently. That is:

!() |J) = % (J |) ) =
=÷
8=1

% (B8 |) ) (3.6)

where B8 is the 8-th column in the MSA.
The probabilities per site are usually very small. To prevent numerical under�ow during

multiplication, we compute the logarithm of the likelihood instead:

;>6(!() |⇡)) =
=’
8=1

;>6(% (B8 |) )) (3.7)

In order to explain the computation of the per site probabilities % (B8 |) ), consider the following
exemplary tree topology with a single site:

G

A

A

C2

C

C3

C1

A

T

C5

A

C6

C4

We evaluate the likelihood of this site by multiplying the transition probabilities given in
the model" :

!() |B8) = % (B8 |) ) = c⌧ · %⌧!� (C1) · %�!� (C2) · %�!⇠ (C3)

· %⌧!� (C4) · %�!) (C5) · %�!� (C6)

The �rst factor c⌧ denotes the probability of observing nucleotide ⌧ at the root of the
tree. The following factor %⌧!� (C1) reads as the probability of mutating from nucleotide ⌧ to
nucleotide � in time C1.
We infer phylogenetics trees based on the observed sequences at the tree’s tips. Therefore

the inner states are unknown:

7



3. Maximum Likelihood Tree Inference

�1

�2

A

C2

C

C3

C1

�3

T

C5

A

C6

C4

To compute the likelihood with unknown inner states, we have to consider all possible
nucleotide states at the inner nodes. We achieve this by summing over probabilities for each
possible combination:

!() |B8) = % (B8 |) ) =
)’

�1=�

)’
�2=�

)’
�3=�

c�1 · %�1!�2 (C1) · %�2!� (C2) · %�2!⇠ (C3)

· %�1!�3 (C4) · %�3!) (C5) · %�3!� (C6)

This combinatorial problem can be e�ciently computed using dynamic programming via
the Felsenstein Pruning algorithm [16].
Finding the most likely tree is NP-hard [10]. To �nd the most likely tree, we would

have to evaluate all possible trees. The number of possible tree topologies, however, grows
exponentially with the number of taxa. The number of possible unrooted trees for = taxa isŒ=

8�3(28 � 5). While an exhaustive search is guaranteed to �nd the globally optimal tree, this
approach is computationally not feasible. In practice, we use heuristic search methods that
iteratively improve a given topology [76]. In the following section, we present a selection of
such optimization techniques.

3.4. Likelihood Optimization

In order to optimize the likelihood, we can improve the tree topology, the parameters of the
substitution model, and the branch lengths with respect to the likelihood.

3.4.1. Topology Optimization

Commonly used methods to improve the tree topology are Subtree Pruning and Regrafting
(SPR), Nearest Neighbor Interchange (NNI), and Tree Bisection and Reconnection (TBR) (Figure
3.1) [76].
With the SPR method, a subtree is selected and detached from the main tree (pruning)

and reattached (regrafted) onto another branch. The NNI method detaches four subtrees by
removing the internal branches and then rearranges these subtrees. With the TBR method, a
branch is removed from the tree, yielding two subtrees. These subtrees are then reconnected
by inserting a branch, connecting two branches of the subtrees.

The number of distinct trees generated for a tree with = taxa are in O(=), O(=2) and O(=3)
for NNI, SPR, and TBR, respectively [30].
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(b) NNI
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(c) TBR

Figure 3.1.: Common tree topology optimization strategies. a) Subtree Pruning and Regrafting
(SPR). b) Nearest Neighbor Interchange (NNI). c) Tree Bisection and Reconnection
(TBR).

3.4.2. Branch Length Optimization

Given a �xed tree topology, we can improve the likelihood by adapting the branch lengths. The
Newton-Raphson method is commonly used to solve this non-linear numerical optimization
problem [40].
We evaluate each branch in the tree separately, that is, we only optimize a single branch

length while the others remain �xed. The goal is to �nd the branch length 1 that maximizes the
likelihood !(1) of the tree. To �nd this branch length, we solve !0(1) = 0 using the following
iterative approach:

18+1 = 18 �
!0(18)

!00(18)
(3.8)

where !0(1) denotes the �rst derivative and !00(1) the second derivative of !(1). This process
is repeatedly applied to all branches in the tree until the branch lengths eventually converge
[63].
To ensure non-negative branch lengths, we constrain the search using a minimum branch

length threshold minBranchLen. For numerical reasons, the minBranchLen should be greater
than 0 [76]. Furthermore, constraint optimization problems are easier to solve when simple
upper and lower bounds are given [76]. Therefore, in addition to the minBranchLen threshold,
we also set a reasonable maximum branch length using the threshold maxBranchLen.

3.4.3. Model Parameter Optimization

Commonly used methods for optimizing model parameters other than the branch lengths
are Brent’s method [6] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [20]. The
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3. Maximum Likelihood Tree Inference

objective is to �nd the model parameters q that maximize the likelihood of the tree, meaning
we try to �nd the values for the vector q where !0(q) = 0. Using Brent’s method, we can for
example optimize the U value of the � distribution of rate heterogeneity [65]. The BFGS method
can be used to optimize the equilibrium frequencies and substitution rates [40].

Brent method Brent’s algorithm is based on the Dekker method [11]. Dekker combines the
secant and the bisection method to �nd the root. Brent modi�ed Dekker’s approach to converge
faster and with fewer iterations [6]. The Brent method optimizes one-dimensional variables.
This means that we can only optimize a single parameter at a time [52].

BFGSmethod The BFGS method is a Quasi-Newton approach. That means that instead of
computing the second derivative, it approximates the inverse Hessian matrix. This inverse
Hessian matrix is used to determine the move direction during an iterative search for the
minimum. Using the BFGS method we can optimize multiple parameters at once as this method
can �nd the optimum of a multidimensional variable. In phylogenetics we typically use the
L-BFGS-B variant. This variant is optimized for limited memory and is extended to incorporate
bound constraints in variables [79]. If we use the L-BFGS-B method for model parameter
optimization, one constraint is, for example, that the equilibrium frequencies must sum to 1:
c� +c) +c⇠ +c⌧ = 1. With the threshold bfgs_factor we can control the convergence tolerance
of the L-BFGS-B optimization.

3.5. Significance Tests

To compare the tree topologies and likelihood scores in our analyses, we conduct signi�cance
tests among the set of inferred trees. We further call this set of inferred trees trees the candidate
set. The goal of these tests is to detect whether two likelihoods for two trees under the same
model of evolution are signi�cantly di�erent, or di�erent by random chance. The tests we
use are therefore designed to compare likelihood values rather than the topologies themselves.
This allows us to compare contradicting tree topologies [43].

The following section provides a short summary of selected topology signi�cance tests. For
further details, we refer the interested reader to Lemey et al. [43] and Yang [76].
All tests we describe in the following use the RELL method to generate bootstrap samples.

The resampling estimated log likelihoods (RELL) method approximates the non-parametric
bootstrap. The classical non-parametric bootstrap re-samples alignment columns and infers a
tree from each sample, including all likelihood optimizations. This is however computationally
too intensive [43]. The RELL method instead re-samples site-log-likelihoods that are stored
during the likelihood optimization procedure. The likelihood of this sampled tree is then
approximated by multiplying the sampled site-log-likelihoods according to Equation 3.6.

3.5.1. Kishino-Hasagewa Test

The Kishino-Hasegawa test (KH) [37] compares tree likelihood values based on the distribution
of likelihood di�erences. To obtain a test distribution, the KH test generates at least 1000
bootstrap samples using the RELL method and centers their likelihoods using the mean likeli-
hood value. The test compares the pairwise likelihood di�erences for all possible pairs in the
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candidate set against the distribution of likelihood di�erences. In our analyses, we compare all
candidate trees against the tree with the best log likelihood. Therefore, we use the one-sided
KH test. Furthermore, we also use the weighted KH test. The weighted test scales the likelihood
di�erences using the likelihood variance of the candidate set.

3.5.2. Shimodaira-Hasagawa Test

The Shimodaira-Hasegawa test (SH) [60] compares the candidate likelihoods with the best
likelihood in the candidate set. Analogous to the KH test, the SH test generates a likelihood
distribution based on at least 1000 bootstrap samples and centers the likelihoods using the mean
likelihood value. The SH test compares the di�erences between the best tree and each candidate
tree against the likelihood di�erence distribution. In our analyses, we use the standard SH test
and also the weighted variant.

3.5.3. Approximately Unbiased Test

Strimmer and Rambaut [71] show that the SH test is biased by the number of trees in the
candidate set. To overcome this bias, Shimodaira [61] suggested the Approximately Unbiased
test (AU). This test is based on a multiscale bootstrap. Instead of sampling replicates from the
original input length =, the multiscale bootstrap samples replicates of varying lengths. For each
length =A , we draw at least 10 000 bootstrap samples. Using the RELL method, we compute the
likelihood approximation ;A and scale the likelihood according to the sampling length: ; = =

=A
;A .

Then, we apply the same test statistic as with the SH test.

3.5.4. Expected LikelihoodWeight Test

Analogous to the other tests we present, the Expected Likelihood Weight test (ELW) [71] �rst
generates a number of bootstrap samples ⌫ and approximates the likelihoods using the RELL
method. For each tree )8 in the candidate set and each bootstrap sample 1, the likelihood of
the tree is weighted according to the sum of the likelihoods of all trees: F8

1 =
;81Õ
G ;

G
1
. Next, we

average the weights of each tree over all bootstrap samples F8 = 1
⌫

Õ#
1=1F

8
1 and sort these

weights in descending order. We compute the cumulative sum of the sorted weights, and accept
trees until this sum exceeds a prede�ned con�dence threshold.

3.6. Maximum Likelihood Tree Inference Tools

As explained in Section 3.3, an exhaustive search for the most likely tree is not feasible due to
the large tree space. Tree inference tools using the ML method therefore typically implement
iterative improvement techniques, which they apply to an initial starting tree. This initial
topology is obtained by using other heuristic tree inference methods, such as neighbor joining
[57], randomized stepwise addition order [8], or maximum parsimony [15, 18]. In the following,
we present three widely used ML inference tools.
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3.6.1. RAxML-NG

RAxML-NG [39] was presented in 2019 as a successor of the widely used phylogenetic inference
tool RAxML [67]. The starting tree for RAxML-NG can be either a random or a parsimony tree.
This initial tree is then optimized using a greedy hill-climbing algorithm. Here, greedy means
that only steps improving the likelihood of the tree are accepted. This hill-climbing consists of
multiple rounds of optimizing the model parameters, the branch lengths and the tree topology.
RAxML-NG optimizes the branch lengths and model parameters using the Newton-Raphson,
L-BFGS-B, and Brent methods (Sections 3.4.2 and 3.4.3). With the parameter num_iters we can
limit the number of branch length optimization iterations. RAxML-NG iterates a maximum
of num_iters times over all branch lengths. RAxML-NG implements SPR moves as topology
optimization strategy (Section 3.4.1). To save computational time, the algorithm only tests re-
attachments up to a maximum distance around the pruning point for likelihood improvements.
RAxML-NG sets this distance depending on the likelihood improvements during the �rst round
of SPR moves [40, 63].

Algorithm 1 summarizes the key steps during tree search to obtain a single tree.

Algorithm 1 RAxML-NG tree search procedure
1: Generate a starting topology ù random or parsimony
2: Branch length and model parameter optimization
3: Repeated fast SPR rounds ù fast = no branch length optimization
4: Model parameter optimization
5: Repeated fast SPR rounds
6: Model parameter optimization
7: Repeated slow SPR rounds ù slow = with branch length optimization
8: Model parameter optimization

3.6.2. IQ-Tree

IQ-Tree [48] is a widely used software package for phylogenetics that was �rst released in 2014.
Similar to RAxML-NG, IQ-Tree also implements a greedy hill-climbingML tree search. To obtain
an initial tree topology, the user can choose between random tree generation, a parsimony tree,
or an improved version of neighbor joining called BIONJ [22]. IQ-Tree’s topology optimization
strategy consists in repeated NNI moves (Section 3.4.1). Since NNI moves explore the tree space
less than SPR moves [43], IQ-Tree additionally implements random moves. Using these random
moves, IQ-Tree explores the tree space beyond the NNI neighborhood. Given the number of
taxa # , the stochastic NNI step applies 1

2 (# � 3) random NNI moves on the candidate tree. If
the likelihood increases, the new tree is accepted and further optimized through hill-climbing
NNI steps. If the likelihood decreases, all applied NNI moves are discarded. If the tree did not
improve during 100 stochastic NNI rounds, the tree search terminates.
IQ-Tree optimizes branch lengths and model parameters using the Newton-Raphson, L-

BFGS-B and Brent methods (Sections 3.4.2 and 3.4.3).
The IQ-Tree tree search algorithm to obtain a single tree is summarized in Algorithm 2.
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Algorithm 2 IQ-Tree tree search procedure
1: Generate a starting topology ù random, parsimony or BIONJ
2: Branch length and model parameter optimization
3: Repeated stochastic NNI steps
4: Repeated hill-climbing NNI steps
5: Model parameter optimization

3.6.3. FastTree

FastTree [53] was �rst presented in 2009, followed a few months later in 2010 by the improved
version FastTree 2 [54]. FastTree aims to reduce the time and space complexity of ML phyloge-
netic inference. The authors achieve this through various heuristics and shortcuts compared to
other inference tools.
Algorithm 3 summarizes the FastTree tree search procedure. FastTree builds an initial tree

topology using a modi�ed neighbor-joining algorithm. Instead of explicitly computing the
pairwise distance matrix of the input MSA, FastTree implements a set of heuristics. This leads
to a lower memory consumption, and is in practice faster than computing the distance matrix
[53]. In contrast to RAxML-NG and IQ-Tree, FastTree implements a minimum evolution step
before maximizing the tree’s likelihood. The minimum evolution approach tries to obtain a
tree that explains the data with as few mutations as possible, therefore minimizing the branch
lengths. The minimum evolution steps include NNI and SPR moves. Instead of iterating until
convergence, FastTree runs a prede�ned number of rounds. During the maximum likelihood
phase, FastTree uses NNI steps to improve the tree topology. FastTree stops the NNI rounds
based on two heuristics1 and executes at most 2 · ;>6(# ) rounds, where # is the number of
taxa in the MSA.

Algorithm 3 FastTree tree search procedure
1: Generate a starting topology ù heuristic neighbor joining
Minimum Evolution
2: Perform 4 · ;>62(# ) NNI rounds ù # = number of taxa
3: Perform 2 SPR rounds
Maximum Likelihood
4: Branch length optimization
5: Single NNI round
6: Model parameter optimization
7: Repeated NNI rounds ù using stopping heuristics
8: Branch length optimization ù only once for each branch

1The authors refer to these heuristics as Subtree skipping and Star topology test. For details, we refer the
interested reader to the original publication [54].
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3.7. Numerical Epsilon Thresholds

In order to limit the number of iterations during the optimization procedures, each tool de�nes
one or more log likelihood epsilon threshold values as early stopping criteria. If the log
likelihood increases by less than the threshold, the corresponding subprocedure terminates. In
our analyses, we focus on three di�erent epsilon thresholds.

Iteration Epsilon (lh_epsilon) If the log likelihood after one iteration of optimizing all parame-
ters (tree topology, branch lengths and model parameters) increases by less than this value, the
iteration stops. We can set this epsilon value in each of the three ML inference tools.

Model Epsilon (model_epsilon) This epsilon value is used during the optimization of the
parameters of the substitution model for a �xed tree topology. If the log likelihood improves by
less than this threshold, the model parameter optimization terminates. We can set this value in
RAxML-NG and IQ-Tree.

SPR Epsilon (spr_lh_epsilon) In RAxML-NG after each SPR round the log likelihood improve-
ment is compared to the SPR epsilon. If it did not improve by more than this threshold, the
SPR moves terminate. This parameter is a RAxML-NG speci�c epsilon parameter.
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4. Motivation

To infer trees under the ML method, developers implement di�erent heuristics and numerical
optimization methods. In the previous chapter, we have seen that these methods rely on internal
numerical thresholds, for example the minimum branch length (minBranchLen) threshold. In
their paper on the phylogenetic analysis of SARS-CoV-2, Morel et al. [49] notice that this
minBranchLen threshold has an impact on the resulting ML scores. The authors observe this
phenomenon for both RAxML-NG and IQ-Tree. In this part of the thesis, we investigate whether
we can reproduce this e�ect on other datasets and for other numerical thresholds as well. In
addition to the phylogenetic inference tools RAxML-NG and IQ-Tree, we also test for this
e�ect in FastTree. Furthermore, we investigate the in�uence of the numerical thresholds on
the runtime of phylogenetic inferences.

RAxML-NG and IQ-Tree both implement a tree evaluation option. During the standard tree
search, the programs optimize the tree topology, the branch lengths and the substitution model
parameters. During the tree evaluation, only the branch lengths and the substitution model
parameters are optimized, while the tree topology remains �xed. In our analyses, we test the
in�uence of the numerical thresholds on both: tree search and evaluation.
We show that by increasing the default values for RAxML-NG’s and IQ-Tree’s likelihood

epsilon values during the tree search, we can speed up the tree inference, while achieving
equally good results. For RAxML-NG we measure an average speedup of 1.9 ± 0.6 and for
IQ-Tree 1.3 ± 0.4.
By comparing the ML scores and runtimes of RAxML-NG, IQ-Tree, and FastTree, we show

that while FastTree is by far the fastest tool, RAxML-NG in general outperforms IQ-Tree and
FastTree in terms of the absolute best ML score (Section 7).

In Section 5, we explain the work�ow of our experiments, the datasets we analyze, and the
numerical thresholds we investigate. In Section 6, we present our analysis on the in�uence of
the numerical thresholds, with a focus on the likelihood epsilon values and the minBranchLen
setting. Finally, in Section 7, we compare the ML scores and runtimes for the three inference
tools RAxML-NG, IQ-Tree, and FastTree on di�erent datasets and discuss the bene�t of the
evaluation functionality in RAxML-NG and IQ-Tree (Section 7.2).
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We analyze the in�uence of distinct numerical thresholds on multiple datasets for RAxML-
NG, IQ-Tree, and FastTree. In order to run the tree inferences in an automated manner, we
implement a data generation pipeline. This pipeline takes an MSA and numerical threshold
values as input, and outputs the ML scores and runtimes for all three inference tools under the
di�erent numerical threshold settings. We explain our pipeline in greater detail in Section 5.1.
In Sections 5.2 and 5.3, we present the numerical thresholds and datasets we analyze.

5.1. Data Generation Pipeline

Given an MSA and numerical threshold values, our data generation pipeline runs phylogenetic
tree inferences under all possible combinations of these values. Figure 5.1 summarizes the
work�ow of the pipeline with two toy numerical thresholds Thresh1 and Thresh2 on one
dataset and for one ML inference tool. For each threshold value combination, we conduct �ve
tree searches, each with a single starting tree, resulting in �ve �nal ML trees. We call this part
of our pipeline the tree search phase. We select the best among these trees based on their ML
scores. For RAxML-NG and IQ-Tree, we also re-evaluate this best tree. This means that the
optimization algorithm does not alter the tree topology, but only optimizes the substitution
model parameters and branch lengths. We call this phase the evaluation phase. For FastTree,
we omit this evaluation phase, since FastTree does not provide an evaluation functionality
analogous to RAxML-NG and IQ-Tree. Instead, we execute all following steps on the best
tree after the tree search phase. We collect all re-evaluated trees in a candidate tree set. This
candidate tree set has as many trees as there are threshold combinations. We run all signi�cance
tests as implemented in IQ-Tree on this candidate tree set. Due to the continuing debate about
the most appropriate signi�cance test for tree comparison (see Section 3.5), we use the same
approach as Morel et al. [49] and include only those trees passing all signi�cance tests into
a so-called plausible tree set. Our pipeline stores the results in a database containing all ML
scores and runtimes for the candidate tree set and the plausible tree set.
During the tree search phase and the evaluation phase, we use the GTR model with four

discrete � rate categories as substitution model (Section 3.1). To ensure reproducibility, we set
the seeds for the 5 tree searches to 0–4 and the seed for the evaluation and IQ-Tree signi�cance
tests to 0. FastTree, in its original implementation, does not allow for manual threshold setting.
We therefore add command line switches for the thresholds we test. The adapted code is
available at https://www.github.com/tschuelia/param-fasttree. We also use a modi�ed
RAxML-NG version, in which the thresholds spr_lh_epsilon, num_iters, and bfgs_factor can
be set via the command line. This modi�cation was not part of this thesis and is available
at https://www.github.com/lukashuebner/param-raxml-ng. For the statistical tests, we use
the default IQ-Tree settings for the number of bootstrap RELL replicates (10 000) and the
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Thresh1 = [1, 2] Thresh2 = [3, 4]

[(1,3), (1,4), (2,3), (2,4)]

Tree search phase: 
perform tree inference

Significance Tests

Plausible Trees

Candidate Trees

Evaluation phase: 
evaluate tree with 
highest likelihood 

Figure 5.1.: The work�ow of our data generation pipeline for one dataset and one tree inference
tool. For each value combination of Thresh1 and Thresh2, we run 5 tree searches
with the respective values. The tree with the highest ML score after the tree search
phase (the highlighted tree) is then re-evaluated. After the evaluation phase, this
tree is included in a set of candidate trees. We compare all trees in this candidate
tree set using the IQ-Tree signi�cance tests. Trees passing all tests form part of the
set of plausible trees.
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signi�cance level (U = 0.05). As stated in Section 3.5, some of the tests are biased by the number
of trees in the candidate set. Therefore, before running the statistical tests on the candidate tree
set, we �lter duplicate tree topologies. Since we conduct the �ve tree searches independently,
we use a single worker with two threads for each search as parallelization approach. The same
applies for the tree evaluation phase.
We implement our data generation pipeline using the Snakemake work�ow management

system [38] and Python 3. We execute our data generation pipeline on two institutional clusters
(Cascade and Haswell) at the Heidelberg Institute for Theoretical Studies (HITS) and one server
of our research group. The Cascade cluster consists of 150 compute nodes with Intel Cascade
Lake CPUs (Intel Xeon Gold 6230). Each CPU has 20 cores running at 2.1 GHz and 96GB RAM.
The Haswell cluster has 224 nodes with Intel Haswell CPUs (E5-2630v3), each with 16 cores
running at 2.4 GHz and 64 GB RAM. The server of our research group is a Cascade Lake CPU
(Xeon Platinum 8260) with 48 cores running at 2.4 GHz and 754 GB RAM.

5.2. Numerical Thresholds

Depending on the tree inference tool, we examine di�erent numerical thresholds (Chapter 3).
In Table 5.1 we present the value ranges we test for each threshold and to what ML inference
tool they are applicable, alongside the respective default value.

Threshold
(Abbreviation)

Tested Values Inference Tools
(resp. default value)

Minimum Branch Length
(minBranchLen)

{10�10, 10�9, ..., 10�2}⇤ RAxML-NG (10�6)
IQ-Tree (10�6)
FastTree (5�9)

Maximum Branch Length
(maxBranchLen)

{10, 102} RAxML-NG (102)
IQ-Tree (10)

Iteration Epsilon
(lh_epsilon)

{10�3, 10�2, ..., 103} RAxML-NG (10�1)
IQ-Tree (10�3)
FastTree (10�1)

Model Epsilon
(model_epsilon)

{10�3, 10�2, 10�1} RAxML-NG (10�3)
IQ-Tree (10�2)

SPR Epsilon
(spr_lh_epsilon)

{10�3, 10�2, ..., 103} RAxML-NG (10�1)

Maximum number of branch
length optimization iterations
(num_iters)

{16, 32, 64} RAxML-NG (32)

Convergence threshold for the
BFGS optimization
(bfgs_factor)

{105, 107, 109} RAxML-NG (107)

⇤For FastTree we additionally run its default value 5�9.

Table 5.1.: Varied numerical thresholds with value ranges and applicable inference tools. The
values in braces state the default value for the respective inference tool.
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5. Experimental Setup

5.3. Datasets

We investigate the numerical behavior of the thresholds on 22 datasets with 27 to 4869 taxa. In
the following, we refer to the datasets using the number of taxa preceded by a “D”. Table 5.2
provides an overview of the datasets we use.

Name # Taxa / # Sites Notes / Reference
D27 27 / 1940 Data of the 28s rRNA gene of a broad taxonomic diversity [31].
D37 37 / 1 338 678 Data of 447 nuclear genes of Eutheria (often referred to as SongD1)

[62].
D46 46 / 239 763 Data of 310 nuclear genes of seed plants (often referred to as XiD4)

[74].
D101 101 / 1858 rRNA gene data of microsporidia [70].
D125 125 / 29 149 Mammalian DNA sequences [69].
D150 150 / 1269 rRNA gene data of microsporidia [70].
D218 218 / 2294 Prokaryotic sequences from the small ribosomal unit [29].
D354 354 / 460 Internal transcribed spacer (ITS) region of nuclear ribosomal DNA

of Acer [28].
D500 500 / 1398 rbcL gene data (often referred to as zilla dataset) [9].
D714 714 / 1241 Dataset used for benchmarking ML inference tools [69].
D1288 1288 / 1200 Mammalian sequence data [69].
D1481 1481 / 1241 Dataset used for benchmarking ML inference tools [69].
D1512 1512 / 1577 Dataset used for benchmarking ML inference tools [69].
D1604 1604 / 1276 Dataset used for benchmarking ML inference tools [69].
D1718 1718 / 1371 rbcL gene data [68].
D1908 1908 / 1424 Fungal sequence data [69].
D2000 2000 / 1251 Dataset used for benchmarking ML inference tools [69].
D2308 2308 / 1224 Mammalian sequence data [69].
D2445 2445 / 1371 rbcL gene data [68].
D2554 2554 / 1232 rbcL gene data [69].
D3782 3782 / 1371 rbcL gene data [68].
D4869 4869 / 28 361 SARS-CoV2 data (snapshot 05/05/2020 obtained from gisaid.org)

.

Table 5.2.: Overview of the datasets we use for our analyses. All datasets are empirical datasets.
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6. Influence of Numerical Thresholds on
Likelihoods and Runtimes

In this chapter, we analyze the in�uence of the numerical thresholds on the ML scores and
runtimes of RAxML-NG, IQ-Tree, and FastTree. This chapter has two parts:

1. Evaluation phase: In the �rst part, we focus on the in�uence of the numerical threshold
variation during the evaluation phase. We show that the ML score and runtime are largely
una�ected by the numerical threshold settings, as long as they are within a reasonable value
range. Both RAxML-NG’s and IQ-Tree’s default values are in this range.

2. Tree search phase: In the second part, we focus on the in�uence of the numerical threshold
variation during the tree search phase. Based on our �ndings, we suggest an increase of the
default value for lh_epsilon in RAxML-NG and IQ-Tree, as well as an increase of the default value
for RAxML-NG’s spr_lh_epsilon. We demonstrate that these changes substantially improve
the tree inference time, while yielding equally good results. We further show that the default
values for the remaining numerical thresholds are suitable for all three ML inference tools.

It is important to note that we compare ML scores within a broad range of absolute likelihood
values. The ML scores for the 22 empirical datasets we test range between approximately
�6400 (D354) and �12 300 000 (D4869). Therefore, we compare likelihood improvement and
degradation in percent rather than absolute log likelihood units. Since the ML scores are a log
scale, however, the observed e�ects are greater than the percentages suggest.
For brevity, we only depict the in�uences of selected numerical thresholds. For the sake of

completeness, we present the results of all thresholds in Appendix Section A.1.2. Furthermore,
all �gures, as well as more detailed �gures for each dataset, are available as interactive �gures
at https://www.thesis.juliahaag.de.

6.1. Evaluation Phase

Morel et al. [49] notice a correlation of ML scores with theminBranchLen threshold setting when
re-evaluating trees with RAxML-NG and IQ-Tree (Figure 6.1). We test for this phenomenon on
di�erent datasets and test for all other thresholds we present in Section 5.2. One exception is
the spr_lh_epsilon threshold. RAxML-NG uses this speci�c threshold during the SPR rounds (for
details, see Section 3.6). Note that this threshold is not used during the evaluation phase, when
the topology is not optimized. During the tree search phase, we set the numerical thresholds to
their respective default value, as presented in Table 5.1.
For the thresholds minBranchLen and lh_epsilon we observe an e�ect on ML scores and

runtimes of RAxML-NG and IQ-Tree. For the remaining thresholds, we either notice no e�ect,
or only a minor impact on runtimes. Based on our �ndings, we suggest a range of reasonable
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6. In�uence of Numerical Thresholds on Likelihoods and Runtimes

values for each numerical threshold. For both tools, the respective default values are in this
range.

Figure 6.1.: Morel et al. [49] observe worse ML scores after re-evaluating a tree with RAxML-NG
and IQ-Tree under higher minBranchLen settings.

6.1.1. Minimum Branch Length

RAxML-NG

Analogous to Morel et al. [49], we observe a correlation between the ML scores and the
minBranchLen setting. However, as depicted in Figure 6.2a, we observe continuously worse
ML scores with larger minBranchLen thresholds rather than distinct likelihood plateaus. We
observe worse ML scores in the same order of magnitude as the authors. Morel et al. [49] report
ML scores of up to 1.54 % worse than the best score, in our analysis we observe degradations
between 0.1 % and 2.0 %with a mean of 1.55 % and two outliers (5.1 %worse for D354 and 12.5 %
worse for D4869). For values  10�5 we observe, except for D4869, equally good ML scores.
The minBranchLen threshold during the evaluation phase should therefore be set to  10�5. As
Figure 6.2b shows, the runtimes for minBranchLen values  10�5 are approximately identical.

IQ-Tree

The runtimes for the IQ-Tree evaluation phase improve for minBranchLen settings � 10�4.
Averaged over all datasets, the evaluation phase with IQ-Tree’s default minBranchLen value
10�6 runs 1.4 ± 0.3 times longer than for 10�2. For settings  10�4 we observe no clear trend in
runtimes (Figure 6.3b). On 4 datasets, we observe worse ML scores for minBranchLen � 10�3
( 0.3 %; Figure 6.3a). We conclude that minBranchLen should be set to  10�4 during the
IQ-Tree evaluation phase.

6.1.2. Likelihood Epsilon

For IQ-Tree, the likelihood threshold lh_epsilon has no in�uence on either runtime or ML scores
(log-likelihood variances are 0.0 and runtime variances  1 %). For RAxML-NG, we observe
up to 0.2 % worse ML scores for values � 10 and one extreme case of 1.5 % for lh_epsilon = 103
(D1288; Figure 6.4a). With smaller lh_epsilon threshold values, we observe increased runtimes
(Figure 6.4b). Tree re-evaluation under RAxML-NG’s default lh_epsilon = 10�1 are on average 4
times slower than under lh_epsilon = 103.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the evaluation time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.2.: In�uence of the minBranchLen threshold on the ML scores and runtimes of the
RAxML-NG evaluation phase. The runtimes refer to the runtime of the evaluation
phase. The plots summarize the data over all datasets. The dashed vertical line
indicates the mean, and the solid vertical line the median value. The highlighted
box indicates the default minBranchLen value for RAxML-NG.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the evaluation time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.3.: In�uence of the minBranchLen threshold on the ML scores and runtimes of the
IQ-Tree evaluation phase. The runtimes refer to the runtime of the evaluation
phase. The plots summarize the data over all datasets. The dashed vertical line
indicates the mean, and the solid vertical line the median value. The highlighted
box indicates the default minBranchLen value for IQ-Tree.
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(a) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(b) Increase of the evaluation time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.

Figure 6.4.: In�uence of the lh_epsilon threshold on the ML scores and runtimes of the RAxML-
NG evaluation phase. The runtimes refer to the runtime of the evaluation phase.
The plots summarize the data over all datasets. The dashed vertical line indicates
the mean, and the solid vertical line the median value. The highlighted box indicates
the default lh_epsilon value for RAxML-NG.

6.1.3. Remaining Thresholds

The thresholds model_epsilon, num_iters, and bfgs_factor have no impact on the ML score.
However, the runtimes for model_epsilon increase with smaller model_epsilon settings (on
average 10.5 % increase for RAxML-NG, and 20 % for IQ-Tree). The bfgs_factor threshold
shows a similar e�ect: RAxML-NG runtimes increase on average 49 % with lower values.
The runtimes for the num_iters threshold increase for more iterations (on average 3.7 %). We
observe no impact on neither ML scores nor runtime for themaxBranchLen threshold in RAxML-
NG. For IQ-Tree we notice runtime variations  20 %. However, depending on the dataset,
a di�erent maxBranchLen value yields faster execution times. The ML score is una�ected.
The data for these thresholds is not shown in this chapter, we refer the interested reader to
Appendix A.1.2 or the interactive plots on our website at https://www.thesis.juliahaag.de/
numericalProperties/influenceEval.
Based on our �ndings, we suggest the following threshold settings during the evaluation

phase:
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6. In�uence of Numerical Thresholds on Likelihoods and Runtimes

Threshold RAxML-NG IQ-Tree
minBranchLen  10�5  10�4
maxBranchLen 2 {10, 102} 2 {10, 100}
lh_epsilon  10  1000
model_epsilon  0.1  0.1
num_iters 2 {16, 32, 64} –
bfgs_factor 2 {105, 107, 109} –

For both tools, the respective default values ful�ll these criteria. Since the runtime of the
evaluation phase is negligible compared to the tree search phase (Section 7.2), we set all
numerical thresholds to their most conservative setting according to Table 5.1 during the
evaluation phase, despite their longer runtimes. In the following, we investigate the in�uence
of the numerical thresholds during the tree search phase more thoroughly.

6.2. Tree Search Phase

In this section, we focus on the in�uence of the numerical thresholds on the ML scores and
runtimes, when varied during tree search phase. We speci�cally focus on the likelihood
thresholds lh_epsilon and spr_lh_epsilon, and demonstrate a potential speedup of the tree search
for RAxML-NG and IQ-Tree by changing these default values. We further discuss ML score and
runtime variations caused by the minBranchLen threshold and show that the default values
for all three inference tools are appropriate. For the remaining numerical thresholds, we only
observe minor in�uences on ML scores and runtimes.

6.2.1. Likelihood Epsilons

The threshold with the highest runtime impact is the likelihood epsilon value lh_epsilon. We
observe an impact for all three inference tools. The threshold spr_lh_epsilon also in�uences
the runtime of RAxML-NG. For both thresholds, higher values improve the runtime. We
demonstrate that increasing these likelihood epsilon values for RAxML-NG and IQ-Tree leads
to equally good results with lower runtime, and therefore suggest the use of new default values.
For FastTree, we observe that the default lh_epsilon value is appropriate.

RAxML-NG

The runtime of tree inferences using RAxML-NG improves for higher values of lh_epsilon
(Figure 6.5b). Tree searches with the default setting 10�1 run on average 1.8 ± 0.5 times longer
than with lh_epsilon = 103. The ML scores for most datasets slightly worsens for settings
� 10. Except for D354, the variances between di�erent lh_epsilon settings are  0.03 % (Figure
6.5a). Given these observations, we form the hypothesis that the default lh_epsilon value for
RAxML-NG should be increased from 10�1 to 10.

To support this hypothesis, we compute the proportions of lh_epsilon values among trees in
the plausible tree set. Equal proportions for all lh_epsilon values indicate that this threshold does
not in�uence whether a tree search returns a plausible tree. Figure 6.6 shows the proportions of
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(a) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(b) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.

Figure 6.5.: In�uence of the lh_epsilon threshold on the ML scores and runtimes of the RAxML-
NG tree search phase. The ML scores refer to the ML scores after the evaluation
phase. The runtimes refer to the runtime of the tree search phase. The plots
summarize the data over all datasets. The dashed vertical line indicates the mean,
and the solid vertical line the median value. The highlighted box indicates the
default lh_epsilon value for RAxML-NG.
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lh_epsilon values for di�erent datasets. Analogous to the ML scores, we observe that lh_epsilon
values  10 return approximately equally frequently a plausible tree (with di�erences of less
than 5 percentage points). To further test our hypothesis, we also run our data generation
pipeline with 15 simulated datasets with 22–2288 taxa. We compare the topological distances
of the resulting trees for di�erent lh_epsilon values to the true tree. Figure 6.7 shows these
topological distances across all 15 simulated datasets. The y-axis depicts the variations of
topological distances relative to the average distance across all lh_epsilon settings per dataset.
The variances for all lh_epsilon settings are less than 1 percentage point. The distances of
RAxML-NG’s default value lh_epsilon= 10�1 varymore than the distances for our new suggested
value lh_epsilon = 10. We conclude that both lh_epsilon settings lead to equally good trees.
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Figure 6.6.: Average proportions of lh_epsilon values among trees in the plausible tree set for
RAxML-NG over all datasets. The darkest bar indicates the current default value
(10�1) and the brightest bar our suggested new default value (10). The error bar
depicts the standard deviation.

With RAxML-NG, we also investigate the in�uence of the spr_lh_epsilon threshold. Similar
to the lh_epsilon threshold, the runtimes for spr_lh_epsilon improve with higher values (Figure
6.8b). This threshold has no in�uence on the ML scores after the evaluation phase (Figure 6.8a).
Analogous to our further analysis of the lh_epsilon threshold, we compute the proportions of
spr_lh_epsilon values among the plausible trees. With a variance of less than 5 percentage points
for di�erent spr_lh_epsilon values (Figure 6.9), we conclude that the spr_lh_epsilon threshold
does not in�uence whether a tree search returns a plausible tree. The topological distances
are una�ected by the spr_lh_epsilon threshold, with variances less than 1 percentage point. As
Figure 6.10 shows, the variances for spr_lh_epsilon = 103 are higher than for spr_lh_epsilon
= 10�1, but the RF-distance is better on average. We therefore conclude that the default value
for the RAxML-NG spr_lh_epsilon threshold could be increased from 10�1 to 103.
Considering the suggested changes of both likelihood epsilon thresholds, we compute the

speedup of all tree searches with the suggested new setting relative to the tree searches with
the current default settings. To ensure comparability, we only compare tree searches with the
exact same threshold settings for the remaining varied thresholds. Across all empirical datasets,

27



6. In�uence of Numerical Thresholds on Likelihoods and Runtimes

1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 1e+03

−0.4

−0.2

0

0.2

0.4

Topological Distance Variances for RAxML-NG (lh_epsilon)

lh_epsilon

V
ar

ia
nc

es
 o

f 
to

po
lo

gi
ca

l d
is

ta
nc

es
 t

o 
th

e 
tr

ue
 t

re
e

(i
n 

pe
rc

en
ta

ge
 p

oi
nt

s)

Figure 6.7.: Variances of topological distances to the true tree per lh_epsilon setting on 15
simulated datasets. The y-axis shows the variations in percentage points relative to
the average topological distance per dataset.
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(a) Degradation of ML scores across all datasets as
a function of spr_lh_epsilon values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of spr_lh_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.8.: In�uence of the spr_lh_epsilon threshold on the ML scores and runtimes of the
RAxML-NG tree search phase. The ML scores refer to the ML scores after the
evaluation phase. The runtimes refer to the runtime of the tree search phase. The
plots summarize the data over all datasets. The dashed vertical line indicates the
mean, and the solid vertical line the median value. The highlighted box indicates
the default spr_lh_epsilon value for RAxML-NG.
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Figure 6.9.: Average proportions of spr_lh_epsilon values among trees in the plausible tree set
for RAxML-NG over all datasets. The darkest bar indicates the current default value
(10�1) and the brightest bar our suggested new default value (103). The error bar
depicts the standard deviation.
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Figure 6.10.: Variances of topological distances to the true tree per spr_lh_epsilon setting on 15
simulated datasets. The y-axis shows the variations in percentage points relative
to the average topological distance per dataset.
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we observe an average speedup of 1.9 ± 0.6, with 97.5 % of all runs showing a speedup � 1.
In 34.5 % of all tree searches, the runtime with the new settings was twice as fast as with the
current default setting. In our analysis, more tree searches result in a speedup � 3 (3.5 %) than
in a speedup < 0.9 (1.2 %) (Figure 6.11).
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Figure 6.11.: Distribution of speedups across all datasets for RAxML-NG. We compare runtimes
for tree searches under the default setting lh_epsilon = 10�1 and spr_lh_epsilon
= 10�1, with tree searches under our new suggested settings lh_epsilon = 10 and
spr_lh_epsilon = 103.

It is worth mentioning that these observations hold true independent of the absolute like-
lihood value. The ML scores for the datasets we test, range between approximately �6400
(D354) and �12 300 000 (D4869). It is, however, important to note that the evaluation phase
after the tree search phase should not be omitted and executed with a small lh_epsilon value
(for example 10�3).

Given these observations, we conclude that the default value for the lh_epsilon threshold in
RAxML-NG should be raised to 10 and the default value for the spr_lh_epsilon threshold should
be raised to 103.

IQ-Tree

Analogous to RAxML-NG, the runtimes improve with higher lh_epsilon thresholds. Tree
searches with IQ-Tree’s default threshold lh_epsilon = 10�3 run on average thrice as long as tree
searches with lh_epsilon = 103 (Figure 6.12b). However, IQ-Tree appears to be more sensitive
to the lh_epsilon threshold than RAxML-NG in terms of ML scores. Under higher lh_epsilon
settings, the ML score degradations are an order of magnitude worse than for RAxML-NG
( 0.2 % for IQ-Tree vs.  0.03 % for RAxML-NG). For lh_epsilon values  10 the ML scores are
on average equally good. Hence, we suggest that the default lh_epsilon threshold for IQ-Tree
should be raised from 10�3 to 10.
To test this hypothesis, we use the same metrics as for RAxML-NG. First, we compute

the proportions of lh_epsilon values among trees in the plausible tree set. On average, the
proportions for lh_epsilon = 10�3 and lh_epsilon = 10 are approximately equal among each
other (Figure 6.13). We further compute the topological distances to the true tree for the 15
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(a) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(b) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.

Figure 6.12.: In�uence of the lh_epsilon threshold on the ML scores and runtimes of the IQ-Tree
tree search phase. The ML scores refer to the ML scores after the evaluation phase.
The runtimes refer to the runtime of the tree search phase. The plots summarize
the data over all datasets. The dashed vertical line indicates the mean, and the
solid vertical line the median value. The highlighted box indicates the default
lh_epsilon value for IQ-Tree.
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simulated datasets. For lh_epsilon values  10 the distances are approximately equal with
variances less than 1.5 percentage points (Figure 6.14).
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Figure 6.13.: Average proportions of lh_epsilon values among trees in the plausible tree set for
IQ-Tree over all datasets. The darkest bar indicates the current default value (10�3)
and the brightest bar our suggested new default value (10). The error bar depicts
the standard deviation.

Implementing the suggested changes in IQ-Tree’s default lh_epsilon threshold leads to an
average speedup of 1.3 ± 0.4 with 74 % of all tree searches showing a speedup � 1. For 19 % of
all tree searches, the speedup is � 1.5, but for 11 % we observe an increase in runtime with a
speedup < 0.9 (Figure 6.15). We conclude that increasing the default value for lh_epsilon in
IQ-Tree results in equally likely trees with on average lower runtimes.
As described above, we observe noticeably worse ML scores for lh_epsilon � 102. This is

re�ected by the proportions of these lh_epsilon values in the set of plausible trees (Figure
6.13). We suspect that this is caused by the random NNI moves in IQ-Tree’s search algorithm
(Section 3.6.2). To verify this assumption, we modify IQ-Tree and disable the randomness in the
search algorithm. As a consequence, IQ-Tree only optimizes the tree topology using standard
NNI moves. We refer to the standard IQ-Tree as random IQ-Tree and to the IQ-Tree algorithm
without random NNI moves as de-randomized IQ-Tree. We run our data generation pipeline
on four datasets (D1418, D1604, D1718, and D2445) using the de-randomized IQ-Tree. Since
standard NNI moves are prone to be stuck in a local optimum (Section 3.6.2), we expect the
ML scores for de-randomized IQ-Tree to be worse than for random IQ-Tree, which we indeed
observe in our analyses. To compare the in�uence of the lh_epsilon threshold, we again compute
the proportion of lh_epsilon values among trees in the plausible tree set. Figure 6.16 compares
the proportions for the four datasets using the random IQ-Tree (left �gure) and using the de-
randomized IQ-Tree (right �gure). We see that, in contrast to random IQ-Tree, de-randomized
IQ-Tree returns plausible trees under all lh_epsilon thresholds for all four datasets.

In order to quantify these di�erences between the two IQ-Tree versions, we compute the earth
mover’s distance between the histograms of lh_epsilon values in the plausible tree set per dataset,
and further compare them to a �at histogram. A �at histogram indicates that the lh_epsilon
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Figure 6.14.: Variances of topological distances to the true tree per lh_epsilon setting on 15
simulated datasets. The y-axis shows the variations in percentage points relative
to the average topological distance per dataset.
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Figure 6.15.: Distribution of speedups across all datasets for IQ-Tree. We compare runtimes for
tree searches under the default setting lh_epsilon = 10�3, with tree searches under
our new suggested setting lh_epsilon = 10.
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Figure 6.16.: Average proportions of lh_epsilon values among trees in the plausible tree set for
datasets D1481, D1604, D1718, and D2445. The left �gure shows the proportions
for random IQ-Tree. The right �gure shows the proportions for de-randomized
IQ-Tree. The error bar depicts the standard deviation.

threshold does not in�uence the tree inference. We observe that the distances between the
de-randomized IQ-Tree histograms and the �at histogram are considerably smaller than the
distances between the random IQ-Tree and the �at histogram (Figure 6.17). We conclude that
large lh_epsilon settings (� 102) distort the random NNI moves in IQ-Tree, causing a premature
termination of the tree search. We additionally compare the RAxML-NG histograms of the
respective datasets to both IQ-Tree histograms, and the �at histogram. We observe that the
proportions of lh_epsilon values with RAxML-NG is closest to the �at histogram for all four
datasets. This indicates that RAxML-NG is less sensitive to the lh_epsilon setting than IQ-Tree.

FastTree

With FastTree, we observe worse ML scores for lh_epsilon thresholds > 1. Considering the
proportion of lh_epsilon values, we notice that the proportion of a tree search returning a
plausible tree decreases with higher lh_epsilon thresholds. For most datasets, the thresholds
102 and 103 do not return plausible trees. This could be due to the fast heuristics in FastTree’s
implementation and the lack of an evaluation functionality (Section 3.6.3). The runtimes for
lh_epsilon values  1 show no substantial speedup. FastTree’s default lh_epsilon value 10�1 is
therefore appropriate.

6.2.2. Minimum Branch Length

minBranchLen settings � 10�3 yield worse ML scores for all three ML inference tools. Due
to the lack of an evaluation phase in FastTree, the degradations of ML scores are an order of
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Figure 6.17.: Earth mover’s distances of the proportions of lh_epsilon values in the set of plausi-
ble trees to a �at histogram for RAxML-NG, the random IQ-Tree variant and the
de-randomized IQ-Tree variant. The plot shows the distances for the four datasets
D1481, D1604, D1718, and D2445.

magnitude worse than for RAxML-NG and IQ-Tree. Depending on the tool, the runtimes follow
di�erent trends. We observe that the default values for all three inference tools are well-chosen.

RAxML-NG

The ML scores for trees inferred with RAxML-NG worsen on average by 0.16 % for min-
BranchLen settings � 10�3. All minBranchLen values in the range 10�9–10�3 achieve equally
good ML scores (variances  0.03 %). For RAxML-NG, the ML scores for 12 out of 22 datasets
again worsens noticeably with a minBranchLen setting of 10�10 (Figure 6.18a). The ML scores
for this setting are on average 0.1 % worse compared to minBranchLen = 10�9. Similar to the
ML scores, the runtimes for minBranchLen values in the range 10�9–10�3 are approximately
equal, with a slight trend towards faster tree searches with higherminBranchLen settings, while
the runs with minBranchLen 10�10 and 10�2 are slower. Given these observations, we conclude
that a minBranchLen setting of 10�9–10�3 during the tree search is reasonable. RAxML-NG’s
default value 10�6 falls in this range and is therefore appropriate.

IQ-Tree

In general, minBranchLen settings � 10�3 result in worse ML scores (Figure 6.19a). The ML
scores under the highest setting minBranchLen = 10�2 are on average 0.1 % worse. Similar to
RAxML-NG, for some datasets, we observe slightly worse ML scores for the minBranchLen
setting 10�10 ( 0.11 %). We observe a high impact of the minBranchLen setting on the runtime
of the IQ-Tree tree search phase (Figure 6.19b). The runtime of IQ-Tree increases with smaller
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.18.: In�uence of the minBranchLen threshold on the ML scores and runtimes of the
RAxML-NG tree search phase. The ML scores refer to the ML scores after the
evaluation phase. The runtimes refer to the runtime of the tree search phase. The
plots summarize the data over all datasets. The dashed vertical line indicates the
mean, and the solid vertical line the median value. The highlighted box indicates
the default minBranchLen value for RAxML-NG.
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minBranchLen values. For minBranchLen = 10�10 the tree search phase runs on average twice
as long as for minBranchLen = 10�3. Interestingly, the runtime also increases if minBranchLen
is set to 10�2. These tree searches run on average 52 ± 6 % longer than tree searches with
minBranchLen = 10�3. Considering these observations, the IQ-Tree default setting 10�6 for the
minBranchLen threshold appears to be a good trade-o� between runtime and ML scores.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.19.: In�uence of the minBranchLen threshold on the ML scores and runtimes of the IQ-
Tree tree search phase. The ML scores refer to the ML scores after the evaluation
phase. The runtimes refer to the runtime of the tree search phase. The plots
summarize the data over all datasets. The dashed vertical line indicates the mean,
and the solid vertical line the median value. The highlighted box indicates the
default minBranchLen value for IQ-Tree.

FastTree

Similar to the other ML inference tools, the ML scores for FastTree worsen with higher min-
BranchLen settings. With FastTree, the degradations are an order of magnitude worse than for
IQ-Tree and RAxML-NG. The trees for minBranchLen = 10�2 are on average 1.7 % less likely
than the respective maximum likelihood tree (Figure 6.20a). This is most likely due to the lack
of an evaluation mode that improves the ML scores under smaller minBranchLen settings. We
observe the highest decline of ML scores in our analysis for FastTree with minBranchLen set to
10�2 on the D4869 dataset. The ML score with this minBranchLen setting decreases by 525 %.
For minBranchLen values  10�5 the ML scores are approximately equal (variances ⌧ 0.1 %).
The runtime �uctuates depending on the dataset and the minBranchLen setting. In general,
there is a trend for smaller settings to run longer (Figure 6.20b). Given these observations, the
default minBranchLen value 5�9 appears to be a reasonable choice.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure 6.20.: In�uence of the minBranchLen threshold on the ML scores and runtimes of the
FastTree tree search phase. The ML scores refer to the ML scores after the tree
search phase. The runtimes refer to the runtime of the tree search phase. The
plots summarize the data over all datasets. The dashed vertical line indicates the
mean, and the solid vertical line the median value. The highlighted box indicates
the default minBranchLen value for FastTree.
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6.2.3. Remaining Thresholds

With the maxBranchLen threshold, we observe no in�uence on the ML scores of RAxML-NG or
IQ-Tree, but we do observe an in�uence on the runtimes. With both, RAxML-NG and IQ-Tree,
depending on the dataset, a di�erent maxBranchLen setting runs faster on average ( 16 %
di�erences).
For the threshold model_epsilon, we observe minor variances in ML scores for IQ-Tree and

RAxML-NG ( 0.1 %). For RAxML-NG, depending on the dataset, a di�erent model_epsilon
value appears to be the fastest setting with no clear trend. For IQ-Tree, we observe faster
tree inferences with higher model_epsilon thresholds. We make a similar observation for the
runtime of RAxML-NG’s threshold num_iters. The ML score is not a�ected by the setting of
num_iters. With the threshold bfgs_factor of RAxML-NG, we notice no in�uence on the ML
scores, but a trend towards faster runs for higher values.
For all these thresholds, despite their minor variations in runtimes and ML scores, we

conclude that the respective default settings in both RAxML-NG and IQ-Tree are appropriate.
The data for these thresholds is not shown in this chapter; we refer the interested reader to

Appendix A.1.2 or the interactive plots on our website at https://www.thesis.juliahaag.de/
numericalProperties/influenceSearch.
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7. Comparison of Inference Tools

Over time, numerous authors compared di�erent ML phylogenetic inference tools according
to various metrics [39, 48, 78]. During our research, we �nd that RAxML-NG, IQ-Tree, and
FastTree have been compared based on simulated datasets [36, 50, 77], but, to the best of
our knowledge, no author has yet compared RAxML-NG, IQ-Tree, and FastTree on multiple
empirical datasets in the same study. Given the data we have, it is evident to compare those
three tools. In our analysis, we focus on the comparison of ML scores and runtimes. We compare
RAxML-NG, IQ-Tree, and FastTree under the same conditions, according to our data generation
pipeline (Section 5.1). As stated in the previous Section 5.1, we run our data generation on
multiple di�erent systems. To ensure comparability, we run all tools for one dataset on the same
system. Since in contrast to RAxML-NG and IQ-Tree, FastTree does not provide an evaluation
mode, we discuss the value of such a functionality in the second section of this chapter.

7.1. Likelihood and Runtime

In Figures 7.1a and 7.1b we show the ML scores and runtimes for the three inference tools
RAxML-NG, IQ-Tree, and FastTree. For RAxML-NG and IQ-Tree, the ML score refers to the
ML score after the evaluation phase, and for FastTree after the tree search phase. The runtime
value states the corresponding runtime for the tree search phase. All ML scores and runtimes
are scaled relative to the RAxML-NG ML score and runtime, therefore all RAxML-NG values
collapse into a single point.

The values in Figure 7.1a show theML score of the best-found tree under the default numerical
threshold settings. This means that we set the numerical threshold to their default values
according to Table 5.1 during the tree search phase. Figure 7.1b shows the best found ML score
and corresponding runtime under any numerical threshold setting.
In terms of ML scores, RAxML-NG and IQ-Tree, as expected by the design of the search

heuristics (Section 3.6), outperform FastTree on all datasets in our analysis. The ML scores of
trees inferred with FastTree are up to 4 % worse than trees inferred with RAxML-NG. For 20
out of 22 datasets, RAxML-NG achieves equally good or higher ML scores than IQ-Tree (16/22
higher, 5/22 equal). Only for 1 out of the 22 datasets, IQ-Tree outperforms RAxML-NG. The
di�erences in ML scores between RAxML-NG and IQ-Tree are  0.05 %. For 21/22 datasets,
IQ-Tree has the longest runtime, and for all datasets FastTree has the shortest runtime. FastTree
runs on average 55 ± 44 times faster than RAxML-NG. RAxML-NG runs on average 5 ± 3 times
faster than IQ-Tree. The high variance in runtimes is due to the broad range of datasets we use
in our analysis. For smaller datasets, the runtime di�erences are less prominent than for larger
datasets.
Figure 7.1c compares the results if we apply the suggested changes in default values of the

likelihood epsilon values for RAxML-NG and IQ-Tree, as presented in the previous sections.
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(a) The highest achieved ML scores per dataset and the corresponding runtimes for the default settings
of each tool.
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(b) The highest achievedML scores per dataset and the corresponding runtimes if we allow any numerical

threshold setting.
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(c) The highest achieved ML scores per dataset and the corresponding runtimes if we increase the
likelihood epsilon default values for IQ-Tree and RAxML-NG.

Figure 7.1.: Comparison of ML scores and runtimes of RAxML-NG, IQ-Tree, and FastTree for all
datasets. All values are relative to the RAxML-NG values, therefore all RAxML-NG
values collapse into a single point.
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Due to the changes, the tree inferences for RAxML-NG and IQ-Tree run faster, and the runtime
gap to FastTree shrinks. Since the changes of likelihood epsilon values results in a higher
speedup for RAxML-NG than for IQ-Tree, the runtime gap between RAxML-NG and IQ-Tree
increases.
On our website at https://www.thesis.juliahaag.de/numericalProperties/comparison

the data is available as interactive plots and tables.

7.2. Influence of Evaluation Functionality

In addition to the standard phylogenetic tree inference, RAxML-NG and IQ-Tree both implement
an evaluation mode. During this re-evaluation, the algorithm optimizes the branch lengths
and substitution model parameters on a �xed tree topology. In our analysis, we re-evaluate the
trees after the tree search phase under conservative numerical threshold settings (Section 6.1).
Since we vary the numerical thresholds during the tree search phase, the threshold settings can
be very restricting (for example minBranchLen = 10�2). Using this re-evaluation, we allow the
inference tool to improve the ML scores under more conservative threshold settings. FastTree
does not provide a similar evaluation functionality. We therefore examine the improvements of
the ML scores and runtime costs resulting from this re-evaluation for RAxML-NG and IQ-Tree.
In our data, we observe an average runtime for the evaluation phase across all datasets and
numerical thresholds for RAxML-NG of 5 ± 5 % of the respective tree search time. For IQ-Tree,
we observe an average runtime of 4 ± 3 %. The improvement of ML scores after the evaluation
phase for RAxML-NG range between 0.0 % (no improvement) and 2.6 %, with an average of
0.2 ± 0.5 %. For IQ-Tree, we observe ML score improvements up to 3.6 %, with an average of
0.7 ± 1.1 %. Averaged over all tree inferences and datasets, the average improvements appear
to be minor. We observe, however, that the improvements of ML scores vary, depending on
the value of the numerical thresholds during the tree search phase. For example, with the
minBranchLen threshold for RAxML-NG, we see that the ML score for runs with minBranchLen
set to 10�2 during the tree search phase, improves on average 1.4 %. If the minBranchLen
threshold is set to 10�6, the improvement is only 0.02 % (Figure 7.2).

We observe that when using this evaluation functionality, we can recover from “bad” thresh-
old settings during the tree search phase. Figure 7.3 demonstrates this for the minBranchLen
threshold on one exemplary dataset (D1481). The ML score after the evaluation phase is
approximately equal, whereas after the tree search phase, we observe a decrease for higher
minBranchLen values.
In contrast to the ML scores, the runtime of the evaluation phase is largely una�ected by

the numerical threshold settings during the runtime. For the above example, the runtimes for
the evaluation phase were on average 4.0 % and 3.6 % of the runtime of the corresponding tree
search for minBranchLen = 10�2 and 10�6 respectively. In Section 6.2.1 we have seen that we
can exploit the evaluation mode to speed up the tree search using higher likelihood epsilon
values, while obtaining equally good ML scores after the evaluation phase.
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Figure 7.2.: ML score improvement for di�erent minBranchLen values after the evaluation
phase relative to the ML score after the tree search phase. The plot shows the
improvements over all datasets for RAxML-NG.
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Figure 7.3.: Average ML scores after the tree search phase and after the evaluation phase. This
plot shows the data for one exemplary datasets (D1481) for RAxML-NG.
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Part III.

Predicting Dataset Di�iculty
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8. Problem Description

Our main goal when inferring phylogenetic trees under the ML model is to �nd the most likely
tree. That is the tree that best explains the given data. Since the ML method is NP-hard [10],
we cannot ensure that an inferred tree is the global optimum, in most cases it is a local optimum.
For this reason, we typically infer multiple ML trees from di�erent starting trees to escape
local optima. We can then summarize the obtained trees in a so-called consensus tree [76].
For example, RAxML-NG and IQ-Tree by default conduct 20 distinct tree searches. For some
datasets, all tree searches lead to the same tree. This indicates an easy to analyze likelihood
surface with a single optimum. On other datasets, each tree inference yields a di�erent tree. For
such datasets we need to conduct more tree searches to build a convincing consensus-tree, than
we need for datasets that are easy to analyze. In order to save time and resources, it would be
valuable to predict whether a dataset is easy or di�cult to analyze before running multiple tree
searches. The terms “easy” and “di�cult”, when referring to the analysis of datasets, are not
clearly de�ned. We address this issue in Section 9.1. In this part of the thesis, we describe our
experiments to predict the di�culty of datasets using di�erent machine learning approaches.
We divide this part into three sections: In Section 9 we focus on the training data and the
de�nition of ground-truth labels with respect to dataset di�culty. In Section 10 we suggest a
set of features that can be useful for predicting the di�culty of datasets, brie�y introduce the
classi�cation algorithms we use, and analyze our prediction results. Finally, in Section 11 we
provide an overview of possible further experiments.
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9. Training Data

In order to train a di�culty prediction algorithm, we require training data. For our prediction
experiments, we use the same 22 empirical datasets as for our numerical analysis in Part II.
To increase the amount of training data, we additionally use 200 simulated datasets. For 100
of these simulated datasets, we reduce the phylogenetic signal of the data (Section 3.1) by
removing the second half of each sequence in each MSA �le. With most prediction algorithms
we train, as well as for performance evaluation, we rely on ground-truth di�culty labels for
each dataset. To obtain such labels, we need a quanti�able de�nition of di�culty. We address
this in Section 9.1. In Section 9.2 we explain the quanti�cation and label generation for our
training data.

9.1. Definition of Di�iculty

In order to train a reliable di�culty prediction algorithm, we need to infer reliable ground-truth
labels for our training datasets. To obtain such labels, we need a concrete de�nition of di�culty.
Consulting the literature, we �nd multiple de�nitions. Morel et al. [49] and Stamatakis [66]
describe a dataset as being di�cult, if multiple tree searches lead to statistically indistinguishable,
locally optimal tree topologies with “high” topological distances. Furthermore, Stamatakis [66]
describes the likelihood surface of di�cult datasets as rough and rugged, meaning the data
exhibits multiple likelihood peaks. Lakner et al. [41] make a similar observation and report
“topologies [. . . ] separated [. . . ] by a broad valley”. All of these statements describe a similar
phenomenon: the tree space exhibits multiple, statistically indistinguishable local optima. The
datasets D27 and D4869 are known to be di�cult [31, 49]. Since we only know for these two
datasets that they are di�cult, we need to infer di�culty labels for the remaining 220 datasets.
In order to do this, we use the above de�nitions to quantify di�culty. We explain this in the
following section.

9.2. Di�icult Di�iculty Labels

To quantify the di�culty, we conduct 20 tree searches for each dataset using RAxML-NG,
resulting in a set of 20 search trees. We then re-evaluate each of these trees, resulting in 20
evaluation trees. On these evaluation trees we perform all signi�cance tests as implemented in
IQ-Tree, and include trees passing all tests in the set of plausible trees. Given the tree search
trees, evaluation trees, and plausible trees, we compute a number of di�erent features in order
to assign a di�culty label to each dataset. For each tree set, we compute the average topological
distance between all trees, and the number of unique topologies. We use the Robinson-Foulds
Distance (RF-distance) [56] as topological distance metric. According to the above de�nitions,
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9. Training Data

for an easy dataset we expect only few unique topologies with a low pair-wise RF-distance.
Another indicator for di�culty might be the number of tree searches resulting in a plausible
tree. If the number of trees in the plausible tree set is substantially smaller than the number
of trees inferred, the dataset will presumably be di�cult to analyze. During our analyses, we
experiment with di�erent combinations of these features to de�ne ground-truth labels. Based
on our knowledge that D27 and D4869 are di�cult datasets, the RF-distance and the number of
unique topologies in the set of plausible trees appear to be good candidates for di�culty label
assignment. Rather than using the plain number of unique topologies, we scale the number of
unique topologies with the number of trees in the plausible tree set. Given these features, we
estimate the decision boundaries as:

1. The number of unique tree topologies in the plausible tree set is at least half the number
of trees in the plausible tree set.

2. The RF-distance in the plausible tree set is at least 10 %.

In our further di�culty prediction experiments, we assign the label “di�cult” to a dataset if
it ful�lls both of the above criteria. Figure 9.1 plots the features, decision boundaries, and the
resulting labels for the 222 training datasets, with the 22 empirical datasets being highlighted. In
our datasets, the labels are imbalanced. There are three times more easy datasets than there are
di�cult ones. This is important for choosing appropriate performance metrics. A performance
metric that only accounts for correct predictions will yield good scores for predictors that
predict “easy” for any dataset. We address this issue in Section 10.2.2.
For the 22 empirical datasets, we manually review the assigned labels. We notice that for

some datasets, we do not concur with the inferred labels. For example, dataset D46 is labelled
“easy”. In the plausible tree set, all trees have the exact same tree topology (RF-distance =
0). However, the trees group into two distinct ML scores. This indicates that while the tree
topologies are equal, the branch lengths or substitution parameters di�er. Yet, using signi�cance
tests, we cannot di�erentiate among these plausible trees. We observe a similar e�ect for D37
and D101. Given the limited amount of training data and the lack of de�nitive ground-truth
labels, we cannot determine whether these e�ects are outliers, or if our label inference is not
appropriate. Consulting Figure 9.1, we observe that most datasets have as many plausible trees
as there are unique topologies in the plausible tree set (the x-value is 1). This indicates that
this feature might not be particularly well-suited to separate the datasets into easy and di�cult
ones. In future experiments, we should address these issues, and infer labels based on other, or
additional di�culty indicators (Section 11).

Despite the observed issues with the inferred labels, we train and explore di�erent prediction
algorithms using these labels. We explain these experiments in the following chapter.
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9. Training Data
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Figure 9.1.: Inferred ground-truth labels for the 222 training datasets. The annotations highlight
the empirical datasets. Dots indicate easy datasets and stars indicate di�cult
datasets. The dashed lines depict the decision threshold for each feature. Only
datasets above both thresholds are labeled as being di�cult (highlighted area).
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10. Di�iculty Prediction

Given our training data, alongside the di�culty labels, we apply machine learning algorithms
to predict whether a dataset is di�cult or easy. Our goal is to predict the di�culty prior to
conducting multiple tree searches. In Section 10.1 we present a set of features that is based on
the MSA and a single tree inference. In Section 10.2 we brie�y explain the machine learning
algorithms we train for di�culty prediction, introduce performance metrics, and compare the
di�erent classi�cation algorithms.

10.1. Feature Generation

Given the MSA and a single RAxML-NG tree search, we are able to compute a variety of
di�erent features. In the following, we present a set of such features that could be useful
for di�culty prediction. A similar set of features has proven useful in predicting the best
substitution model for phylogenetic analysis [1]. Due to the limited amount of time, we only
implement a subset of these features for our experiments.

10.1.1. MSA Features

Table 10.1 summarizes the MSA features. As discussed in Section 3.1, the properties and the
phylogenetic signal of the MSA impact the analysis of the dataset and are therefore good
candidates for di�culty features. The features we implement for our experiments are indicated
by an asterisk. Researchers developed di�erent statistics to measure the phylogenetic signal
in the MSA [25, 33, 44]. In our experiments, we use the Treelikeness Score [33]. For further
experiments, we suggest implementing additional phylogenetic signal quanti�cation measures.

MSA Feature Description
# Taxa* Number of taxa in the MSA.
# Sites* Number of alignment columns in the MSA.
% Invariant sites* Percentage of fully conserved sites in the MSA.
% Gaps* Proportion of gaps in the MSA.
# Patterns* Number of unique sites.
# Parallel patterns Number of columns corresponding to the same template, for exam-

ple, the columns ACCC, CAAA, AGGG are parallel and correspond
to the template XYYY [25].

Char frequencies Frequencies of each character in the MSA.
MSA Entropy* Shannon Entropy [59] over all MSA sites.

See below for a more detailed description.
Bollback Multinomial* Multinomial test statistic [3]. See below for a more detailed descrip-

tion.
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10. Di�culty Prediction

Treelikeness Score* Phylogenetic signal quanti�cation [33]. See below for a more de-
tailed description.

Sum-of-pairs score Sum over all per-site scores; the score for one site in the MSA is
the sum over all pairwise scores between the characters of the site.

Table 10.1.: The set of MSA features we suggest for di�culty prediction. An asterisk indicates
that we implement this feature in our experiments.

Further Explanation of MSA Features

MSA Entropy The Shannon Entropy [59] measures the information value of data. We compute
the entropy for an MSA with # taxa as average Shannon Entropy over all" MSA sites:

� (MSA) =
1
"

"’
8=1

� (site8) (10.1)

with � (site8) = �

#’
9=1

% (char 9,8) · ;>6(% (char 9,8)) (10.2)

Bollback Multinomial Bollback [3] designed this test statistic to quantify the frequency of site
patterns. Let" be the length of the MSA, = the number of unique site patterns, b (8) the 8-th
unique pattern, and #b (8) the number of times this pattern occurs. We compute the multinomial
test statistic as:

) (MSA) =

 
=’
8=1

#b (8) · ;=(#b (8))

!
�" · ;=(") (10.3)

Treelikeness Score The treelikeness score [33] is designed to quantify the phylogenetic signal
of the data. The treelikeness score is based on the matrix of pairwise distances of all sequences
in the MSA. Let # be the number of taxa, and ⇡ the pair-wise distance matrix with entries
38, 988, 9 2 # . For a set of four taxa (a quartet) @ = (G,~,D, E), we compute the treelikeness as:

X@ =
3GE |~D � 3GD |~E
3GE |~D � 3G~ |DE

(10.4)

with 3G~ |DE = 3G~ + 3DE (10.5)
and 3G~ |DE  3GD |~E  3GE |~D (10.6)

The lower the score X@ , the stronger the phylogenetic signal in the quartet @. For the set # of
taxa, we compute this X@-score for every possible quartet @ in # . The treelikeness of the entire
data is then computed as the mean over all X@-scores. Due to the computational complexity,
for datasets with many taxa (> 100), Holland et al. [33] suggest computing the X@-scores for a
random sample of all possible quartets.

10.1.2. Tree Features

Our di�culty prediction aims to reduce the amount of resources used for analyzing easy
datasets, and to increase user awareness about the degree of di�culty of the dataset. However,
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10. Di�culty Prediction

for any dataset, we need to conduct at least one tree search to obtain one ML tree. We use
this single tree search to enrich our set of features. The idea behind this is that we predict the
di�culty after this single tree inference. Only if we identify the dataset as being di�cult, we
suggest conducting further tree searches. In Table 10.2 we present a set of potential features
based on a single RAxML-NG ML tree inference. An asterisk after the feature indicates that we
implement this feature in our experiments.

Tree Feature Description
# SPR rounds* Total number of RAxML-NG SPR rounds for a single tree

inference (Section 3.6.1).
Parsimony score* Parsimony score of the starting tree and the �nal tree.
Branch lengths* Minimum, maximum, average, standard deviation, sum of

all branch lengths.
RF-distance RF-distance between the starting tree topology and the

�nal tree topology
Likelihood di�erence Likelihood di�erence between the RAxML-NG starting

tree and the �nal tree, scaled relative to the likelihood of
the �nal tree.

Substitution model parameters Equilibrium frequencies, substitution rates, and U shape
parameter of the � distribution (Section 3.1).

Patristic distances Sum over the branch lengths between a pair of taxa, com-
puted for all pairs. Minimum, maximum, average, standard
deviation, sum of all patristic distances.

Table 10.2.: The set of tree features we suggest for di�culty prediction. An asterisk indicates
that we implement this feature in our experiments.

10.2. Di�iculty Prediction

In this section, we describe the di�culty prediction experiments we perform on the datasets
using the set of computed features.

For our experiments, we use both supervised and unsupervised machine learning algorithms.
Supervised algorithms rely on ground-truth labels for training. Unsupervised techniques learn
to classify the data based on their features. We show that we cannot reliably predict the
di�culty of datasets with either technique. In Section 10.2.1, we brie�y explain the supervised
and unsupervised machine learning approaches we use in our experiments.

In Section 10.2.2 we present a set of performance metrics according to which we compare all
trained di�culty prediction algorithms. In Section 10.2.3, we show the results of applying the
presented classi�ers to our training data and discuss why the results are not satisfactory.

10.2.1. Machine Learning Algorithms

For our prediction experiments, we train a number of di�erent machine learning algorithms.
We use the implementations of the Python machine learning library scikit-learn [51]. We pose
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10. Di�culty Prediction

the challenge of predicting the di�culty as a binary classi�cation task. We refer to instances of
the classi�cation algorithms as classi�ers. In the following, we brie�y explain the algorithms
we use. For a more detailed introduction we refer the interested reader to the respective
publications cited below and to Goodfellow et al. [26].

Support Vector Machine (SVM) The SVM classi�er [4] aims to separate the data in the feature
space such that the gap between the two target classes is maximized. If the data is not linearly
separable, the SVM makes use of the so-called kernel trick. The SVM maps the data into a
higher dimensional feature space, where the data is linearly separable.

Decision Tree A decision tree classi�er [5] is a tree-like structure, where each internal node
represents a split into subgroups based on a speci�c feature. The leafs represent classi�cation
decisions. Predicting the label of a datum is done by traversing the decision tree starting at the
root until a leaf is reached. In our analysis we limit the depth of the tree to 3, and require at
least 3 samples per leaf.

Random Forest A random forest classi�er [32] is an ensemble method that summarizes a
number of individually trained decision trees. In our experiments, we use a random forest that
consists of 10 decision trees, each with a maximum depth of 3.

Multilayer Perceptron (MLP) An MLP is a fully-connected neural network. To prevent over�t-
ting, we only use a single hidden layer with 20 neurons. As activation function, we use the
recti�ed linear unit function (ReLU). We set the learning rate to 10�3 and allow a maximum
number of 200 training iterations.

Adaptive Boosting (AdaBoost) The AdaBoost classi�cation algorithm is based on the concept
of boosting [21]. A set of weak individual classi�ers is combined into a single, stronger
classi�cation algorithm. Each weak classi�er votes for a prediction. The votes are summed,
weighted by the training error of the respective individual classi�er.

Principal Components Analysis (PCA) The PCA [14] is an unsupervised dimensionality reduc-
tion algorithm. The idea behind PCA is to map the (high-dimensional) feature space into a
lower dimensional space. This is achieved by rotating the feature space along the axes with the
highest variance. In our experiments, we use the PCA to reduce the dimensionality of the set
of MSA and tree features. We refer to the set of features before the PCA as plain features, and
to the set of features after the PCA as reduced features.

K-Nearest Neighbor (K-NN) The K-Nearest Neighbor algorithm [19] predicts the label of a
datum based on the labels of the : nearest neighbors in the feature space. During the learning
phase, the algorithm only stores the feature vectors alongside the labels of the training data. For
our experiments, we set the number of considered neighbors to : = 3. We apply the algorithm
to the plain features, as well as the reduced features.

K-Means The K-Means algorithm [45] groups the input data into: clusters based on similarities
in the feature space. Since di�culty prediction is a binary classi�cation problem, we set the
number of clusters to : B 2. We perform the clustering on the plain features, as well as the
reduced features.
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10.2.2. Performance Metrics

In order to evaluate the predictions, we split the datasets into a training set and a test set. The
classi�ers only train on the training set and do not see the test set during training. The training
set comprises 70 % of the data, and the test set 30 %. To enhance the number of training samples,
we use a technique called cross-validation. We train �ve instances of each classi�cation
algorithm, each instance on a di�erent train–test split. To evaluate the performance of a
prediction algorithm, we average over the performances of these �ve classi�ers. We implement
a set of performance metrics based on the so-called confusion matrix. This matrix shows the
proportion of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN) predictions, with “Positive” corresponding to “di�cult”:

Ground-truth di�culty
Di�cult Easy

Predicted di�culty Di�cult TP FP
Easy FN TN

Using this confusion matrix, we implement the following metrics:

Accuracy (ACC) Fraction of datasets the classi�er predicts correctly

�⇠⇠ =
)% +)#

)% + �% + �# +)#

True positive rate (TPR) Fraction of di�cult datasets the classi�er predicts as being di�cult;
this is also called sensitivity or recall

)%' =
)%

)% + �#

True negative rate (TNR) Fraction of easy datasets the classi�er predicts as being easy; this is
also called speci�city

)#' =
)#

)# + �%

Positive predictive value (PPV) Fraction of the predicted di�cult datasets that is actually
di�cult; this is also called precision

%%+ =
)%

)% + �%

Negative predictive value (NPV) Fraction of the predicted easy datasets that is actually easy

#%+ =
)#

)# + �#

False positive rate (FPR) Fraction of easy datasets the classi�er predicts as being di�cult

�%' =
�%

�% +)#
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False Negative rate (FNR) Fraction of di�cult datasets the classi�er predicts as being easy

�#' =
�#

)% + �#

It is important to note that using the accuracy alone as performance metric does not su�ce
for our task. As we have seen in Section 9.2, the labels in our training datasets are imbalanced:
there are three times more easy datasets than there are di�cult ones. As a consequence, a naïve
classi�cation algorithm that always predicts “easy” yields a high accuracy, but results in wrong
predictions for di�cult datasets. For our use case, our main goal is to obtain a high TPR. It
is important, to correctly predict the di�cult datasets, indicating that multiple tree searches
should be conducted. In contrast, low FPRs and high PPVs are less important. While we try to
reduce the necessary amount of resources for the analysis of easy datasets, it is less detrimental
to waste resources than to obtain unreliable consensus trees.

As a baseline for the performances of the classi�ers, we compare the results to two dummy
classi�ers. Such dummy classi�ers predict labels based on certain rules. We use a dummy
classi�er that always predicts “easy”, and a dummy classi�er that predicts labels based on
strati�ed sampling from the labels in the training data.

10.2.3. Prediction Results

In this section, we evaluate the set of trained classi�ers according to the presented performance
metrics. We compute the performance for the prediction results on the unseen test data.

In Table 10.3 we list the performances of the classi�ers we train, according to the presented
metrics. Comparing the accuracies and the true positive rates, we see why the accuracy as single
metric does not su�ce to evaluate the performance in our case. While the accuracies imply that
the classi�ers learn to distinguish between “easy” and “di�cult”, the low values of FPR and high
values of FNR and TNRs indicate that the classi�ers tend to predict “easy” rather than “di�cult”.
All classi�ers perform well in predicting the easy datasets (high TNR), but are not reliable
in predicting di�cult data (low TPR). Given that the TPR for our use case is an important
measure (Section 10.2.2), the results are not satisfactory. When predicting probabilities instead
of labels, we notice that across all classi�ers, many predictions are uncertain, especially negative
predictions. This is re�ected by the PPV and NPV values.

The classi�er that overall performs worst is the K-Means algorithm. This classi�er does not
correctly predict a single di�cult dataset. This can be due to the fact that with unsupervised
learning methods, it is di�cult to control the learned objective function [24]. The clustering
may lead to two separated classes, but they do not necessarily represent dataset di�culty.
Performing clustering on the reduced features does not improve the prediction results.

Comparing the classi�ers regarding the features they rely on for data separation, we see that
most classi�ers decide on di�culty based on the number of taxa. This is most likely due to an
imbalance in our training data. In our data, the average number of taxa for the di�cult datasets
is 581, whereas the average number of taxa for the easy datasets is 119. Besides the number
of taxa, we observe that there is no consensus on feature importance. For example, the SVM
classi�er does not consider the Bollback Multinomial (feature importance 0 %) for its decision,
while with the AdaBoost classi�er, the respective feature importance is 16 %. However, both
classi�ers achieve the same TPR. We observe a similar e�ect when repeatedly training a single
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Classi�er ACC TPR TNR PPV NPV FPR FNR
dummy (constant “easy” prediction) 0.7 0.0 1.0 — 0.7 0.0 1.0
dummy (strati�ed label sampling) 0.55 0.25 0.68 0.25 0.68 0.32 0.75
SVM 0.74 0.38 0.89 0.60 0.77 0.11 0.62
Decision Tree 0.68 0.19 0.89 0.43 0.72 0.11 0.81
Random Forest 0.74 0.38 0.89 0.60 0.77 0.11 0.62
MLP 0.36 0.25 0.41 0.15 0.56 0.59 0.75
AdaBoost 0.77 0.5 0.89 0.67 0.80 0.11 0.50
K-NN 0.68 0.25 0.86 0.44 0.73 0.14 0.75
K-Means (2 Clusters; raw features) 0.7 0.0 1.0 — 0.7 0.0 1.0
K-Means (2 Clusters; after PCA) 0.7 0.0 1.0 — 0.7 0.0 1.0

Table 10.3.: Comparison of di�erent classi�cation algorithms for di�culty prediction. Since
we focus on the number of correct predictions of “di�cult”, the TPR column is
highlighted.

classi�cation algorithm on the same data. During the di�erent trainings, di�erent features are
considered as beingmost informative for data separation. We presume that these inconsistencies
and the bad performance of the classi�ers are caused by two e�ects. As discussed in Section 9.2,
the ground truth labels we de�ne may be incorrect or noisy. Also, the features we compute on
the MSA and via a single RAxML-NG tree search might not su�ciently describe the di�culty
of a dataset. In the next chapter, we suggest further measures to address these issues.
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11. Further Experiments

By the time of completing this thesis, the task of predicting the di�culty of datasets remains
unsolved. We presented a number of approaches that result in unsatisfactory predictions.
These results can be caused by either unreliable ground truth labels, or insu�cient features
(Section 10.2). Future research in this area should therefore investigate the inference of correct
labels for training datasets. This can be achieved by using additional or di�erent indicators of
di�culty, or a combination of multiple indicators. In Section 9.2 we presented di�erent features
based on the tree search trees, evaluation trees, and plausible trees. In further experiments,
we could include additional features such as the standard deviation of likelihood values as
an indicator of multiple likelihood peaks. More work should be put into generating easy and
di�cult simulated datasets, to enhance the amount of training data. In our experiments, we
use unsupervised and supervised learning methods. Researchers developed further methods
that rely on supervised learning on only a small set of labeled training data and a large set of
unlabeled data [58]. Such techniques could limit the required amount of correct ground-truth
di�culty labels while yielding satisfactory results.
To improve the classi�cation, we suggest including the currently unimplemented features

we presented in Section 10.1. We further suggest incorporating the content of the MSA: how
many genes does the MSA comprise, and how closely related are the taxa presumably. This
requires incorporating information from previous phylogenetic analyses and the tree of life.
Further work can be done in improving the classi�ers, for example by penalizing uncertain
predictions or favoring predicting “easy”.
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Conclusion and Future Work
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12. Discussion

In the introduction of this thesis (Chapter 1), we formulated two goals: Decrease the inference
time while yielding equally likely phylogenetic trees, and prevent unnecessary tree inferences.
We addressed the �rst goal in Part II by investigating the in�uence of distinct numerical
thresholds on the ML scores and runtimes of RAxML-NG, IQ-Tree, and FastTree. We showed
that we can decrease the tree inference time for RAxML-NG and IQ-Tree by changing the
default values for two thresholds. We further showed that the quality of the resulting trees is
not a�ected by these changes. In order to prevent unnecessary tree inferences, we attempt to
predict the di�culty of datasets in Part III. By the time of completing this thesis, this challenge
remains unsolved. In the following, we discuss the key �ndings of both challenges in more
detail.

Numerical Properties of Maximum Likelihood Inference Tools that infer a phylogenetic tree
under the ML model rely on search heuristics. These heuristics use several internal numerical
thresholds. We investigated the in�uence of selected numerical thresholds on the ML scores and
runtimes of RAxML-NG, IQ-Tree, and FastTree. For all three tools, we investigated the in�uence
of the threshold settings on tree inference. For RAxML-NG and IQ-Tree, we additionally
investigated the resulting ML scores and runtimes when varying the numerical threshold
during the evaluation of �xed trees. For the evaluation phase, we do not notice a substantial
in�uence of any threshold, as long as the threshold values are in a reasonable range of values.
We suggested such a range of values in Section 6.1. If we vary the thresholds during the tree
search phase, we notice in�uences of the lh_epsilon threshold on all three inference tools, and
an in�uence of the RAxML-NG-speci�c threshold spr_lh_epsilon. We show that by changing
the respective default values, we can decrease the runtime of tree inferences for RAxML-NG
and IQ-Tree. For RAxML-NG, we suggest a change of the default lh_epsilon threshold to 10 and
the default spr_lh_epsilon threshold to 103. Under these new settings, we observe a speedup of
1.9 ± 0.6 for our test data. For IQ-Tree, we suggest a change of the default lh_epsilon value to
10, resulting in an average speedup of 1.3 ± 0.4. We showed that trees inferred under these
new threshold settings are equally likely as trees inferred under the current default settings.
For the remaining numerical thresholds, we con�rmed that their current default settings are
reasonable. By comparing the ML scores and runtimes of RAxML-NG, IQ-Tree, and FastTree
over all datasets, we showed that RAxML-NG and IQ-Tree outperform FastTree in terms of ML
scores, but FastTree is by far the fastest among the three ML inference tools.

Predicting Dataset Di�iculty We presented our attempts to predict how di�cult a dataset
is to analyze. We reviewed and quanti�ed de�nitions of di�culty from the literature, and
assigned ground-truth di�culty labels based on this quanti�cation of di�culty to the training
datasets. We presume that the inferred labels appear to insu�ciently represent the di�culty of
data. Hence, further work in inferring reliable ground-truth labels is needed. Despite these
challenges in inferring correct labels, we attempted to train classi�cation machine learning
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12. Discussion

algorithms. We showed that the resulting predictions are not satisfactory and presented a set
of possible further experiments.

59



13. Outlook

In this thesis, due to the limited amount of time, we only investigated the in�uence of seven
distinct numerical thresholds. The tree inference heuristics implemented in RAxML-NG, IQ-
Tree, and FastTree use additional thresholds. During the preparation phase, we hand-selected
the thresholds we believed to in�uence the ML scores and the runtimes to the largest degree.
In further experiments, additional thresholds could be included in the analyses.

In our analyses, we focused on assessing the in�uences of the thresholds separately. In future
analyses, we could investigate correlated in�uences of multiple numerical thresholds.
Tree inferences with FastTree are considerably faster than with RAxML-NG or IQ-Tree.

However, RAxML-NG and IQ-Tree yield more accurate trees. An interesting experiment would
be to �rst infer trees using FastTree and then re-evaluate these trees with RAxML-NG or
IQ-Tree. Since the runtimes of the evaluation modes in RAxML-NG and IQ-Tree are only a
small fraction of the tree inference time (5 ± 5 % for RAxML-NG, 4 ± 3 % for IQ-Tree; Section
6.1), this could combine the runtime advantages of FastTree with the accuracy advantages
of RAxML-NG or IQ-Tree. Another experiment could be to use a FastTree tree as starting
topologies in RAxML-NG and IQ-Tree.

We showed that IQ-Tree is sensitive to large lh_epsilon settings, and our analysis indicates that
this is caused by the randomness in the IQ-Tree search heuristics. An interesting experiment
would be to introduce a second likelihood epsilon value that is used during the hill-climbing
optimization cycles of the stochastic NNI moves (Section 3.6.2). Setting this additional likelihood
epsilon value to a small value and using a large lh_epsilon value for the outer optimization
cycle could result in a substantial speedup.
In future research, we aim to solve the task of di�culty prediction. In Chapter 11 we

presented a number of possible further measures to obtain more reliable ground-truth di�culty
labels and additional training data. We further presented possible approaches to improve the
results of the di�culty prediction algorithms.
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Glossary

bfgs_factor Controls the convergence of the L-BFGS-B method used for optimization of substi-
tution rates and stationary frequencies. 10, 17, 19, 24, 25, 39, 68, 71, 76

lh_epsilon Epsilon value for ML score improvement after one iteration of full optimization
(tree topology, branch lengths and model parameters). i, ii, vi–viii, 14, 19, 21, 22, 24–28,
30–35, 58, 60, 68, 70, 73, 75, 79, 80

maxBranchLen Maximum branch length. Upper limit for the branch length values. 9, 19, 24,
25, 39, 68, 69, 72, 74, 78

minBranchLen Minimum branch length. Lower limit for the branch length values. vi, viii, 9,
16, 19, 21–23, 25, 34–38, 42, 43, 68, 69, 72, 74, 78, 80

model_epsilon Epsilon value for model parameter improvement. 14, 19, 24, 25, 39, 68, 70, 73,
75, 79

num_iters Parameter to control the maximum number of iterations during branch length
optimization in RAxML-NG. 12, 17, 19, 24, 25, 39, 68, 71, 77

spr_lh_epsilon Epsilon value for ML score improvement after one SPR round in RAxML-NG. i,
ii, vii, 14, 17, 19, 21, 25, 27–30, 58, 68, 76

RF-distance Robinson–Foulds (RF) distance. 27, 46, 47, 51
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A. Appendix

A.1. Numerical Properties of Maximum Likelihood Inference

A.1.1. Data Generation Pipeline

In our analysis pipeline we use RAxML-NG, IQ-Tree, and FastTree to infer phylogenetic trees.
We additionally re-evaluate trees with RAxML-NG and IQ-Tree. Furthermore, we use the
signi�cance tests implemented in IQ-Tree. Table A.1 states the command lines used for the
respective task and tree inference tool.

Mode Tool Command Line
Search RAxML-NG raxml-ng --msa <MSA> --model GTR+G --tree pars{1}

--blmin <minBranchLen> --blmax <maxBranchLen> --lh-
epsilon <lh_epsilon> --param-eps <model_epsilon>
--brlen-smoothings <num_iters> --spr-lheps
<spr_lh_epsilon> --bfgs-factor <bfgs_factor> --seed
<SEED> --pre�x <OUTDIR> --threads 2

Search IQ-Tree iqtree -s <MSA> -m GTR+FO+G4 -ninit 1 -blmin
<minBranchLen> -blmax <maxBranchLen> -me
<model_epsilon> -eps <lh_epsilon> -seed <SEED> -pre
<OUTDIR> -nt 2

Search FastTree fasttree -gtr -gamma -cat 4 -nt -blmin <minBranchLen>
-lheps <lh_epsilon> -seed <SEED> < <MSA> > <OUTDIR>

Evaluation RAxML-NG raxml-ng --eval --msa <MSA> --model GTR+G
--tree <TREE> --blmin <minBranchLen> --blmax
<maxBranchLen> --lh-epsilon <lh_epsilon> --param-eps
<model_epsilon> --brlen-smoothings <num_iters>
--bfgs-factor <bfgs_factor> --seed 0 --pre�x <OUTDIR>
--threads 2

Evaluation IQ-Tree iqtree -s <MSA> -m GTR+FO+G4 -te <TREE> -
blmin <minBranchLen> -blmax <maxBranchLen> -me
<model_epsilon> -eps <lh_epsilon> -seed 0 -pre <OUT-
DIR> -nt 2

Signi�cance Tests IQ-Tree iqtree -s <MSA> -m GTR+FO+G4 -z <ALL_TREES> -
te<BEST_TREE> -n 0 -zb 10000 -zw -au -pre <OUTDIR>
-nt 2

Table A.1.: The command lines we use to conduct tree inferences, re-evaluations and signi�-
cance tests with RAxML-NG, IQ-Tree, and FastTree.
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A.1.2. Influence of Numerical Thresholds

A.1.2.1. RAxML-NG Evaluation Phase

The following �gures show the in�uence of all numerical thresholds on the ML scores and
runtimes of RAxML-NG if varied during the evaluation phase. Due to the broad range of
absolute likelihood values, we plot the degradation of ML scores in percent relative to the
best ML score per dataset. The runtimes state how much longer the evaluation phase runs
compared to the fastest evaluation phase per dataset.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(c) Degradation of ML scores across all datasets as
a function of maxBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.

1e+01 1e+02

1x

1.002x

1.004x

1.006x

1.008x

1.01x

RAxML-NG runtime increase 
(evaluation phase)

maxBranchLen

R
un

ti
m

e 
in

cr
ea

se
 f
ac

to
r

(d) Increase of the tree search time across all
datasets as a function of maxBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(e) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(f) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.
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(g) Degradation of ML scores across all datasets as
a function of model_epsilon values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(h) Increase of the tree search time across all
datasets as a function of model_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(i) Degradation of ML scores across all datasets as a
function of bfgs_factor values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(j) Increase of the tree search time across all
datasets as a function of bfgs_factor values. The
increase is measured relative to the minimum
runtime per dataset.
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(k) Degradation of ML scores across all datasets as
a function of num_iters values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(l) Increase of the tree search time across all
datasets as a function of num_iters values. The
increase is measured relative to the minimum
runtime per dataset.

Figure A.1.: In�uence of the numerical thresholds on the ML scores and runtimes of the RAxML-
NG evaluation phase. Each plot summarizes the data over all datasets. The dashed
vertical line indicates the mean, and the solid vertical line the median value. The
highlighted box indicates the default value of the respective numerical threshold
in RAxML-NG.
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A.1.2.2. IQ-Tree Evaluation Phase

The following �gures show the in�uence of all numerical thresholds on the ML scores and
runtimes of IQ-Tree if varied during the evaluation phase. Due to the broad range of absolute
likelihood values, we plot the degradation of ML scores in percent relative to the best ML score
per dataset. The runtimes state how much longer the evaluation phase runs compared to the
fastest evaluation phase per dataset.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(c) Degradation of ML scores across all datasets as
a function of maxBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(d) Increase of the tree search time across all
datasets as a function of maxBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.

72



A. Appendix

1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 1e+03
−1%

−0.5%

0%

0.5%

1%

IQ-Tree ML score degradation 
(evaluation phase)

lh_epsilon

D
eg

ra
da

ti
on

 o
f 
th

e 
M

L 
sc

or
es

(e) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(f) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.
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(g) Degradation of ML scores across all datasets as
a function of model_epsilon values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(h) Increase of the tree search time across all
datasets as a function of model_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.

Figure A.2.: In�uence of the numerical thresholds on the ML scores and runtimes of the IQ-Tree
evaluation phase. Each plot summarizes the data over all datasets. The dashed
vertical line indicates the mean, and the solid vertical line the median value. The
highlighted box indicates the default value for the respective numerical threshold
in IQ-Tree.

73



A. Appendix

A.1.2.3. RAxML-NG Tree Search Phase

The following �gures show the in�uence of all numerical thresholds on the ML scores and
runtimes of RAxML-NG if varied during the tree search phase. The ML scores refer to the ML
scores after the evaluation phase, and the runtimes refer to the runtimes of the tree search
phase. Due to the broad range of absolute likelihood values, we plot the degradation of ML
scores in percent relative to the best ML score per dataset. The runtimes state how much longer
the tree inference runs compared to the fastest tree inference per dataset.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(c) Degradation of ML scores across all datasets as
a function of maxBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(d) Increase of the tree search time across all
datasets as a function of maxBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(e) Degradation of ML scores across all datasets as
a function of model_epsilon values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(f) Increase of the tree search time across all
datasets as a function of model_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(g) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(h) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.
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(i) Degradation of ML scores across all datasets as
a function of spr_lh_epsilon values. The degrada-
tion is measured relative to the highest ML score
per dataset. Higher percentages indicate worse
ML scores.
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(j) Increase of the tree search time across all
datasets as a function of spr_lh_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(k) Degradation of ML scores across all datasets as a
function of bfgs_factor values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(l) Increase of the tree search time across all
datasets as a function of bfgs_factor values. The
increase is measured relative to the minimum
runtime per dataset.
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(m) Degradation of ML scores across all datasets
as a function of num_iters values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.

2e+01 3e+01 6e+01

1x

1.005x

1.01x

1.015x

1.02x

RAxML-NG runtime increase 
(tree search phase)

num_iters

R
un

ti
m

e 
in

cr
ea

se
 f
ac

to
r

(n) Increase of the tree search time across all
datasets as a function of num_iters values. The
increase is measured relative to the minimum
runtime per dataset.

Figure A.3.: In�uence of the numerical thresholds on the ML scores and runtimes of the RAxML-
NG tree search phase. Each plots summarizes the data over all datasets. The dashed
vertical line indicates the mean, and the solid vertical line the median value. The
highlighted box indicates the default value for the respective numerical threshold
in RAxML-NG.
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A.1.2.4. IQ-Tree Tree Search Phase

The following �gures show the in�uence of all numerical thresholds on the ML scores and
runtimes of IQ-Tree if varied during the tree search phase. The ML scores refer to the ML
scores after the evaluation phase, and the runtimes refer to the runtimes of the tree search
phase. Due to the broad range of absolute likelihood values, we plot the degradation of ML
scores in percent relative to the best ML score per dataset. The runtimes state how much longer
the tree inference runs compared to the fastest tree inference per dataset.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(c) Degradation of ML scores across all datasets as
a function of maxBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(d) Increase of the tree search time across all
datasets as a function of maxBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(e) Degradation of ML scores across all datasets as
a function of model_epsilon values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(f) Increase of the tree search time across all
datasets as a function of model_epsilon values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(g) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(h) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.

Figure A.4.: In�uence of the numerical thresholds on the ML scores and runtimes of the IQ-Tree
tree search phase. Each plot summarizes the data over all datasets. The dashed
vertical line indicates the mean, and the solid vertical line the median value. The
highlighted box indicates the default value for the respective numerical threshold
in IQ-Tree.

79



A. Appendix

A.1.2.5. FastTree Tree Search Phase

The following �gures show the in�uence of all numerical thresholds on the ML scores and
runtimes of FastTree if varied during the tree search phase. Due to the broad range of absolute
likelihood values, we plot the degradation of ML scores in percent relative to the best ML score
per dataset. The runtimes state how much longer the tree inference runs compared to the
fastest tree inference per dataset.
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(a) Degradation of ML scores across all datasets as
a function of minBranchLen values. The degra-
dation is measured relative to the highest ML
score per dataset. Higher percentages indicate
worse ML scores.
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(b) Increase of the tree search time across all
datasets as a function of minBranchLen values.
The increase is measured relative to the mini-
mum runtime per dataset.
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(c) Degradation of ML scores across all datasets as
a function of lh_epsilon values. The degradation
is measured relative to the highest ML score per
dataset. Higher percentages indicate worse ML
scores.
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(d) Increase of the tree search time across all
datasets as a function of lh_epsilon values. The
increase is measured relative to the minimum
runtime per dataset.

Figure A.5.: In�uence of the numerical thresholds on the ML scores and runtimes of FastTree.
Each plot summarizes the data over all datasets. The dashed vertical line indicates
themean, and the solid vertical line themedian value. The highlighted box indicates
the default value for the respective numerical threshold in FastTree.
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