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Abstract

In this work, we present two distinct applications of predictive modeling within the domain of
phylogenetic inference and placement.
Phylogenetic placements aim to place new entities into a given phylogenetic tree. While

there exist efficient implementations for producing phylogenetic placements, the underlying
reasons why particular placements are more difficult to perform than others are unknown.
In the first use case, we focus on the prediction of the difficulty of those phylogenetic

placements. We developed Bold Assertor of Difficulty (BAD). BAD can predict the placement
difficulty between 0 (easy) and 1 (hard) with high accuracy. On a set of 3000 metagenomic
placements, we obtain a mean absolute error of 0.13. BAD can help biologists understand
the challenges associated with placing specific sequences into a reference phylogeny during
metagenomic studies based on SHapley Additive exPlanations (SHAP) explanations.

Estimating the statistical robustness of the inferred phylogenetic tree constitutes an integral
part of most phylogenetic analyses. Commonly, one computes and assigns a branch support
value to each inner branch of the inferred phylogeny. The most widely used method for
calculating branch support on trees inferred under maximum likelihood is the Standard, non-
parametric Felsenstein Bootstrap Support (SBS). The SBS method is computationally costly,
leading to the development of alternative approaches such as Rapid Bootstrap and UltraFast
Bootstrap 2 (UFBoot2).

The second use case of this work is concerned with the fast machine learning-based approxi-
mation of those SBS values. Our SBS predictor, Educated Bootstrap Guesser (EBG), is on average
9.4 (𝜎 = 5.5) times faster than the major competitor UFBoot2 and provides an SBS estimate
with a median absolute error of 5 when predicting SBS values between 0 and 100.
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Zusammenfassung

Diese Arbeit beschreibt zwei Anwendungen von prädiktiver Modellierung im Bereich der
phylogenetischen Inferenz und Platzierung.
Phylogenetische Platzierung beschreibt den Prozess neue Entitäten in einen gegebenen

phylogenetischen Baum zu platzieren. Während es effiziente Implementierungen für die Er-
zeugung phylogenetischer Platzierungen gibt, bleiben die zugrunde liegenden Gründe, warum
bestimmte Platzierungen schwieriger auszuführen sind als andere, unbekannt.

In unserem ersten Anwendungsfall von prädikativer Modellierung fokusieren wir uns auf die
Vorhersage der Schwierigkeit von phylogenetischen Platzierungen und stellen den Bold Assertor
of Difficulty (BAD) vor. BAD kann die Schwierigkeit phylogenetischer Platzierungen auf einer
Skala von 0 (einfach) bis 1 (schwierig) mit hoher Genauigkeit vorhersagen. Auf einem Datensatz
von 3000 metagenomischen Platzierungen ist der mittlere absolute Fehler der Vorhersage von
BAD nur 0.13. BAD kann Biologen bei metagenomischer Studien unterstützen, indem er
Erklärungen für Vorhersagen mittels SHapley Additive exPlanations (SHAP)-Erklärungen
bietet.

Die Abschätzung der statistischen Robustheit eines berechneten phylogenetischen Baumes ist
ein wichtiger Bestandteil der meisten phylogenetischen Analysen. Als Robustheitsmaß werden
üblicherweise sogenannte Support-Werte für alle inneren Zweige des phylogenetischen Baums
berechnet. Eine weit verbreitete Standardmethode für die Berechnung von Support-Werten ist
der nicht-parametrische Felsenstein Bootstrap Support (SBS). Aufgrund der Rechenintensität
der SBS-Prozedur wurden alternative Ansätze wie Rapid Bootstrap und UltraFast Bootstrap 2
(UFBoot2) entwickelt.

Der zweite Anwendungsfall in dieser Arbeit beschreibt die Vorhersage von SBS-Werten
mittels maschinellem Lernen. Unser SBS-Prädiktor Educated Bootstrap Guesser (EBG) ist im
Schnitt 9.4-mal (𝜎 = 5.5) schneller als der Hauptkonkurrent UFBoot2 und liefert eine SBS-
Schätzung mit einem mittleren absoluten Fehler von 5 bei der Vorhersage von SBS-Werten
zwischen 0 und 100.
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1. Introduction

Geisser [37] defines predictive modeling as the development of a mathematical tool or model
that generates an accurate prediction. As a powerful facet of data science and machine learning,
predictive modeling demonstrates success in diverse domains, such as electricity consumption
prediction [2] and weather forecasting [16]. In biology, its usage ranges from tasks like the
prediction of the three-dimensional structure of proteins [49] to the machine learning-based
discovery of mutations in human cells [105]. This work focuses on the specific biological
subarea of phylogenetics.

Phylogeneticmethods establish evolutionary relationships among individuals, groups, species,
or populations [15]. We typically depict those relationships in a tree structure that we infer
using methods of computational phylogenetics. One important technique for phylogenetic
tree inference is the optimization of the Maximum Likelihood (ML) criterion. This method
strives to identify the most plausible phylogenetic tree that elucidates the biological data we
observe from biological entities, e.g. in the form of gene sequences. One successful application
of predictive modeling in phylogenetics is the prediction of the difficulty associated with the
inference process of a phylogenetic tree for a given set of sequences [42]. Building on this,
Togkousidis et al. [102] use this difficulty to obtain a speedup in the process of the phylogenetic
tree search.

Our work aims to explore novel applications of predictive modeling in the realm of phyloge-
netic tree inference. We consider the area of placing new data into existing phylogenetic trees
as a potential use case for predictive modeling. We aim to introduce a quantifiable notion of
difficulty for these phylogenetic placement processes. To this end, we identify a set of features
for the prediction of placement difficulty. Additionally, we seek to point out the capabilities of
explainable AI techniques to gain insights into the phylogenetic placement process.
Moreover, we apply predictive models to enhance the efficiency of phylogenetic analyses.

More specifically, we aim to predict the statistical robustness of branches in phylogenetic trees.
The quantification of uncertainty of branches in phylogenetic inference is an important part
of modern phylogenetic pipelines [50]. Therefore, a fast machine learning-based statistical
robustness test could provide an efficiency gain for phylogenetic analysis.

Through these two use cases, our research aims to contribute to applying predictive modeling
techniques within the domain of phylogenetics.

We start in Chapter 2 with an introduction to phylogenetic inference and placements under
the ML criterion and selected properties of phylogenetic trees. Chapter 3 describes the machine
learning techniques we employ in this work. Chapter 4 deals with the development of our
first use case, the phylogenetic placement difficulty predictor Bold Assertor of Difficulty (BAD),
whereas Chapter 5 describes Educated Bootstrap Guesser (EBG), a tool for bootstrap support
prediction and our second use case. Finally, Chapter 6 summarizes this work and lays out
future work.
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2. Phylogenetics

Phylogenetic trees have applications in assessing the process of speciation [64], epidemi-
ology [104], classification of proteins and genes [18], and more [109, 68, 85]. We estimate
phylogenetic trees based on evolutionary signals present in genetic material such as the De-
oxyriboNucleic Acid (DNA) or in proteins, encoded as Amino Acid (AA) sequences [15].

Phylogenetic trees depict these evolutionary relationships [71]. Figure 2.1 shows an example
of a phylogenetic tree of six bacterial species. A tree is an acyclic, connected graph (𝑉 , 𝐸) where
𝑉 is the set of vertices (nodes) and 𝐸 is the set of edges, called branches in phylogenetics [59].
We call nodes connected through only one single branch leaves or taxa (singular: taxon) [59].
Each branch defines a bipartition of the taxa in the tree. A bipartition is a split of the taxa
into two mutually exclusive sets [108]. The branch length between two nodes in the tree
represents the evolutionary distance between them [108]. Phylogenetic trees typically are
bifurcating, meaning that each internal node has exactly two children [71]. Internal nodes
represent hypothetical common ancestors of the taxa [71].

Branching in an evolutionary tree is also called lineage splitting [86]. After this splitting, the
evolution of the two created child lineages occurs independently. The sequences of lineage splits
comprise the topology of a phylogenetic tree [86]. Phylogenetic trees can be rooted or unrooted.

Figure 2.1.: Phylogenetic tree of bacterial species. Based on Fig. 1 of Moreira [71].

The root corresponds to the hypothetical most recent common ancestor [86] of all taxa. Rooting
is important for the directionality of the evolutionary process and the interpretability of the
tree [76]. We can root an unrooted phylogenetic tree by placing a distantly related species,
called outgroup, into the tree. We place the root in the branch to the outgroup resulting in a
rooted tree for the original taxa, called ingroup [108]. In the following, we explain how we
obtain phylogenetic trees.
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2. Phylogenetics

2.1. Phylogenetic Inference

Phylogenetic inference is the task of inferring the evolutionary history for a given set of
taxa [43]. For this inference process, we use morphological (anatomical traits) or molecular
data such as DNA or AA sequences. Molecular data provides an independent source of evidence
from morphological studies and can reveal patterns of evolution obscured at the morphological
level [43]. Furthermore, the ease of availability and representation of molecular data allows
for using efficient computational methods for inferring phylogenetic trees [43]. We can divide
phylogenetic tree inference methods into distance-based and character-based methods [59].
The distance-based methods compute a pairwise distance matrix between all taxa [59] and

subsequently use this matrix to create the phylogenetic tree. Examples of this approach are
the Unweighted Pair Group Method with Arithmetic mean (UPGMA) [91] or Neighbor Joining
(NJ) [82]. Distance-based methods tend to perform poorly when estimating large evolutionary
distances [108].
Character-based methods split the phylogenetic inference problem into two subproblems:

evaluating an optimality criterion for a given phylogenetic tree topology and optimizing the
tree topology itself [59]. Two approaches for this class of phylogenetic inference are Maximum
Parsimony (MP) and ML.

MP follows the principle of preferring simple hypotheses for evolution in the taxa over com-
plex ones. For phylogenetic trees, this results in minimizing the total amount of evolutionary
change in the data [26]. The tree with the least character changes is the MP tree. There exist
efficient dynamic programming algorithms for the evaluation of the parsimony criterion, like
Sankhoff’s [83] or Fitch’s [34] algorithm. MP suffers from problems such as the clustering
of long branches (called long branch attraction) and not capturing different substitution rates
between the nucleotides [108]. Furthermore, MP does not include branch length information.
Branch lengths represent the extent of accumulated evolutionary change and are thus a valuable
source of information [108].
This work focuses on phylogenetic inference under the ML criterion. The ML criterion

evolves from the MP criterion by the incorporation of differences in branch lengths and
substitution rates between nucleotides [108]. Figure 2.2 summarizes the ML tree inference
procedure.

Figure 2.2.: Overview of ML tree inference procedure
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In Section 2.1.1 we describe the foundations of Multiple Sequence Alignments (MSAs).
Following this, in Section 2.1.2 to Section 2.1.5 we explain the calculation of the likelihood
before delving into the fundamentals of likelihood maximization and optimization of tree
topologies. Finally, in Section 2.1.6 we briefly describe RAxML-NG [58] as an example of a
ML-based phylogenetic inference tool.

2.1.1. Multiple Sequence Alignment

The input for phylogenetic inference under the ML criterion are MSAs [59]. We represent each
taxon in the phylogenetic inference process by a sequence of discrete characters (e.g., DNA
or AA). We assume those sequences to be homologous, meaning that they are similar due to
descent with modification from a common ancestor [28]. We are not able to prove homology
as this requires proving common ancestry [28]. Convergence describes the phenomenon of
sequence similarity without common ancestry. If the sequences of two taxa are similar enough,
we assume homology instead of convergence, however, there is no consensus on the threshold
of sequence similarity for this homology assumption [28].

An MSA algorithm aligns a set of taxa in a data matrix. Each row of the matrix corresponds
to a taxon. The columns are the homologous sites of the set of taxa. The algorithm assigns
positional homology to each site 𝑠 of the data matrix by inserting gaps into the sequences [28].
We call the resulting aligned matrix, as well as the procedure, an MSA [108]. Figure 2.3 shows
an example MSA with four taxa and 17 sites. It makes the sequences comparable for further

Figure 2.3.: Example for a DNA MSA with four taxa.

evolutionary analysis [94]. We denote the 𝑘-th site of the 𝑖-th sequence (taxon) as 𝑠𝑖,𝑘 .
It is possible to use classic pairwise sequence alignment techniques like the Needleman-

Wunsch Algorithm [87] for creating MSAs, but it is computationally expensive due to the
exponentially growing number of sequence comparisons 𝑁 = (𝑆 − 1)! with 𝑆 being the number
of sequences [94].
More efficient progressive methods use lightweight sequence comparisons such as k-mer

similarities to construct a guide tree. The guide tree construction uses a phylogenetic inference
method that does not need an MSA as input, e.g. UPGMA or NJ. This guide tree determines the
sequence alignment order, progressively adding more sequences to the resultant alignment.
To manage complexity, progressive methods compute a consensus sequence of the current
alignment after each alignment step, representing it in subsequent steps. We define the
consensus sequence as the sequence comprising the most frequently occurring characters
(nucleotides or AAs), at each position within an alignment [3].
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A drawback of the progressive approach lies in the potential propagation of alignment
errors from initial alignment steps throughout the entire procedure [94]. Iterative progressive
methods address this issue by iteratively disaligning previously aligned groups and realigning
them, thereby mitigating potential errors. Two examples of iterative progressive alignment
tools are MUSCLE [25] and MAFFT [52]. MAFFT calculates the Fast Fourier Transform (FFT)
of numerical representations of the sequences to compare them in the spectral domain using
the similarities obtained for the guide tree creation [52].

2.1.2. Substitution Models

The evaluation of the likelihood of a given tree topology requires a substitution model that
includes the probabilities for evolutionary changes in DNA or AA data. From a formal point of
view, these models are continuous-time Markov chains. Under the assumption that sites evolve
independently, we characterize each site by a Markov chain with, e.g., four states (A, C, T, and
G) for DNA data [108].

To define a Markov chain, we require a transition-probability matrix. To calculate this matrix,
we define a substitution-rate matrix 𝑄 , which represents the instantaneous rate of change
between the nucleotides [108]. The most general substitution-rate matrix is the General Time
Reversible (GTR) model

𝑄 =

©«
− 𝑎𝜋𝑐 𝑏𝜋𝑔 𝑐𝜋𝑡
𝑎𝜋𝑎 − 𝑑𝜋𝑔 𝑒𝜋𝑡
𝑏𝜋𝑎 𝑑𝜋𝑐 − 𝑓 𝜋𝑡
𝑐𝜋𝑎 𝑒𝜋𝑐 𝑓 𝜋𝑔 −

ª®®®¬ , (2.1)

where 𝑎 to 𝑓 are the rates of the corresponding type of substitution and 𝜋𝑥 is the equilibrium
frequency of 𝑥 ∈ {𝐴,𝐶,𝑇 ,𝐺}. The diagonal elements of 𝑄 are the negative sum of the off-
diagonal elements in the row. Furthermore, a relative definition of the equilibrium frequencies
𝜋𝑥 and the rates reduces the parameters of the GTR model to eight [108].

Since the GTR model is the most general substitution model, all other substitution models
are submodels of it [79]. Other models assume fewer free parameters compared to the GTR
model. For example, the Jukes-Cantor [48] model assumes that all nucleotides are equally
frequent at equilibrium and the rate of one nucleotide changing to another is equal among all
nucleotides. It can be obtained by setting 𝜋𝑎 = 𝜋𝑐 = 𝜋𝑔 = 𝜋𝑡 and 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 = 𝑓 in the
Q matrix of Equation (2.1). The Kimura [55] model only distinguishes between changes from
pyrimidine (C, T) to purine (A, G) nucleotides. We call changes from pyrimidine to purine (and
vice versa) transversions, and changes that stay within the nucleotide group transitions. This
results in a different rate of change for both cases [108].

Using 𝑄 we define the transition-probability matrix as

𝑃 (𝑡) = 𝑒𝑄𝑡 , (2.2)

which is a matrix with entries 𝑃𝑥𝑦 (𝑡). Those entries yield the change probability from 𝑥

to 𝑦 over a branch of length 𝑡 where, for DNA data, 𝑥,𝑦 ∈ {𝐴,𝐶,𝑇 ,𝐺} [59]. We can solve
Equation (2.2) using eigendecomposition or diagonalization of 𝑄 [108]. 𝑃𝑥𝑦 (𝑡) describes the
mutation of one nucleotide into another as a function of time [59]. The time-reversibility of the
substitution model captures the property that 𝜋𝑥𝑃𝑥𝑦 (𝑡) = 𝜋𝑦𝑃𝑦𝑥 (𝑡) where 𝑃𝑥𝑦 is the probability
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of nucleotide 𝑥 mutating to nucleotide 𝑦 in time 𝑡 and 𝜋𝑥 is the frequency of nucleotide 𝑥 at
the equilibrium [59].

For AA sequences, the Q matrix of the GTR model (Equation (2.1)) comprises 20 × 20 entries,
a consequence of the expanded parameter space resulting from the AA residue code. The
GTR model for AAs has (19 × 20)/2 − 1 = 189 free parameters for the matrix 𝑄 as well as 19
free parameters for the equilibrium frequencies of the AAs [108]. Simpler AA substitution
models like the Poisson [73] model are analogous to the Jukes-Cantor model and specify equal
frequencies and substitution probabilities for all AAs.
Another facet of substitution models is the necessity for selective pressure to vary across

different sites or regions of genes or proteins. These pressure differences are due to the diverse
roles of sites in the structure and function of the encoded protein [108]. A prevalent approach
for modeling this variation is to employ a Γ distribution to model the distribution of mutation
rates 𝑟 and sample from this distribution [108]. The 𝛼 parameter determines the shape of the Γ
distribution [108].

Given the substitution model, a tree topology, and an MSA, we can compute the likelihood
of the tree.

2.1.3. Likelihood Evaluation

We define the likelihood of a tree
𝐿(𝑇𝑟𝑒𝑒, 𝜃 |𝐷𝑎𝑡𝑎) = 𝑃 (𝐷𝑎𝑡𝑎 |𝑇𝑟𝑒𝑒, 𝜃 ) (2.3)

as the probability of observing the data (theMSA) given a tree topology and 𝜃 as the combination
of the substitution model parameters and the branch lengths [43]. To assess the likelihood of a
tree, it is necessary to calculate the probabilities for each nucleotide (or AA) at the internal
nodes. Under the assumption of independence, we compute the likelihood independently for
all𝑚 sites as

𝑚∏
𝑖=1

𝑃 (𝑠𝑖 |𝑇𝑟𝑒𝑒, 𝜃 ). (2.4)

To avoid numerical challenges during the computation, we employ the log-likelihood
𝑚∑︁
𝑖=1

𝑙𝑜𝑔(𝑃 (𝑠𝑖 |𝑇𝑟𝑒𝑒, 𝜃 )) . (2.5)

A computationally efficientmethod for computing the log-likelihood for a specified phylogenetic
tree topology is the Felsenstein pruning algorithm [30]. This algorithm works by traversing the
tree in a post-order manner, extending up to the root of the phylogenetic tree. At the leaves,
the algorithm establishes the likelihood vectors based on the observed data. For example,
if the site 𝑠 contains an A at a specific leaf, the corresponding likelihood vector would be
𝐿(𝑠) = [1, 0, 0, 0]. We can handle gaps in the sequences by treating them as an ambiguous
nucleotide, i.e. 𝐿(𝑠) = [1, 1, 1, 1] [108].
The algorithm computes the log-likelihood of an internal node 𝑘 at site 𝑠 for nucleotide 𝑥

recursively based on the likelihoods of the left (𝑙 ) and right (𝑟 ) child node as

𝐿𝑘𝑥 (𝑠) =
(∑︁
𝑛∈𝑇

𝑃𝑥𝑛 (𝑏𝑙 )𝐿(𝑙)𝑛 (𝑠)
) (∑︁

𝑛∈𝑇
𝑃𝑥𝑛 (𝑏𝑟 )𝐿(𝑟 )𝑛 (𝑠)

)
. (2.6)
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𝑇 is the set of nucleotides and 𝑏𝑙 and 𝑏𝑟 are the branch lengths connecting the left and right
child nodes.

𝐿(𝑠) =
∑︁
𝑛∈𝑇

(
𝜋𝑛𝐿

(𝑙)
𝑛 (𝑐)

∑︁
𝑚∈𝑇

𝑃𝑛𝑚 (𝑏𝑣𝑟 )𝐿(𝑟 )𝑚 (𝑐)
)
. (2.7)

is the log-likelihood of a complete site at the root. Finally, the log-likelihood of a tree

𝑙𝑙ℎ =

𝑚∑︁
𝑠=1

𝑙𝑜𝑔(𝐿(𝑠)) (2.8)

is the sum of the likelihoods of all alignment sites. We optimize Equation (2.8) for a given tree
topology with respect to the branch lengths, all parameters of 𝑄 and 𝛼 for the Γ distribution (if
we model the rate heterogeneity) [108].

2.1.4. Parameter Optimization

One way to maximize the likelihood is setting the derivative of the log-likelihood function with
respect to 𝜃 to 0 and solving the system of equations [108]. This, however, only works under
simple substitution models like the Jukes-Cantor model and only for pairwise distances [108].
In practice, iterative numerical algorithms maximize the log-likelihood.

Branch length optimization capitalizes on the fact that only the likelihoods of ancestral nodes
change when a branch length changes. Therefore, we can optimize independently, keeping the
other branch lengths and parameters fixed [108]. One method for branch length optimization
is Newton’s method [36].
Since substitution model parameter changes typically affect the likelihood of all nodes in

the tree, we can not optimize them one at a time. Yang [107] proposes one way of substitution
parameter optimization in two phases. In the first phase, it optimizes the branch lengths
using Newton’s method with fixed substitution parameters. In the second phase, it applies a
multivariate optimization framework such as Broyden–Fletcher–Goldfarb–Shanno (BFGS) [38].
BFGS can optimize the substitution parameters with fixed branch lengths. This two-stage opti-
mization works well, if the substitution rates of the substitution model and the branch lengths
are not strongly correlated [108]. If we use a Γ distribution for modeling the rate heterogeneity,
this might lead to such a correlation. In that case, the 𝛼 parameter is often negatively correlated
with the branch lengths. Then an alternative is to combine both optimization phases [108].

2.1.5. Tree Topology Optimization

In theory, we need to compare the likelihoods for all possible tree topologies to find the
ML topology [108]. This problem is NP-hard due to the super-exponential growth of the
number of different tree topologies. For 𝑛 taxa there exist

∏𝑛
𝑖=3 2𝑖 − 5 tree topologies, making

the exhaustive topology search impractical for large sets of sequences [14]. An alternative
approach are heuristic tree searches, which aim to find potentially better tree topologies, given
a starting topology [108]. There are two categories of heuristic tree search.

The first category comprises agglomerative and divisive clustering algorithms. Starting from
single sequences, agglomerative approaches merge closer sequences based on an optimality
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criterion (such as ML or MP). One example of an agglomerative heuristic tree search is the
stepwise addition algorithm. It adds each sequence one by one into a tree. For each new
sequence, the algorithm evaluates the optimality criterion at each position and inserts it into
the branch yielding the best score. Divisive approaches work the other way around: They split
the taxa into finer groups while optimizing the optimality function [108].

The algorithms of the second category use perturbations on a given tree topology to create
new topology candidates. Following this perturbation, the algorithm decides which candidate
to choose based on the optimality criterion. Three possible perturbations are Nearest Neighbor
Interchange (NNI), Subtree Pruning and Regrafting (SPR), and Tree Bisection and Reconnection
(TBR) moves. Figure 2.4 shows an example of NNI and SPR moves. Swapping subtrees at
the internal branches from one side to the other (𝐵 and 𝐷 or 𝐵 and 𝐶) leads to different tree
topologies. SPR prunes a subtree from the tree and reinserts it at another position. Finally,
Figure 2.5 shows how TBR bisects a given tree and rejoins the trees to obtain a new tree
topology.

Figure 2.4.: Example of NNI (left) and SPR (right) based on Allen and Steel [4], p. 3f

Figure 2.5.: Example of TBR based on Allen and Steel [4], p. 4
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2.1.6. RAxML-NG

RAxML-NG is a phylogenetic inference tool using the ML optimization approach [58]. The tree
search starts from a set of starting trees. By default, RAxML-NG infers the starting trees using
random topologies and by inferring MP trees in a stepwise addition procedure. During the
heuristic search for the ML tree, RAxML-NG optimizes the branch lengths, substitution model
parameters, and topology. For branch lengths and the substitution model it uses Newton’s
method, Brents method [13], or an approximation of the BFGS for memory efficient computing
called L-BFGS (limited memory BFGS) [63]. For topological optimization, it employs an adapta-
tion of the topological perturbation technique SPR. RAxML-NG implements a fast variant of
SPR which considers possible insertion points up to a certain maximum distance away from
the point of pruning [58].

2.2. Phylogenetic Placements

In metagenomics, the accurate placement of new sequences within a given phylogenetic tree is
a common use case. Metagenomics itself involves the investigation of genetic material directly
from environmental or clinical samples. Examples of metagenomic projects are water quality
monitoring from water samples [10], or the analysis of the soil microbiom [21].
Metagenomic samples are typically obtained via Next Generation Sequencing (NGS) tech-

niques [74]. NGS can generate many cross-species short reads from the genetic material in
the metagenomic specimens. The categorization of the reads requires a similarity analysis
with known sequences. A common, similarity-based analysis tool is the Basic Local Alignment
Search Tool (BLAST) [57]. BLAST has some drawbacks when it comes to the metagenomic
use case: it can generate false positives [57], biological factors like parasitic DNA distort the
results [67] and it does not provide any evolutionary information.
The phylogenetic placement provides another approach to the metagenomic use case. It is

a method to place new sequences into already established phylogenies under an optimality
criterion like ML. One tool for phylogenetic placement is the Evolutionary Placement Algorithm
(EPA) [9], and its successor EPA-NG [6]. Figure 2.6 provides an overview of a phylogenetic
placement process.
We call the sequences to place Query Sequences (QS) and the tree Reference Tree (RT). A

sequence in the reference MSA is a Reference Sequence (RS). The input for EPA-NG is the RT
with its substitution model, the MSA that served as the foundation for the tree, and the QS
already aligned to the MSA. In the following section, we focus on the possibilities of aligning a
new sequence to a fixed MSA using MAFFT.

2.2.1. Extending Multiple Sequence Alignments

MAFFT implements two ways to add new sequences in existing phylogenies [51].
First, MAFFT can add new full-length sequences by an adopted guide tree procedure (−−add-

option). MAFFT computes a pairwise distance matrix with additional rows and columns for
the set of QSs. Based on this matrix, MAFFT establishes a guide tree. It does not compute the
alignment of a node in the guide tree if the children of the node are in the existing alignment
or already aligned to the existing alignment [51].
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Figure 2.6.: Standard procedure of phylogenetic placement. The first step is the alignment of
a new query sequence to the MSA. Then, the placement algorithm evaluates all
branches as candidates for placement and places the QS into the branch which leads
to the highest score.

The second approach is for short fragment QS. Because of the potential missing overlap
between the QS and the MSA sequences, the computation of global pairwise distances is
meaningless. Therefore, MAFFT uses the Smith-Waterman algorithm [90] to find the best
local alignment between every single QS and all RSs. Afterward, MAFFT uses the same guide
tree procedure as in the −−add-option for each QS independently. Finally, it combines all the
different MSAs resulting from the QS alignments and inserts gaps as needed [51].

2.2.2. Evolutionary Placement Algorithm

The aligned QSs serve as input to EPA. Algorithm 1 shows the pseudocode for the insertion
score computations of EPA based on Berger et al. [9]. Each QS will be placed in the branch
yielding the highest insertion score. EPA computes a result matrix of the size number of QS
× number of branches. It only optimizes the three branches adjacent to the insertion position,
as depicted in Figure 2.7. We define the Likelihood Weight Ratio (LWR) as the ratio of the
likelihoods of the different placements.
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Algorithm 1 Evolutionary Placement Algorithm (EPA)
𝑅 = R|𝑞 |×2|𝑟 |−3 ⊲ Initialize result matrix, r/q as set of RS/QS
𝑠𝑡𝑎𝑐𝑘 ← {𝑏} ⊲ Select starting tip branch b at random
while 𝑠𝑡𝑎𝑐𝑘 ≠ {} do

𝑏𝑟𝑎𝑛𝑐ℎ ← 𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝 ()
for 𝑖 ∈ {1, ..., |𝑞 |} do

𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙, 𝑑𝑖𝑠𝑡𝑎𝑙, 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 ← 𝑅𝑇 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑞𝑖, 𝑏𝑟𝑎𝑛𝑐ℎ)
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙, 𝑑𝑖𝑠𝑡𝑎𝑙, 𝑝𝑒𝑛𝑑𝑎𝑛𝑡) ⊲ Newton’s method or fast heuristic
𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 ← 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑅𝑇 )
𝑅(𝑖, 𝑏𝑟𝑎𝑛𝑐ℎ.𝑖𝑛𝑑𝑒𝑥) ← 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 ⊲ Update result matrix

end for
if 𝑏𝑟𝑎𝑛𝑐ℎ.𝑙𝑒 𝑓 𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 .𝑎𝑑𝑑𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then

𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑏𝑟𝑎𝑛𝑐ℎ.𝑙𝑒 𝑓 𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 )
𝑏𝑟𝑎𝑛𝑐ℎ.𝑙𝑒 𝑓 𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 .𝑎𝑑𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

end if
if 𝑏𝑟𝑎𝑛𝑐ℎ.𝑟𝑖𝑔ℎ𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 .𝑎𝑑𝑑𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then

𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑏𝑟𝑎𝑛𝑐ℎ.𝑟𝑖𝑔ℎ𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 )
𝑏𝑟𝑎𝑛𝑐ℎ.𝑟𝑖𝑔ℎ𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 .𝑎𝑑𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

end if
end while

Figure 2.7.: EPA optimization procedure, based on Berger et al. [9]. EPA places QS 𝑞1 in the
inner branch via the 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 , splitting the branch into 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 , which is oriented
towards the (virtual) root, and 𝑑𝑖𝑠𝑡𝑎𝑙 , which is oriented away from it. EPA only
optimizes proximal, distal, and pendant. When EPA inserts multiple sequences in
the same branch, it produces multifurcations (like 𝑞2 and 𝑞3).
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2.3. Properties of Phylogenies and Distances

In this final section on phylogenetics, we describe properties of phylogenies, namely the
difficulty of their inference process and their statistical robustness. We furthermore address
the measurement of topological distance through common tree distances, and we introduce a
method for comparing the branch lengths of trees.

2.3.1. MSA Difficulty

The tree inference heuristics described in Section 2.1.5 only yield locally optimal trees. A
consensus tree summarizes the information of multiple trees. It represents the splits that occur
in the majority of the trees in a set. Some MSAs lead to a topologically similar set of trees,
indicating a single likelihood peak and unambiguity of the analysis. In contrast, others result
in topologically distinct, yet statistically equivalent locally optimal trees. This suggests a more
complex likelihood surface. The MSA difficulty as defined by Haag et al. [42] quantifies this
notion of difficulty of phylogenetic inference under the ML criterion on a given MSA. It ranges
from a score between 0 (easy) and 1 (difficult). The authors introduce Pythia, a computationally
efficient, machine learning-based tool for predicting the MSA difficulty. Pythia employs a
LightGBM [53] boosting regressor as predictor. It uses various lightweight features from
the MSA, including the site-entropy and site-over-taxa rate, along with features capturing
topological variety derived from 100MP trees inferred with RAxML-NG. SinceML tree inference
is costly, prior knowledge of the inference difficulty before starting the process helps to refine
the dataset or to have more informed decision-making about the tree inference [42].

2.3.2. Measures for Branch Support

After the inference of a phylogenetic tree, it is good practice to assess its statistical confi-
dence [50]. Therefore this chapter describes measures of statistical confidence of a given tree
topology.

2.3.2.1. Felsenstein Bootstrap Support

Felsenstein [31] proposes the concept of the SBS of a phylogenetic tree. The SBS is a means
to calculate the statistical confidence in a given tree topology. Statistical bootstrap values in
general estimate the variability of an unknown distribution based on a limited set of observed
data [27]. The standard SBS procedure samples alignment sites of the MSA with replacement
to create a set of replicate MSAs. For each replicate, the procedure infers the corresponding
ML tree. Thus, the SBS procedure creates a set of bootstrap replicate ML trees. The frequency
of a specific branch within the set of replicate ML trees determines the SBS value for that
branch. The higher the SBS value for a branch, the more statistically robust it is. Common
representations of the SBS values are percentage values between 0 and 100, or fractions between
0 and 1. In the following, we represent SBS values as percentages between 0 and 100.
Felsenstein and Kishino [32] provide a statistical interpretation for the SBS values. They

propose to interpret the quantity of one minus the SBS value as a 𝑝-value for the null hypoth-
esis of the branch not forming part of the true tree. However, Susko [101] shows that this
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approximation is too conservative as a 𝑝-value. Given an SBS value > 95, the probability of the
branch not being in the true tree is substantially lower than 5%. Their experiments suggest
that, depending on the nature of the true tree, an SBS between 70 and 85 corresponds to a 5%
false positive bound.
The SBS procedure assumes, that each character is a random sample from a distribution

of all possible character configurations. This distribution depends on the phylogeny at hand.
Furthermore, the prior assumption of the phylogenetic bootstrap is the evolutionary indepen-
dence of the MSA sites. Under this independence assumption, the MSA sites are independently
and identically distributed (i.i.d.), which is a crucial condition for the validity of the bootstrap
method [31]. The independence assumption is one of the major points of criticism of the
bootstrap method. Furthermore, Galtier [35] proved that the bootstrap method can lead to an
overestimation of the support of wrong internal branches. Despite the criticism, the SBS is a
common tool for phylogenetic analysis [92].

2.3.2.2. Alternative Branch Support Measures

The SBS procedure is time- and resource-consuming, due to the high computational cost of
conducting a phylogenetic tree inference on each replicate. Typically, we need to infer 100-500
replicate trees for the support values to stabilize [75]).
To alleviate this computational bottleneck, researchers have proposed a plethora of faster

as well as alternative methods to measure branch support. For example, Stamatakis et al. [97]
propose the Rapid Bootstrap (RB) as part of the phylogenetic inference tool RAxML [96] as a
faster alternative to the SBS. RB uses a heuristic approach that implements a more superficial
ML tree search for approximating the SBS values and reducing computational costs. Onmultiple
large datasets Stamatakis et al. [97] show, that RB support values are highly correlated with the
SBS values (Pearson correlation between 0.92 and 0.99). The ultrafast bootstrap UFBoot [70]
and its current version UFBoot2 [47] entwine parametric and non-parametric aspects. The tree
space sampling of UFBoot2 is substitution model-dependent (parametric). UFBoot2 combines it
with a non-parametric bootstrap sampling of the MSA. UFBoot2 calculates easy-to-interpret,
unbiased branch support values, the UltraFast Bootstrap Support (UFBS). According to the
authors’ experiments, UFBoot2 is extremely fast, as, on the median, it is 778 times faster than
SBS and 8.4 times faster than RB.

Both RB and UFBoot2 employ an iterative approximation of their branch supports until they
either meet a stopping criterion or reach a maximum number of iterations. Thus, the runtimes
of these methods can vary, since they depend on the input MSA, which determines if and when
the support value calculations will converge.
Anisimova and Gascuel [5] propose an alternative definition of branch support based on

a parametric method for branch support estimation: The approximate Likelihood-Ratio Test
(aLRT). The aLRT compares the two best NNI moves at each inner branch via aLRT test, to
obtain a branch support. To accelerate the NNI likelihood evaluation, aLRT only optimizes
the branches adjacent to the branch of interest. As aLRT is parametric, it can be sensitive to
substitutionmodel violations. Substitutionmodel violations occur, for example, whenwe choose
a substitution model that is too simple for the data at hand. To correct those violations, Guindon
et al. [40] propose the Shimodaira–Hasegawa-like (SH-like) aLRT, which is a non-parametric
version of the aLRT. The aLRT and SH-like aLRT only focus on local perturbations of the given
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ML topology for which they calculate supports. This can induce overconfidence in branches if
there are other highly likely, yet topologically substantially distinct tree topologies [40]. One
recent example of such a tree space is a phylogeny of SARS-CoV2 genome sequences [72].
Despite the availability of these tools, SBS remains an important approach for measuring

branch support [20, 1, 69]. Guindon et al. [40] propose to combine the SBS with the SH-like
aLRT to obtain a holistic estimate of the branch robustness. UFBoot2 is less vulnerable to severe
model violations than UFBoot [47]. Yet UFBoot2 still requires an additional step to check for
such violations. SBS is inherently robust against model violations, as it is non-parametric.

2.3.3. Tree Distances

We compare phylogenetic trees using distance measures. The usage of both topological and
branch length distance measures provides a holistic interpretation of the difference between
two phylogenetic trees. Tree distances are a useful tool for capturing the variety of a set of trees.
Furthermore, we can use them to analyze the effect of changes in the MSA on the resulting
tree topology.

2.3.3.1. Robinson-Foulds Distance

The Robinson-Foulds (RF) distance is one common way to quantify the topological difference
between phylogenetic trees [81]. The normalized Robinson-Foulds (nRF) distance provides an
RF variant with a fixed value range. The nRF computes as

𝑛𝑅𝐹 (𝑡1, 𝑡2) =
|𝐵1 ∪ 𝐵2 | − |𝐵1 ∩ 𝐵2 |

2(𝑛 − 3) , (2.9)

where 𝐵1 and 𝐵2 are the sets of bipartitions of tree 𝑡1 and 𝑡2. The denominator normalizes
the result such that nRF ∈ [0, 1] by dividing the RF distance by the number of branches (or
bipartitions) in an unrooted phylogenetic tree with 𝑛 taxa. The (n)RF has the drawback of
ignoring potential similarities between almost identical splits. This can lead to the edge case,
in which a single different taxon position results in the maximum (n)RF distance [89].

2.3.3.2. Quartet Distance

Another topological distance measure, which is more robust to almost identical splits, is the
quartet distance (QD) [19]. The QD quantifies symmetric differences between two phylogenetic
trees by the number of quartets that are different [29]. A quartet is a four-taxon topology and
the smallest number of taxa with more than a single distinct tree topology. Figure 2.8 depicts
the three different tree topologies for unrooted binary trees that exist for a quartet. We compute
the QD as

𝑄𝐷 (𝑡1, 𝑡2) =
|𝑄 (𝑡1) −𝑄 (𝑡2) | + |𝑄 (𝑡2) −𝑄 (𝑡1) |

2 , (2.10)

where 𝑄 (𝑡1) and 𝑄 (𝑡2) are the quartets induced by the trees 𝑡1 and 𝑡2. One way of normalizing
the QD is the division by the total number of quartets

(4
𝑛

)
[98]. The normalized QD (nQD)

between two random trees is on average 2
3 [98]. This value is the reference value for the

maximum nQD during interpretation and the basis for the scaling of the nQD between 0 and 1.
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Figure 2.8.: All possible topologies for a four taxa, unrooted binary tree with its induced bipar-
titions.

2.3.3.3. Felsenstein Branch Score Distance

Kuhner and Felsenstein [60] propose the Branch Score Distance (BSD) as the square root of the
sum of squared distances between the branches of two trees

𝐵𝑆𝐷 (𝑡1, 𝑡2) =

√√√
𝑁∑︁
𝑖=1
(𝑏1,𝑖 − 𝑏2,𝑖)2, (2.11)

where 𝑏1,𝑖 and 𝑏2,𝑖 are the branch length of branch 𝑏𝑖 in tree 𝑡1 and 𝑡2. We compare branches
that are only present in one tree with a branch of length zero. The scaling of both trees such
that their branch lengths sum up to one provides a way of normalizing the BSD [60].
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Two types of machine learning algorithms are relevant for this work: regression and classi-
fication. Modeling the relationship between a continuous dependent variable, called target,
and independent variable(s) is a regression analysis [24]. If the target is discrete, the problem
is a classification problem. A regression or classification uses the independent variables to
predict the value of the target. There are different types of algorithms to perform regression or
classification tasks. One type of algorithm that can handle both problems are Gradient Boosting
Trees (GBTs). To date, GBT algorithms are in the top-scoring machine learning algorithms [33].
Consequently, we use a GBT algorithm for the regression as well as the classification tasks in
this work.
In this chapter, we first introduce the concept of a decision tree as a foundational weak

learner (Section 3.1) for GBTs. Subsequently, we delve into the utilization of sequentially trained
decision trees, known as boosting algorithms (Section 3.2). Building upon this foundation,
in Section 3.3 we describe how GBTs use gradient information to augment the prediction
performance. This chapter is predominantly based on the book “The Elements of Statistical
Learning” by Hastie et al. [45]. In this work, we use the Light Gradient Boosting Machine
(LightGBM) implementation of GBTs. In Section 3.4 we present technical details of LightGBM
as a specific GBT algorithm.

Finally, the chapter outlines the performance evaluation metrics we use for both the regres-
sion and classification problems (Section 3.5) and briefly describes a technique for providing
explanations for predictions of machine learning models (Section 3.6).

3.1. Decision Trees

Decision trees are a type of machine learning algorithms that can solve regression and classifi-
cation tasks. For the remainder of the chapter, we will denote the independent variables as a
vector 𝑥 ∈ R𝑁 , and the target variable as a scalar value 𝑦 ∈ R for regression and 𝑦 ∈ {−1, 1}
for (binary) classification.

Decision trees partition the data space of the independent variables into disjoint regions 𝑅 𝑗

and represent them by the 𝑗-th terminal node of the decision tree. For each region, the tree
learns a constant 𝛾 𝑗 that serves as the prediction for the target variable if a data point falls into
region 𝑅 𝑗 . Thus, we formally define a decision tree 𝑇 as

𝑇 (𝑥, 𝜃 ) =
𝐽∑︁
𝑗=1

𝛾 𝑗 𝐼 (𝑥 ∈ 𝑅 𝑗 ), (3.1)

with 𝜃 being the parameter which comprises the 𝐽 regions and their corresponding constant 𝛾 𝑗 .
The minimization of the empirical risk on the training data tuples (𝑥𝑖, 𝑦𝑖) yields the parameter
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estimations

𝜃 = argmin
𝜃

𝐽∑︁
𝑗=1

∑︁
𝑥𝑖∈𝑅 𝑗

𝐿(𝑦𝑖,𝑇 (𝑥𝑖, 𝜃 )) . (3.2)

We can split this optimization problem into two parts: finding 𝛾 𝑗 given 𝑅 𝑗 and finding 𝑅 𝑗 . One
definition of 𝛾 𝑗 for regression is the mean of all target variables 𝑦𝑖 where 𝑦𝑖 ∈ 𝑅 𝑗 . One approach
to find 𝑅 𝑗 is a greedy top-down recursive partitioning that optimizes a splitting criterion until
it fulfills a termination condition. Those splitting criteria enforce more and more homogeneous
partitions (with respect to the target) of the data throughout the training process.
We start with the whole dataset as a partition and search for the best feature 𝑗 of 𝑥 and

its split point 𝑠 via the split criterion. For the original CART (Classification And Regression
Tree) [12] regression tree algorithm, this criterion is the Sum of Squared Errors (SSE). This
leads to the CART regression objective

min
𝑗,𝑠
(min

𝑐1

∑︁
𝑥𝑖∈𝑅1 ( 𝑗,𝑠)

(𝑦𝑖 − 𝑐1)2 +min
𝑐2

∑︁
𝑥𝑖∈𝑅2 ( 𝑗,𝑠)

(𝑦𝑖 − 𝑐2)2) (3.3)

with 𝑐𝑘 as the mean of 𝑦𝑖 for all 𝑥𝑖 ∈ 𝑅𝑘 ( 𝑗, 𝑠) and 𝑅1 and 𝑅2 as the two partitions that the split
generates.

For a classification decision tree, one example of a split criterion is the misclassification error

1
𝑁𝑚

∑︁
𝑖∈𝑅𝑚

𝐼 (𝑦𝑖 ≠ 𝑘 (𝑚)), (3.4)

where 𝑘 (𝑚) is the most prevalent class in node𝑚. 𝑅𝑚 is the nodes region and 𝑁𝑚 the total
number of observations in 𝑅𝑚 .

3.2. Boosting

Boosting is an ensemble method that combines multiple weak learners (such as decision trees)
to a strong one. We consider a learner weak if the learner can produce a hypothesis that
performs only slightly better than random guessing [84]. Boosting algorithms iteratively learn
weak classifiers or regressors. After each iteration, the boosting algorithm weighs the training
data. Wrong predictions get more weight than correct ones, which forces the subsequent weak
learner to make up for the mistakes of his predecessors. Formally, we define a boosted tree
model as the sum of a set of trees

𝐵𝑇 (𝑥) =
𝑀∑︁

𝑚=1
𝑇 (𝑥, 𝜃𝑚) (3.5)

which we obtain by the sequential optimization of

𝜃𝑚 = argmin𝜃𝑚
𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) +𝑇 (𝑥𝑖, 𝜃𝑚)) (3.6)
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where 𝜃𝑚 is the region set and the constants for the next tree, 𝑓𝑚−1 the current model, and 𝑁

the number of training data tuples. For a regression boosted tree model under the SSE loss, the
solution to Equation (3.6) is the regression tree that predicts the residuals of the current model
𝑦𝑖 − 𝑓𝑚−𝑖 (𝑥𝑖).

The solution of Equation (3.6) for a binary classification boosting algorithm under the
exponential loss 𝐿(𝑦, 𝑓 (𝑥)) = 𝑒−𝑦𝑓 (𝑥) is the tree that minimizes the exponentially weighted
error rate:

𝑁∑︁
𝑖=1

𝑤
(𝑚)
𝑖

𝐼 (𝑦𝑖 ≠ 𝑇 (𝑥𝑖,Θ𝑚)) (3.7)

with𝑤 (𝑚)
𝑖

= 𝑒−𝑦𝑖 𝑓𝑚−1 (𝑥𝑖 ) .

3.3. Gradient Boosting

Gradient boosting algorithms are a specific type of boosting algorithms that use the gradient
descent optimization technique to improve the performance of weak learners. They perform
gradient descent on the objective Equation (3.6). Gradient descent solves the numerical opti-
mization reformulation of the loss minimization in terms of a sum of 𝑀 component vectors
𝑓𝑀 =

∑𝑀
𝑚=0 ℎ𝑚 with ℎ𝑚 ∈ R𝑁 . ℎ𝑚 = −𝜌𝑚𝑔𝑚 defines the step of steepest descent at each iteration

with 𝜌𝑚 as the scalar step size and 𝑔𝑚 ∈ R𝑁 as the gradient

𝑔𝑚 =

[
𝛿𝐿(𝑦𝑖 ,𝑓 (𝑥𝑖 ))

𝛿 𝑓 (𝑥𝑖 )

]
∀𝑖∈𝑁

(3.8)

of the loss 𝐿(𝑓𝑚−1) of the current model on the training data. We define the step size 𝜌𝑚 as
𝜌𝑚 = argmin𝜌 𝐿(𝑓𝑚−1 − 𝜌𝑔𝑚). Given the gradient and the step size a gradient descent step for
the current model is 𝑓𝑚 = 𝑓𝑚−1 − 𝜌𝑚𝑔𝑚 . The optimization uses the negative gradient since this
is the direction of the steepest descent of the current loss 𝐿(𝑓 ). The gradient in Equation (3.8)
is only defined at the training data points 𝑥𝑖 . That is problematic since the goal is to generalize
to unseen data. To overcome this problem, at each iteration, we fit a regression tree that
approximates the negative gradient. In this context, the negative gradient serves as the pseudo
residuals 𝑟𝑚 .
The number of iterations 𝑀 as well as the individual tree sizes 𝐽𝑚 are hyperparameters.

For large 𝐽𝑚 and 𝑀 the loss 𝐿 on the training data can be arbitrarily small. This leads to
the phenomenon called overfitting [46]. Overfitting occurs when a given model is too well
optimized for the training data leading to a worse performance on unseen data. Another way
to prevent the GBT model from overfitting is the introduction of a learning rate 𝑣 ∈ [0, 1]. The
hyperparameter 𝑣 scales the individual contributions of each tree when updating the model.
However, the hyperparameters 𝑀 and 𝑣 are not independent. Smaller values of 𝑣 lead to a
larger𝑀 for the same training loss. Therefore, careful hyperparameter tuning is crucial.

3.4. Light Gradient-Boosting Machine

LightGBM is an open-source GBT framework developed by Ke et al. [53]. It implements a
histogram-based best split finding. LGBM calculates the feature value histograms and uses their
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bin values to find the best split, instead of trying all the possible feature values. Furthermore, it
has two major techniques making it efficient and scalable to large datasets.
First is the Gradient-based One-Side-Sampling (GOSS). The authors noticed, that data in-

stances with a larger gradient contribute more to the homogeneity of the splits during training.
Thus, LGBM implements a downsampling procedure, which randomly drops those instances
which have small gradients. This leads to fewer splits to evaluate during step 4 and therefore
makes the whole algorithm more efficient.

The authors call the second technique Exclusive Feature Bundling (EFB). Due to the curse of
dimensionality, high dimensional data spaces are sparse [54]. LGBM exploits the fact that in
those high-dimensional spaces features often are mutually exclusive, which means that they
are rarely non-zero simultaneously. Therefore, we do not lose information when bundling the
corresponding features together in a new feature, the exclusive feature bundle. This reduces the
complexity for histogram-based best split finding in step 5 from 𝑂 (𝑁 × 𝑑) to 𝑂 (𝑁 × 𝐵) where
𝑁 is the number of training samples, 𝑑 the dimensions, and 𝐵 the number of bundles.

LGBM can speed up the training up to a factor of 20, depending on the dataset. Besides this,
the accuracy on the benchmark classification tasks was comparable to major competitors such
as XGBoost [17].

3.5. Prediction Quality

For the evaluation of the prediction quality of either regression or classification problems,
there is a plethora of performance metrics. In this section, we introduce the regression and
classification metrics we choose for model evaluation in our work.

3.5.1. Regression Metrics

Botchkarev [11] defines a typology of performance metrics for measuring the performance of
regression algorithms. A generic formula for a regression performance metric for the target
variable 𝑦 and its prediction 𝑦 is

M = G{N[D(𝑦𝑖, 𝑦𝑖)]}, (3.9)
where G is an aggregation method, N a method of normalization and D a distance measure. For
G, we will use the arithmetic mean and – to overcome the outlier sensitivity – the median. N
is the identity normalization since we are not comparing a series of predictions with different
scales. For 𝐷 , we choose a distance measure that is sensitive to outliers (squared distance) and
two that are robust (difference and absolute difference). This leads to the following selection of
regression performance evaluation metrics:

3.5.1.1. Mean Bias Error

The distance D = 𝑦𝑖 − 𝑦𝑖 and the mean aggregation yields the mean bias error

𝑀𝐵𝐸 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖). (3.10)

We use it to assess whether the prediction model is biased in the target prediction.
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3.5.1.2. Mean/Median Absolute Error

The absolute distance D = |𝑦𝑖 − 𝑦𝑖 | and the mean aggregation yields the mean absolute error

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1
( |𝑦𝑖 − 𝑦𝑖 |) . (3.11)

We use it for the assessment of the overall model quality on the original scale of the target
variable. For the analysis of the influence of outliers, we select the Median Absolute Error
(MdAE) as a supplement metric.

3.5.1.3. (Root) Mean Squared Error

The squared distance D = (𝑦𝑖 − 𝑦𝑖)2 and the mean as aggregation function yields the mean
squared error

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2. (3.12)

This metric penalizes large deviations more than small ones, which makes it sensitive to
outlying large prediction errors. For interpretation purposes, we transform it back to the target
scale by taking the square root, which yields the root mean squared error

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1
((𝑦𝑖 − 𝑦𝑖)2). (3.13)

3.5.2. Classification Metrics

We opt to employ the following four distinct classification metrics to assess the performance of
a classifier.

3.5.2.1. Accuracy

We use the accuracy [80]
𝐴𝑐𝑐 =

𝑇𝑃 + 𝐹𝑃
𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 (3.14)

because it is easy to interpret. 𝑇𝑃 are true and 𝐹𝑃 false positives (threshold 𝑡 exceeded). We
define 𝐹𝑃 and 𝐹𝑁 analogously. Since the Acc is sensitive to class imbalances, we use other
metrics as well.
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3.5.2.2. Balanced Accuracy

We use the balanced accuracy

BAC =
recall + specificity

2 (3.15)

recall = TP
TP + FN (3.16)

specificity =
TN

TN + FP (3.17)

as a version of the Acc which is insensitive to class imbalances [22].

3.5.2.3. F1-score

The F1-score [80]

𝐹1 = 2 × precision × recall
precision + recall (3.18)

precision =
TP

FP + TP (3.19)

serves as the harmonic mean between precision and recall, thus it penalizes FPs and FNs
equally. In contrast to accuracy, the F1-score is robust against class imbalances. The values of
the F1-score range from 0 (worst) to 1 (best).

3.5.2.4. ROC-AUC-score

The ROC-AUC-score [80] quantifies theArea Under the ROC (Receiver Operating Characteristic)
Curve (AUC). In contrast to accuracy and the F1-score, it allows for evaluation without the
need to set a class probability threshold, since it relies on the raw class probabilities. The best
binary classifier yields an AUC-score of 1, while a random classifier yields an AUC-score of 0.5.

3.6. Explainable Machine Learning

Understanding a machine learning model and its predictions is crucial to gain insights into the
problem it solves. A GBT algorithm, since it is a tree-based approach, provides information
about the usage of split features. Those feature importances quantify, how often a GBT model
uses a feature as a splitting feature, or how much the splits contribute to more homogeneous
data partitions. While this helps explain the overall structure of the GBTs, it does not provide
information on how the feature values influence the prediction outcome. One technique that
does provide those explanations are Shapley values [62]. The main idea is to compare the
absence of a feature 𝑖 with its presence and quantify the effect on the prediction in the so-called
Shapley values

𝜙𝑖 =
∑︁

𝑆⊆𝐹\{𝑖}

|𝑆 |!( |𝐹 | − |𝑆 | − 1)!
|𝐹 |! (𝑓𝑆∪{𝑖} (𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 )), (3.20)
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with 𝐹 as the set of all features, 𝑥𝑆 representing the values of the input features in 𝑆 and 𝑓 as the
machine learning model. These classic Shapley values require a retraining of the model for each
feature subset 𝑆 . Shapley sampling values approximate Equation (3.20) by sampling [99]. They
approximate the removal of a feature by integration of the respective feature with sampling
from the training dataset using Monte Carlo integration.

Building upon this, Lundberg and Lee [65] propose SHapley Additive exPlanations (SHAP), a
model-agnostic, Shapley value-based framework for providing explanations for the predictions
of machine learning algorithms. We can interpret SHAP values for an instance 𝑥 as the amount
𝜙𝑖 a feature 𝑖 contributed to the prediction of 𝑥 , relative to the expected prediction of the model
𝑓 . We use SHAP both to explain the global influence of feature values on the predictions and to
obtain explanations for individual predictions. SHAP values inherit the property of efficiency
from Shapley values [65]. Efficiency describes the fact, that the sum of all Shapley values is
equal to the difference between the prediction for an instance 𝑥 and the expected prediction of
the model [62]:

|𝐹 |∑︁
𝑗=1

𝜙𝑖 = 𝑓 (𝑥) − E𝑋 𝑓 (𝑋 )) (3.21)

We will use this property to aggregate individual SHAP values for features according to feature
group membership for interpretation purposes.
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4. Use Case I: Phylogenetic Placement
Difficulty Prediction

4.1. Problem Definition

Our first use case of predictive modeling focuses on phylogenetic placements. A new sequence
for a phylogenetic placement is typically placed in the branch of the RT with the highest
LWR. If this LWR is evenly distributed across multiple branches, we consider this placement
as difficult, as the optimal placement cannot be determined. We aim to predict this notion of
difficulty associated with placing a new sequence into a provided phylogeny. In addition to this
difficulty prediction, we analyze potential underlying reasons contributing to the uncertainty
of placements. For all following analyses, we use EPA-NG as placement tool.

We define the difficulty of a placement based on the distribution of LWRs across the branches
of the RT. An easily (or certainly) placeable sequence has a concentrated LWR on a single
branch, whereas a highly challenging placement yields a more uniform spread of LWRs across
multiple or (in the worst case) all branches. To quantify this notion of placement difficulty, we
compute the normalized Shannon entropy [88] of the LWRs. To obtain the normalized entropy,
we use the maximum placement entropy obtainable for each RT as a normalization constant,
i.e., 𝑙𝑜𝑔2(#𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠) where #𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 is the number of branches of the RT without the new
sequence. This ensures a final target entropy 𝐸 ∈ [0, 1] as the placement difficulty metric. For
easy placements, the entropy is low with values close to 0, whereas for difficult placements
with a more uniform spread of LWRs, the entropy is closer to 1.

4.2. Experimental Setup

In this section, we present the MSAs and RTs we used for our analyses and explain how we
generated sample placements (Section 4.2.1) as training data for the difficulty prediction. We
furthermore describe the impact of our placement sampling strategy on the phylogenies and
justify our employed procedure (Section 4.2.2).

4.2.1. Data Generation

Due to a lack of huge amounts of distinct metagenomic MSAs, we decided to train our predictor
on non-metagenomic data. Additionally, we opted to rely on empirical rather than simulated
MSAs. Trost et al. [103] demonstrate, that machine learning algorithms can distinguish between
simulated and empirical MSAs with high accuracy. The authors conclude that sequence
simulations do not fully capture all characteristics of empirical MSAs. Consequently, we
used empirical MSAs available in TreeBASE [78] for our analyses. TreeBASE comprises
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representative MSAs that are commonly analyzed in phylogenetics, as it only contains MSAs
of published studies. We decided to test our predictor on the limited amount of metagenomic
MSAs to obtain a performance estimate in the intended domain.
Preparing the data, we noticed that approximately half of the MSAs of TreeBASE contain

duplicate sequences, and decided to remove all duplicate sequences. We further selected the
MSAs to include in our study based on the Pythia difficulty. To achieve a comprehensive
representation of the difficulty spectrum in ML tree inference, we predicted the difficulty of
each MSA in TreeBASE using Pythia. We selected MSAs of different levels of difficulty, thus
encompassing easy and challenging MSAs. In Appendix A.1.1 we provide an overview of the
difficulty distribution of the MSAs. Our final dataset comprises approximately 1800 distinct
TreeBASE MSAs. For each MSA, we inferred 100 ML trees under the GTR+G substitution
model using RAxML-NG to obtain the RT for placement. Since EPA-NG is only able to process
unpartitioned substitution models, we filtered the TreeBASE for unpartitioned MSAs.

For the generation of QSs, we used a Leave-One-sequence-Out (LOO) approach. We sample
up to 40 sequences from each MSA, which we deleted from the phylogeny (the MSA as well
as the tree). 40 sequences is an arbitrary threshold which ensures that our data is not biased
towards large phylogenies. Figure 4.1 summarizes the data sampling procedure. After the

Figure 4.1.: Overview of the data sampling strategy for the placement difficulty prediction.

deletion, we used EPA-NG to replace the QS in the now trimmed phylogeny, as Figure 4.2 depicts.
We computed the ground truth placement difficulties as the normalized Shannon entropy of
the placement LWRs. We observed that the entropy distribution is heavily right-skewed (see
Figure 4.3).
In our set of placement difficulties, most samples are rather easy and only a few are very

difficult. Only 2% of the 60 000 samples fall into the entropy range of 0.9 to 1.0. We decided to
not balance out this distribution artificially since this would potentially lead to a loss of data
and the balancing itself would be arbitrary. Thus, this skewed target distribution has to be
considered during the prediction result interpretation.
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Figure 4.2.: Overview of the target computation for the placement difficulty prediction.

4.2.2. Leave-One-Sequence-Out Impact

To justify the approach of the LOO placements for data generation, we analyzed its impact
on the phylogenies. More specifically, we studied the influence of the LOO approach on the
entropy of placements, as well as topological and branch length changes on the trees.

4.2.2.1. Re-estimation Target Leakage

The first aspect we analyzed as a potential consequence of the LOO is a change in the entropy
of the placement. In particular, the hypothesis was, that we observe a lower entropy for the
placement of a LOO sample if we do not perform a re-estimation of the MSA and the tree after
the removal of it. The reason for this could be the presence of the removed sample during the
inference process. According to our experiments, the opposite is the case. In a comparison of
the LOO procedure once with the re-estimation of the MSA and the tree, and once without, the
entropy tends to decrease by the re-estimation process. Figure 4.4 shows the histogram of the
changes in entropy for approximately 2000 LOO placements.
We assume, that one potential reason for this phenomenon is that the changes depend on

what particular sample we removed during the LOO process. Some sequences could have a
greater influence on the tree structure than others. Figure 4.5 supports this hypothesis. There
is a substantial standard deviation (up to 0.24) in the change of entropy depending on the LOO
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Figure 4.3.: Difficulty distribution of the datasets for the placement difficulty prediction. Sample
size: 1800 MSAs, 60 000 LOO placements.

Figure 4.4.: Histogram of the differences between the entropy of LOO placements with and
without re-estimation of the MSA and tree. The data includes 80MSAs from the
TreeBASE and their respective ML tree. We drew 30 LOO samples from each
phylogeny. If there are less than 30 taxa in the phylogeny, each sequence once was
the LOO sequence. The mean difference is −0.04 (𝜎 = 0.11).

sample for some phylogenies. This means that, within the same TreeBASE MSA, the entropy
change depends to some extent on the LOO sequence we choose. We were not able to find any
significant correlations between the properties of the sequence we removed and the entropy
change. Nonetheless, the LOO approach seems valid due to the small proportion of larger
entropy deviations, as Figure 4.4 depicts.
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Figure 4.5.: Histogram of the standard deviations of the entropy difference for 80 datasets.

4.2.2.2. Tree Differences

Another aspect of the LOO procedure is its influence on the tree topology, as well as the
tree branches. For topological changes, we analyzed the nRF (Figure 4.6a), as well as the
nQD (Figure 4.6b) between the LOO procedure with and without re-estimation. While for the

(a) Histogram of the nRF distances between
LOO procedure with and without re-
estimation. The mean distance is 0.23.

(b) Histogram of the scaled nQDs between LOO
procedure with and without re-estimation.
The mean distance is 0.14.

Figure 4.6.: Effects of the LOO procedure on the corresponding RT topologies.

majority of MSAs, the tree topology appears to be only slightly affected with nRF and scaled
nQD values between 0.0 and 0.3, we did observe substantial deviations up to 1.0 under both
metrics. To determine whether this topological distance is caused by the re-estimation, we
additionally inferred 1000 bootstrap replicate trees using the SBS procedure for each MSA.
The hypothesis was that higher topological distances of the re-estimation can be attributed to
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higher uncertainty of the tree inference itself, which should lead to topologically more distinct
bootstrap replicate trees. In fact, we found that the nRF distance in this context is highly
correlated with the mean nRF distance of 1000 bootstrap trees (Spearman rank correlation: 0.72,
p-value ≪ 1 × 10−10). This suggests, that the SBS procedure and LOO both lead to a similar
extent of change in tree topologies.
We used the maximum value of the nQD distance of 0.66 to rescale the nQD to values

between 0 and 1. On average, the global change in topology as indicated by the mean nRF
of 0.23 is larger than the local change as indicated by the mean nQD of 0.14. The changes in
branch lengths are also negligible (Figure 4.7) with a mean BSD of 0.08.

Figure 4.7.: Histogram of the BSD between LOO procedure with and without re-estimation.
The mean distance is 0.08.

In conclusion, on average, there are only small topological differences (nRF: 0.23, nQD: 0.14)
and small changes in the branch lengths (nBSD: 0.08) and we concluded that a re-estimation is
not necessary. Thus, we used the LOO procedure without re-estimating the MSA and the tree
as a technique for generating placement data.

4.3. Feature Engineering

For the prediction of the phylogenetic placement entropy, we computed over 300 features.
We adopted an exploratory approach and categorized the features according to their data
source, namely: QS, MSA, RT, or a combination thereof. We aimed to capture both the essential
characteristics of the data sources and their inherent uncertainties. For instance, concerning
the MSA, this uncertainty manifests as the gap fraction of the sequences or the site entropy.
For the RT, we considered its SBS values in our analysis and the distances within the set of
bootstrap trees.
Table 4.1 provides a comprehensive overview of the features. Most features are summary

statistics of the data source characteristics. We calculated the following (central) moments as
summary statistics: the minimum, maximum, mean, median, standard deviation or coefficient
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of variation, skewness, and kurtosis. We provide further information on selected experimental
feature groups below.

Category Features Description
QS Gap statistics Statistics 1 of the set of all gaps in

the QS.
Longest gap Longest continuous gap, relative to

the length of the QS.
Randomness measures Uncertainty measures for binary

data [7]. We encoded the sequence
using UTF-8.

Character fractions Fractions of nucleotides/amino
acids and consideration of ambigu-
ity.

Gap distribution Statistics of the gap distribution
over the sequence.

MSA Gap statistics Statistics of the gap distribution
over the sites.

Site entropy Statistics of the normalized Shan-
non entropy of the sites.

Pairwise sequence similar-
ity statistics

Statistics of 15-mer similarity, hash
Hamming distance, and Hamming
distance.

Sequence length/count
Character fractions Statistics of the character composi-

tion of the sites.
Randomness measures Uncertainty measures for binary

data [7]. We encoded the consen-
sus sequence using UTF-8.

Site-over-taxa ratio Number of sites divided by the
number of taxa.

Invariant site fraction Fractions of sites considered invari-
ant according to different thresh-
olds (0.5, . . . , 0.9).

Tree Branch lengths statistics Statistics of normalized branch
lengths, inner branch lengths, and
tip branch lengths.

Depth
Imbalance ratio subtrees Statistics of the ratios of the leaf

numbers of the smaller and larger
pending subtrees over all inner
nodes.
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Closeness centrality statis-
tics

Statistics of the closeness central-
ity [8] of nodes.

Eigenvector centrality
statistics

Statistics of the eigenvector central-
ity [44] of nodes.

QS and MSA Hamming distance statis-
tics

Statistics of Hamming distances be-
tween QS and MSA sequences.

15-mer similarity statistics Statistics of 15-mer similarity be-
tween QS and MSA sequences.

Perceptual hash Hamming
distance

Statistics of perceptual hash Ham-
ming distances between QS and
MSA sequences. Hash size 256-bit,
linear greyscale encoding of the se-
quences. 256-bit hashes yielded the
best results in the prediction.

Perceptual hash k-mer
similarity

Statistics of pairwise k-mer percep-
tual hash similarity with the MSA
sequences.

Perceptual hash LCS
statistics

Statistics of the relative length of
the LCS between the perceptual
hashes of the QS and the MSA se-
quences.

Image comparison statis-
tics

Statistics of the pairwise PCA en-
coded Euclidean distances between
the QS and the MSA sequences.

Invariant site match statis-
tics

Statistics of the matches between
the QS and invariant sites of the
MSA. Different thresholds 𝑡 for the
definition of invariant sites (0.5, . . . ,
0.9).

Invariant site mutation
statistics

Statistics of the count of transi-
tions and transversions induced by
the QS at the invariant sites of the
MSA.

Invariant site fraction
statistics

Statistics of the fractions of the QS
characters in the invariant MSA
sites.

MSA and tree Parsimony mutation
count statistics

Summary statistics of counts of par-
simony mutations for each site.

SBS statistics tree
branches

Summary statistics of the SBS val-
ues of all branches for 1000 boot-
strap trees created using RAxML-
NG.
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SBS RF distance statistics Summary statistics of the RF dis-
tances between the reference tree
and the SBS trees.

SBS trees unique topolo-
gies

Number of unique tree topologies
in 1000 SBS trees inferred using
RAxML-NG.

Parsimony Support (PS)
statistics

Statistics over the branch supports
of the RT branches in 1000 parsi-
mony starting trees inferred using
RAxML-NG.

Parsimony starting tree
unique topologies

Number of unique tree topologies
in 1000 parsimony starting trees in-
ferred using RAxML-NG.

Parsimony starting tree RF
statistics

Summary statistics of the RF
distances between 1000 parsimony
starting trees inferred using
RAxML-NG.

Parsimony Bootstrap Sup-
port (PBS) statistics

Statistics over the branch supports
of the RT branches in 200 parsi-
mony bootstrap starting trees in-
ferred using RAxML-NG.

Parsimony bootstrap start-
ing tree unique topologies

Number of unique topologies of
200 parsimony bootstrap starting
trees inferred using RAxML-NG.

Parsimony bootstrap start-
ing tree RF statistics

Summary statistics of the RF dis-
tances between 200 parsimony
bootstrap starting trees inferred us-
ing RAxML-NG.

MSA, tree, and QS Summary statistics of
low/high support branch
bipartition distance to QS

Minimal Hamming distance be-
tween QS and parts of the most
(un)supported central inner bipar-
tition of the tree.

Table 4.1.: Feature overview.

1 Minimum, maximum, median, mean, standard deviation/coefficient of variance, skewness, kurtosis

The k-mer similarities measure the degree of shared k-length subsequences between two
sequences. The Hamming distance measures the number of differing positions between two
equal-length sequences. For the k-mer similarities, we tested the values of 𝑘 ∈ {5, 10, 15, 25, 50}
and only kept the 𝑘 yielding the best performance.

Besides the conventional characteristics of the individual data sources, we computed novel
features using multiple data sources at once.
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In addition to a standard k-mer similarity and a Hamming distance between the QS and
the MSA, we computed a perceptual hash Hamming distance. de Goër de Herve et al. [23]
apply this distance measure to store and retrieve large DNA sequences. We encoded each
DNA sequence as a linearly grayscale quadratic picture. Then, we performed a discrete cosine
transformation and extracted the sign-only matrix from it. Finally, since the upper left entries
in the matrix contain the most characteristic frequency components, we extracted the upper
left square matrix of size 256 from it. The flattened matrix serves as a hash value for the
sequence. A longer hash value did not improve the performance in our experiments. We
compared the perceptual hash values of two sequences using the Hamming distance for the
distance computation. We furthermore experimented with other measures of similarity or
distances, such as the perceptual hash Longest Common Substring (LCS) or the perceptual
hash k-mer similarity.

Another set of experimental features we used are summary statistics of the matches between
the QS and the invariant sites of the MSA. We defined different thresholds 𝑡 for the pureness
of an MSA site to be invariant (0.5, . . . , 0.9). The idea is to quantify how well the QS matches
conserved regions of theMSA. Furthermore, we computed the non-major character composition
of the invariant MSA sites and to what extent the corresponding sequence character is present
in those invariant sites.
A third group of features aims to incorporate all three sources of data: the QS, the MSA,

and the tree. We intended to map a central certain or uncertain tree split back to the MSA
and compare the sequence with both MSA splits. We iteratively searched for such a branch
that is central to the tree. We defined a branch as central if the corresponding bipartitions are
of roughly the same size. Besides being central, we require the branch to have either a high
(≥ 80) or a low support (≤ 50). If we do not find a branch fulfilling this criterion, we relax
the conditions gradually until we find one. After that search, we split the MSA according to
the bipartition we found. Finally, we compare the QS with both parts of the MSA regarding
similarity and distance.
The last novel feature group uses parsimony starting trees we computed using RAxML-

NG to capture the tree space nature and uncertainty. RAxML-NG infers parsimony starting
trees via a randomized stepwise addition order algorithm. This feature group is motivated
by the success of Pythia which employs parsimony starting trees to obtain a lightweight
approximation of the tree search space [42]. We computed the number of unique topologies in
1000 parsimony starting trees and summary statistics over the nRF distance among them as
features. Furthermore, we adapted the SBS procedure to infer a parsimony starting tree for each
replicate MSA instead of an ML tree. We call this procedure parsimony bootstrap. Again, we
used the number of unique topologies and nRF statistics as features. Finally, we computed the
Parsimony Support (PS) using the 1000 parsimony starting trees and the Parsimony Bootstrap
Support (PBS) using 200 parsimony bootstraps and extracted summary statistics of the PS/PBS
values.

For feature selection, we used Recursive Feature Elimination (RFE) [41] prior to the prediction
pipeline, using a scikit-learn random forest [77] to select 15 features. More features did not
lead to a substantially better prediction performance according to our experiments. The idea
of RFE is to repeatedly delete a specific fraction (0.1 in our case) of the features with the
smallest impact on the prediction. The aim was to find a good trade-off between the number of
features and the performance of the predictor. This has several reasons. First, we want to avoid
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unnecessary computations. Furthermore, fewer features make the predictor more interpretable.
Finally, we want to prevent the overfitting of our predictor to the training data. This can be the
consequence of training a predictor with too little training data and too many, unnecessary
features [46]. In that case, the predictor would generalize worse to unseen inputs.

4.4. Prediction Pipeline

Figure 4.8 depicts the training and testing procedure for the prediction of the phylogenetic
placement difficulty. We used a holdout of 20% of the TreeBASE datasets for the estimation of

Figure 4.8.: Schematic overview of the training procedure for the placement difficulty prediction.

the predictor’s performance on unseen data. To prevent overfitting during hyperparameter
tuning, we used grouped 10-fold cross-validation [61] with the MSAs as a grouping feature.
We repeated the whole process 10 times to average out effects due to random holdout sampling
and obtain a more robust prediction performance estimate.

4.5. Evaluation

In this section, we evaluate our approach to placement difficulty prediction. We first summarize
the results of our correlation analysis on the placement data in Section 4.5.1. In Section 4.5.2 we
summarize the prediction performance, and finally in Section 4.5.3 we focus on the explainability
of the predictions.
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4.5.1. Correlation Analysis

We analyzed the final dataset for correlations between the features and the placement entropy.
We used the Spearman rank correlation coefficient 𝜌 [93] because of its robustness to outliers,
and its ability to detect non-linear relationships. Table 4.2 shows correlations for which |𝜌 | ≥ 0.5.
For summary statistics that describe the same feature (e.g. bootstrap values, branch lengths,
and RF distances) we only selected those statistics with the highest absolute 𝜌 .

Feature Type Spearmans 𝜌 p-Value
MSA difficulty MSA 0.69 ≪ 1 × 10−10
Mean branch support Tree −0.69 ≪ 1 × 10−10
Maximum nRF distance bootstrap Tree 0.69 ≪ 1 × 10−10
Std. branch length Tree −0.57 ≪ 1 × 10−10
Skewness closeness centrality (𝑡 := 0.7) Tree −0.56 ≪ 1 × 10−10
Kurtosis subtree imbalance ratios Tree −0.50 ≪ 1 × 10−10
Std. minor characters on invariant sites (𝑡 := 0.5) MSA −0.50 ≪ 1 × 10−10

Table 4.2.: Largest significant Spearman rank correlations between the placement entropy and
the features.

The positive correlation of the MSA difficulty with the placement entropy implies that an
increase in MSA difficulty is associated with an increase in placement entropy. Figure 4.9
visualizes that trend. Additionally, low mean branch support in the tree correlates with a higher
placement entropy (see Figure 4.10). This suggests, that the statistical robustness of the tree
is important for phylogenetic placements. The correlation with the maximum nRF distance
among the bootstrap trees further supports this hypothesis.

In summary, based on our findings, we conclude that the primary correlations of the place-
ment difficulty values are with the quantification of the difficulty inherent in the inference
process and the uncertainty of the tree. These correlations are stronger than the correlations
between the features of the QS and the placement difficulty. We refer to Appendix A.1.2 for
further visualizations of feature and target correlations. We furthermore observe high correla-
tions between the bootstrap support summary statistics and the MSA difficulty prediction by
Pythia. We provide further details of these correlations in Appendix A.1.3.
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Figure 4.9.: Placement entropy as a function of MSA difficulty for 1500 randomly sampled LOO
placements.

Figure 4.10.: Placement entropy as a function of mean SBS support for 1500 randomly sampled
LOO placements.
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4.5.2. Prediction Performance

Table 4.3 summarizes the phylogenetic placement entropy prediction performance metrics
obtained by running our training pipeline as depicted in Figure 4.8 10 times. Since the SBS with
1000 replicates is computationally costly, thus inflating the runtime for feature computation
substantially, we implemented two different predictors. One predictor incorporates features

Tool MBE MAE MdAE RMSE
Predictor𝑆𝐵𝑆 0.00 ± 0.01 0.13 ± 0.00 0.11 ± 0.01 0.16 ± 0.00
Predictor 0.00 ± 0.00 0.12 ± 0.00 0.10 ± 0.00 0.16 ± 0.00
Baseline 0.00 ± 0.04 0.19 ± 0.00 0.16 ± 0.01 0.24 ± 0.00

Table 4.3.: Placement entropy prediction evaluation for 10 random repeated holdouts of size
20%.

based on the SBS values (predictor𝑆𝐵𝑆 ), and one does not (predictor). Therefore, we removed the
SBS features before the RFE for the latter. Since the performance of predictor is comparable
to the performance of predictor𝑆𝐵𝑆 , we conclude, that the remaining features can compensate
for the missing SBS features. We compared both predictors against the baseline of the mean
entropy prediction over all MSAs. Our predictors outperformed the baseline across all metrics.
The MAE of 0.12 as well as the MdAE of 0.10 suggests a good overall performance when
predicting the placement entropy. The low MBE value suggests, that the predictors are overall
unbiased in their predictions. Since the MAE is smaller than the MdAE and the RMSE, there
are some outliers in the prediction error. For a detailed distribution of the prediction errors, we
refer to Appendix A.1.5.

4.5.3. Feature Importances and SHAP Values

Table 4.4 provides an overview of the feature importances of the final predictor without the
SBS features. The feature importance indicates, how much an individual feature contributed to
an improvement in the MAE during the training process. For a better overview, the features
are grouped into four categories.
The most important group comprises features that quantify how the QS matches invariant

sites of the MSA. This includes how well the QS character is represented in the corresponding
MSA site. Furthermore, the transversion fraction of the mutations between the invariant sites
and the QS is part of this group.

The second group captures summary statistics of the 15-mer similarity between the QS and
all MSA sequences. One feature is relying on the 25-mer similarity of the perceptual hashes
instead.
The third most important category uses parsimony (bootstrap) trees to capture features

about the tree space’s nature and uncertainty.
The least important final group contains different tree and MSA properties. Note that only

this feature group includes RT features.
We conclude that, for the prediction of the placement entropy, the QS comparison with

the MSA regarding the invariant sites of the MSA as well as k-mer similarities is far more
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Feature Importance (%)
Invariant MSA site composition comparison with QS
Std. fraction of QS character in invariant MSA sites (𝑡 := 0.7) 24
Transversion mutation fraction QS on invariant MSA sites (𝑡 := 0.7) 8
Transversion mutation fraction QS on invariant MSA sites (𝑡 := 0.5) 7
Fraction of invariant MSA site matches (𝑡 := 0.9) 4
Min. fraction of QS character in invariant MSA sites (𝑡 := 0.5) 3

46
Similarity QS and MSA sequences
Mean 15-mer similarity 14
Kurtosis 15-mer similarity 6
Skewness 15-mer similarity 5
Std. 15-mer similarity 5
Kurtosis 25-mer similarity perceptual hash 2

32
Tree space uncertainty
Mean RF-distance 1000 parsimony starting trees 9
Number of unique tree topologies in 200 parsimony bootstraps 3

12
Tree/MSA properties
Skewness closeness similarity tree 4
Max. parsimony substitution frequency of MSA sites 3
Std. branch lengths 3

10

Table 4.4.: Grouped feature importance of all 15 features.

important than the characteristics of the RT. Especially, the standard deviation of the query
character fraction at invariant MSA sites makes up for almost a quarter of the normalized
feature importance. Figure 4.11 depicts the SHAP values of the features on one of the 10 sets of
MSAs for testing. It furthermore describes, how the feature values influence the predictions
of the test placements. The SHAP values provide the benefit that we can use them to get
hypotheses on how the features influence the placement difficulty.

A high mean nRF distance among the 1000 starting parsimony (first feature) trees contributes
an additional difficulty of up to 0.2. Conversely, an elevation of the kurtosis in the 15-mer
similarity (second feature) between the QS and the MSA reduces the entropy prediction. One
plausible interpretation is, that a higher kurtosis characterizes a more sharply and pronounced
distribution of similarity. That could lead to an easier placement. A high mean 15-mer similarity
between the QS and the MSA sequences increases the predicted placement entropy up to 0.3.
This could be due to a high similarity leading to amore ambiguous placement in the RT. Reducing
the transversion fraction between the QS and invariant MSA sites (feature five) increases the
predicted difficulty. Transversions are less likely than transitions in real data [108]. Having
fewer mutations with a small probability might make the placement more ambiguous and thus
increase the placement difficulty.
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Figure 4.11.: SHAP value summary plot for the phylogenetic placement predictor.

Because of the moderate SHAP values of many of the features, we conclude, that all features
are important for the predictor. For examples of individual Shapley value explanations for
placements with high or low placement difficulty, we refer to Appendix A.1.4.

4.5.4. Performance on Metagenomic Placement Data

We trained and evaluated our predictor on non-metagenomic data. Therefore, we used 1000
placements of the Tara Oceans Project [100], the neotrop dataset [67] as well as the BV dataset
[95] to test the prediction performance on real metagenomic data.
As explained in Section 4.2.1, we used whole sequences to replace them into the RT to

generate the training data. However, the reads of metagenomic sequences are generally only a
few hundred characters long [106]. To test whether using whole sequences results in worse
performance on the real metagenomic test data, we simulated a metagenomic scenario on
the LOO sequences. For this purpose, we employed the same target calculation as Figure 4.2
depicts, with the difference that we randomly sampled a read length between 200 and 450
for each LOO sequence. We furthermore sampled a random position. From this position, we
extracted a continuous subsequence of the length previously sampled. Finally, we replaced
each character that is not in the subsequence with gaps to obtain the simulated metagenomic
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read. We then trained a new predictor (predictor𝑚) on this new data to compare it to predictor
which was trained on the whole LOO sequences.

Table 4.5 summarizes our results on the 3000metagenomic placements. The MAE of predictor
is comparable to the performance on the LOO sequences as Table 4.3 depicts. However, the
MdAE is worse on metagenomic data and equal to the MAE suggesting that the distribution of
the absolute errors is more symmetric on this metagenomic testing data.

Tool MBE MAE MdAE RMSE
Predictor 0.00 0.13 0.13 0.14
Predictor𝑚 0.01 0.14 0.15 0.16

Table 4.5.: Performance comparison of the placement difficulty predictor with (predictor𝑚) and
without (predictor) training on simulated metagenomic sequences.

Interestingly, the performance of predictor𝑚 is worse than the performance of predictor as
indicated by all metrics having higher values. Either the metagenomic simulation procedure we
employed is not suitable for generating metagenomic training data, or using whole sequences
for the training is more beneficial than small simulated reads. Further investigating this
observation remains subject to future work.

4.6. Conclusion

In this first use case, we demonstrated the application of ML techniques to predict the difficulty
of phylogenetic placements.
We explored various methods for feature generation from QSs, MSAs, and phylogenetic

trees (RT). We selected a subset of 15 from over 300 features using RFE. A predictor we trained
using those features was able to achieve an MdAE of 0.1. We showed that on a small set of
real metagenomic placements, our predictor still shows good performance. Our findings of
the correlation analysis reveal that uncertainty in phylogenetic inferences correlates with
uncertainty in the placement process as well.
The most important feature group of our predictor are matching and mutation statistics of

the QS on invariant sites of the reference MSA. We furthermore showed how SHAP values are
useful to provide explanations for the predicted placement difficulty. Additionally, the SHAP
values can guide a hypothesis finding why specific features influence the prediction the way
they do.

The non-metagenomically trained phylogenetic placement difficulty predictor (predictor in
Section 4.5.4) is available as the command line tool BAD (https://github.com/wiegertj/BAD).
BAD can provide SHAP value-based explanations for the difficulty of individual phylogenetic
placements.

Future research could focus on a more thorough evaluation of the predictor performance on
additional metagenomic data. Since training the predictor on simulated metagenomic sequences
did not yield better performance on empirical metagenomic data, the incorporation of empirical
metagenomic data in the training data could be a reasonable next step.
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Another improvement would be the parallelization of the feature computation of BAD. The
1000 placements of the Tara Oceans Project used in Section 4.5.4 took approximately three hours
to complete on a reference machine equipped with an Intel Xeon Platinum 8260 Processor (48
cores, 96 threads, 2.4GHz) and 754GBmemory. The sequential sequence similarity computation
alone accounts for 80% of the time-to-completion.
Pythia shows that parsimony starting trees are a powerful, lightweight approximation of

the tree space under study. During the development of BAD, we used a similar approach to
successfully replace SBS values in this use case. Subsequently, in the upcoming use case, we
build upon this insight.
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This chapter is based on the following preprint:

J. Wiegert, J. Haag, D. Hoehler, and A. Stamatakis. Predicting phy-
logenetic bootstrap values via machine learning. bioRxiv, 2024. doi:
10.1101/2024.03.04.583288.

5.1. Problem Formulation

This use case aims to enhance the efficiency of the analysis of the statistical robustness of
branches in phylogenetic trees represented as SBS values. As the SBS has a high computational
complexity, we provide a fast, machine learning-based SBS value predictor. The resulting
predictors are available in a common command-line tool called EBG (https://github.com/
wiegertj/EBG).

We address the challenge of predicting the SBS values via two distinct steps: regression and
classification. In the regression step, EBG directly predicts the respective SBS values for all
inner branches of a given ML tree. In the classification step, EBG then predicts the probability
of the SBS value of each single inner branch to exceed a given SBS threshold using the regressor
output as a feature. This classification step is based on the interpretation of one minus the
SBS as p-value (see Section 2.3.2.1). As described in Section 2.3.2.1, the SBS is not unbiased but
conservative. As values between 70 and 85 yield a 5% false positive bound, we use this SBS
range for our classification step. More concretely, we predict the probability for each single
branch 𝑖 to exceed a specific SBS threshold 𝑡 , i.e., 𝑆𝐵𝑆𝑖 > 𝑡 with 𝑡 ∈ {70, 75, 80, 85}.

In addition to the prediction itself, we estimate the uncertainty of the resulting predictions.
The aim is to quantify whether and to what extent predictions are trustworthy.

5.2. Experimental Setup

5.2.1. Data

We used 1496MSAs (DNA and AA) for training and evaluating EBG. We randomly sampled 220
additional MSAs for our final comparison with RB, UFBoot2, and SH-like aLRT. We selected
MSAs representing distinct difficulty levels, thus encompassing easy and challenging MSAs.

For each MSA, we inferred 100ML trees under the GTR+G substitution model using RAxML-
NG. To obtain SBS “ground truth” values as a training target for EBG, we performed one SBS
run with 1000 replicates for each MSA using RAxML-NG. Our final training dataset comprises
approximately 80 000 inner branches and their corresponding SBS value.
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5.2.2. Feature Engineering

To predict the SBS values, we computed a plethora of MSA features, as well as the respective
best-known ML tree including the model parameter estimates. EBG uses 23 features for the
prediction (Table 5.1).

Feature
Parsimony Bootstrap Support (PBS)
Parsimony Support (PS)
Normalized ML branch length
# child inner branches
Skewness PBS
Mean Robinson-Foulds distance PB
Mean Parsimony Mutation per Side (PMS)
ML Branch length
Max. PSF
Coefficient of variation PMS
Max. PBS children*
Mean PBS parents
Max. PS children*
Branch number (ordered by level-order traverse)
Skewness PMS
Branch length ratio bipartition
Max. PS children*
Min. PS children
Std. PBS parent branches
Std. PBS child branches
Mean closeness centrality bipartition ratio
Min. PS children*
Min. PBS children*
*: weighted by branch length

Table 5.1.: Overview of the features subset used in EBG.

The majority of features are extracted from a set of parsimony starting trees we inferred
using RAxML-NG (−−start-option). The first use case in this thesis demonstrated that by
using computationally substantially less expensive parsimony starting trees, we can effectively
compensate for missing SBS features. We therefore expect that parsimony-tree-based features
are useful for predicting SBS values.

We calculated a set of 12 features based on parsimony trees. Those 12 features are subdivided
into Parsimony Support (PS) and Parsimony Bootstrap Support (PBS) features. Figure 5.1
provides an overview of the feature computation.
The PS is the frequency of occurrence of an inner branch in 1000 parsimony starting trees

inferred using the original MSA. According to preliminary experiments (see Appendix A.2.6),
we set the number of inferred parsimony trees to 1000, as more than 1000 did not substantially
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Figure 5.1.: Overview of the EBG feature generation and prediction.

improve prediction performance. The PBS employs a procedure that is highly similar to the
SBS and uses replicate MSAs. The only difference is, that PBS computes a parsimony starting
tree for each bootstrap replicate, instead of inferring an ML tree, yielding the computation
substantially faster. To capture the variance of the respective bootstrap tree space, we also
use the mean nRF distance between all PB trees as a feature. Again, according to preliminary
experiments, more than 200 PBs did not improve predictor performance (see Appendix A.2.6).
In theory, we could lower the number of trees in dependence on the MSA difficulty, as

the tree space for lower MSA difficulties is less complex. Thus, for lower MSA difficulties, a
smaller number of parsimony trees might be sufficient to approximate the SBS values. However,
because this might introduce additional uncertainty in the prediction process, we decided to
keep the number of parsimony trees for both the PBS and the PS features fixed.

We expected that the P(B)S values of child and parent branches of the inner branch of interest
are indicative of its SBS value. Therefore, we also included summary statistics for the P(B)S
values of respective child and parent branches as features as well. Additionally, we computed
summary statistics over the Parsimony Mutations per Side (PMS) as another group of features.
Finally, we use the mean closeness centrality [8] of the two subtrees connected to the focal
inner branch. The closeness centrality quantifies how densely connected the nodes of the tree
are to each other. By taking the closeness centrality ratio of those subtrees, we aimed to capture
if the branch connects two subtrees of different densities. Another feature, we refer to as the
branch length ratio bipartition, represents the ratio between the sums of branch lengths of the
two subtrees defined by the branch of concern.
The set of 23 features (Table 5.1) we used for EBG is a subset of a larger set of over 150

features we experimented with. This set consists of the PS/PBS features as well as all features
described in Table 4.1 which are not dependent on a QS or SBS values. We reduced the initial
set of features to the 23 features via RFE and a scikit-learn random forest. The aim was to find
a good trade-off between the number of features and EBG performance for the same reasons as
stated in the first use case (Section 4.3).

43



5. Use Case II: Bootstrap Support Prediction

5.2.3. Prediction Pipeline

Similar to our first use case, we used a LightGBM tree-based boosting ensemble framework
as a predictor, both for the regression and classification formulation. It is crucial to provide
quantified trustworthiness for the predictions, as biologists need reliable SBS estimations in
their studies. We provide a method to estimate the prediction uncertainty using quantile
regression [56]. This approach estimates the conditional quantiles of the SBS value given the
input features. By training the model to predict the 5th and 10th quantiles of the SBS value, we
can provide lower bounds for the SBS value at 5% and 10%. We optimized the hyperparameters
of all models in 100 trials using the hyperparameter optimization framework Optuna. The
training pipeline is analogous to the pipeline presented in the first use case (Figure 4.8).

5.3. Evaluation

We evaluated the performance of the EBG regressor and classifier using different separations
of our curated dataset of 1496 TreeBASE MSAs into training and testing MSAs. For both,
the EBG regressor and classifier, we further tested the usage of EBG’s uncertainty measures
for quantifying the reliability of its predictions. We also compared EBG with RB, UFBoot2,
and SH-like aLRT regarding prediction quality, and we compared EBG against its fastest
competitors UFBoot2 and SH-like aLRT in terms of time-to-completion and accumulated CPU
time. Furthermore, we analyzed the importance of the prediction features for EBG.

5.3.1. EBG Regressor Performance Evaluation

The EBG regressor predicts three values: In addition to the central SBS point estimate, EBG
provides two SBS predictions that correspond to two lower bounds. One lower bound has a 5%,
the other a 10% predicted probability that the SBS value is below the respective bound. On a
random subset of 232MSAs, EBG’s central SBS estimate is highly correlated (mean Pearson
correlation of 𝜇 = 0.91, 𝜎 = 0.05) with the SBS values. For a more detailed view, we refer
to Appendix A.2.3. For the evaluation of the EBG regressor’s central SBS point estimate, we
randomly sampled 20% of the 1496 MSAs as a holdout testing dataset and trained EBG on the
remaining 80%. Table 5.2 summarizes the results of 10 such random holdouts. To assess the

Metric EBG (𝜇 ± 𝜎) Baseline (𝜇 ± 𝜎)
MBE 0.6 ± 0.3 0.1 ± 0.5
MAE 8.3 ± 0.2 13.8 ± 0.4
MdAE 5.0 ± 0.1 8.6 ± 0.5
RMSE 12.8 ± 0.2 20.5 ± 0.5

Table 5.2.: EBG regression performance for 10 repeated random holdouts against a parsimony
bootstrap support of 200 replicate trees as the baseline. To infer those replicate trees,
we first obtain 200 replicate MSAs by sampling the original MSA site-wise with
replacement. Subsequently, we infer the corresponding parsimony (starting) tree
using RAxML-NG to calculate the 200 replicate trees.
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predictive power of EBG, we defined a baseline SBS value prediction based on the PBS of 200
replicates. If a branch is in the ML tree, but not in the PBS replicate tree set, we assigned a
baseline prediction of zero to it, as this resembles the behavior of the SBS procedure. EBG
outperformed this baseline across all four metrics. As the MBE indicates, the regressor exhibits
no substantial systematic bias in either an over- or underestimation of the SBS values. The
difference between MAE and MdAE, along with the higher RMSE value, suggests deviations of
varying size between the EBG prediction and the true SBS value. The lower bound predictions
of EBG can serve as a means to bound this prediction error.
Figure 5.2 illustrates, how the proximity of the lower bound predictions to the median

prediction can be used to constrain the MdAE for the EBG median regression predictions. This
approach effectively mitigates prediction uncertainty. As the lower bound predictions approach
the median prediction more closely, the MdAE decreases. Thus, the inspection of the distance
between the lower bound and the median SBS predictions limits and quantifies the prediction
uncertainty.

Figure 5.2.: Relationship between the distance of the lower bound predictions to the median
prediction and their influence on the MdAE.

5.3.2. EBG Classifier Performance Evaluation

In analogy to the EBG regressor, we evaluated the EBG classifier based on 10 repeated holdout
sets of 20%. Table 5.3 summarizes the resulting performance metrics for varying SBS thresholds
𝑡 . As baseline performance, we used the different SBS thresholds 𝑡 ∈ {70, 75, 80, 85} on the PBS
of 200 replicates. The baseline again is zero for all branches, that are present in the ML tree,
but not in the PBS replicate trees. EBG outperformed the baseline for every metric.

In analogy to the lower bound prediction for the EBG regressor, EBG also provides a prediction
uncertaintymeasure for its classifier. As the EBG classifier solves a binary classification problem,
with one class defined as 𝑆𝐵𝑆 > 𝑡 and the other as 𝑆𝐵𝑆 ≤ 𝑡 , we can use the Shannon entropy
of the two class probabilities to obtain a prediction uncertainty measure 𝑢 ∈ [0, 1]. Here,
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Metric t := 70 t := 75 t := 80 t := 85 baseline
BAC 0.92 ± 0.00 0.91 ± 0.00 0.91 ± 0.00 0.92 ± 0.00 0.85 ± 0.01
AUC 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.85 ± 0.01
F1 0.90 ± 0.00 0.90 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 0.82 ± 0.01

Table 5.3.: EBG classifier performance for different decision boundaries 𝑡 . Mean and standard
deviation of 10 repeated random holdouts against the baseline consisting of the PBS
of 200 rounds.

𝑢 = 0 represents absolute certainty, and 𝑢 = 1 corresponds to absolute uncertainty. Figure 5.3
provides an overview of the relationship between EBG classifiers with different SBS thresholds
𝑡 and their Acc with increasing prediction uncertainty. Especially for the smaller uncertainties,
a high class imbalance implies a better classification within the uncertainty interval of concern.
Therefore, we decided not to compensate for class imbalances by using the BAC and instead
used the Acc for this analysis. For cases with low 𝑢 ∈ [0.1, 0.3], the prediction Acc consistently
remains at or above 90% across all SBS thresholds 𝑡 . For moderate 𝑢 ∈ [0.4, 0.6], the Acc
typically falls within the 80% to 90% range. We only observe prediction accuracies below 70%
for 𝑢 > 0.8.

In practical terms, when using EBG, we have the flexibility to determine an acceptable level
of uncertainty to attain confident predictions. Thereby, users can tailor the approach to their
specific needs and preferences.

Figure 5.3.: Relationship between the prediction Acc of EBG classifiers and their prediction
uncertainty for varying SBS thresholds 𝑡 .

To demonstrate the performance of EBG on an edge case, we predicted the SBS values for
an MSA that was shown to be difficult to analyze in terms of phylogenetic inference. Morel
et al. [72] demonstrate the difficulties of obtaining a reliable phylogeny using ML inference on
a set of SARS-CoV-2 genome sequences. This difficulty is caused by the combination of a large
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number of sequences and a relatively low mutation rate, resulting in numerous branches with
low bootstrap values. For our experiment, we used a set of 1654 of those complete SARS-CoV-2
genomes, each with a length of 29 800 base pairs. We employed 100 RAxML-NG searches to
determine the ML tree with the highest log-likelihood. We then performed an SBS run with
1000 replicates to establish the ground truth SBS values. This analysis shows, that only 13.9%
of the inner branches of the ML tree yield an SBS value greater than 70 indicating an overall
low support of the ML tree.

Predicting the branch support using our EBG regressor results in an overall good performance,
with an MAE of 3, an MdAE of 0, and an RMSE of 9. Meanwhile, the EBG classifier, with an SBS
threshold of 𝑡 := 70, achieved a BAC of 0.82, an F1 of 0.77, and an AUC of 0.82. Even on an MSA
that is known to be difficult-to-analyze, EBG can provide a good estimate of the SBS values
for the corresponding ML tree. The prediction of the bootstrap support, using a mid-class
laptop equipped with 4 cores (8 total threads) and 8 GB of memory, has a time-to-completion of
approximately three hours. In contrast, computing the ground truth SBS values took 35 hours,
utilizing 10 nodes of a large computing cluster, each equipped with an Intel Xeon Gold 6230
(20 cores, 40 threads, 2.1 GHz) and 96 GB memory. On the same amount of computing nodes,
the RB computation using the RAxML with MPI-based parallelization took 5.5 hours, whereas
the MPI-based UFBoot2 only took 31 minutes.

Another dataset that is known to be hard to analyze is the Internal Transcribed Spacer (ITS)
354 [39]. ITS 354 is a short alignment (348 MSA sites) extracted from the ITS genes from 354
maple tree genomes. Predicting the SBS values using the EBG regressor results in an MAE of 6,
an MdAE of 4, and an RMSE of 9. Also on this difficult MSA EBG yields a good performance.

5.3.3. Performance Comparison with UFBoot2, SH-like aLRT, and Rapid Bootstrap

EBG, UFBoot2, and SH-like aLRT branch support values have all different interpretations.
EBG approximates the SBS which is conservative, whereas UFBS values are unbiased [70].
SH-like aLRT is also conservative but not in the same sense as SBS, reasonable thresholds
for SH-like aLRT can be between 0.8 and 0.9 [40]. Therefore, we needed a reliable ground
truth phylogeny to compare all three branch supports against each other. Consequently, we
performed the following performance comparison using simulated MSAs. We simulated a total
of 979 DNA MSAs without gaps (i.e., without simulating indel events) based on TreeBASE
trees using AliSim [66] under the GTR+G model. The corresponding tree (true tree) of the
simulated MSAs served as the ground truth for our experiment. We compared the fraction of
branches in the true tree for each branch support value of EBG, UFBoot2, and SH-like aLRT. A
similar approach was used for the evaluation of the original UFBoot by Minh et al. [70]. For
the following analyses, we used the IQ-TREE2 [70] implementation of the SH-like aLRT. The
commands we used are shown in Appendix A.2.1. Figure 5.4 summarizes the results of our
comparison analyses. An ideal branch support measure would yield the unbiased probability
of the branch being in the true tree (dashed, red line). In our experiments, all three tools are
too liberal with their estimation of the true branch probability. As already observed by Minh
et al. [70], low SH-like aLRT values (< 50) are not informative concerning the true probabilities.
For larger values, the SH-like aLRT behaves similarly to EBG. EBG is fairly unbiased for low
support values (< 60). For branch supports > 60 it tends to overestimate the true probability of
the branches being present in the true tree. In this experiment, UFBoot2 overestimated the true
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Figure 5.4.: Moving average with window size five of the fraction of branches in the true tree
for all branch support values.

branch probability the most. Besides all three tools being overconfident in predicting the true
support, EBG is the closest to the ideal branch support value line.

We also compared the performance of the different tools as a function of the difficulty of the
simulated MSAs. We computed the BAC for specific branch support thresholds and compared
them across all tools. The results suggest that EBG is best able to deal with varying MSA
difficulties. We provide the detailed analyses in Appendix A.2.4.
Finally, we compared EBG directly with RB on empirical MSAs. This is possible since RB

is highly correlated with the SBS values [97]. We randomly selected 220MSAs (20% AA, 80%
DNA) from TreeBASE and computed the ground truth SBS for each branch based on 1000
bootstrap replicates using RAxML-NG. Table 5.4 summarizes the respective classification and
regression metrics for EBG and RB.

Tool MBE MAE MdAE RMSE BAC F1 AUC
EBG 0.0 8.7 6.0 12.8 0.89 0.87 0.89
EBG* 0.1 7.1 4.0 11.1 0.95 0.94 0.95
RB 0.0 4.5 2.0 8.0 0.97 0.96 0.97

* EBG with consideration of prediction uncertainty

Table 5.4.: Performance evaluation of the EBG regressor, EBG classifier with SBS threshold
𝑡 := 0.80, and RB.

Based on our experimental findings, RB achieves the highest Acc when predicting SBS values.
EBG’s prediction performance falls short compared to RB, as evidenced by a higher MdAE (RB:
2.0, EBG: 6.0) and a lower BAC (RB: 0.96, EBG: 0.89). However, if we leverage EBG’s prediction
uncertainty measures, the performance becomes comparable, especially for the EBG classifier.
Note that EBG* in Table 5.4 summarizes the results for an uncertainty filtering of the

predictions we conducted for both, the regression, and classification tasks. In the regression
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scenario, our focus is on branches where we expect the MdAE to be less than or equal to 8 (as
Figure 5.2 depicts), that is, a 5% lower bound distance of 23 or less. This uncertainty filtering
results in the exclusion of 28% of predictions that we deem too uncertain for consideration.
For classification, we restrict our attention to predictions with an uncertainty level 𝑢 ≤ 0.7 (as
Figure 5.3 depicts). That leads to excluding 21% of the predictions, that we consider as being
too uncertain. While this approach may not provide predictions for every branch, it effectively
constrains prediction errors. It represents a trade-off between the number of predictions we
consider to be trustworthy and the level of certainty of those predictions.

In addition to the above accuracy analyses, we conducted a time-to-completion comparison
of EBG with UFBoot2 and the SH-like aLRT (using IQ-TREE2) as fastest competitors. The SBS
computation with RAxML-NG, UFBoot2 as well as the aLRT implementation of IQ-TREE2
can use multiple threads. Since the independent parsimony tree inferences necessary for the
feature computation of EBG can also be parallelized straightforwardly, we performed our
benchmark on a reference machine using multiple threads. This reference machine is equipped
with an Intel Xeon Platinum 8260 Processor (48 cores, 96 threads, 2.4 GHz) and 754 GB memory.
RAxML-NG and IQ-TREE2 provide the option to automatically determine the optimal number
of threads for a given MSA, and we used this feature in both tools with up to a total of 60
threads. Figure 5.5 summarizes the results of the benchmark on the 220 empirical TreeBASE
MSAs we used for the EBG/RB comparison. For the sake of simplicity, we define MSA size as

Figure 5.5.: Time-to-completion comparison for datasets of varying size with a moving average
of window size 20.

the product of the number of sequences and the number of site patterns (unique MSA sites).
Furthermore, we separately depict run times for AA (dashed lines) and DNA datasets (bold lines)
to assess potential differences between data types. Since EBG requires an existing phylogenetic
tree and substitution model parameters as input, we added the inference time of one adaptive
RAxML-NG [102] search to the time-to-completion of the EBG prediction (EBG + inference).
We observed that over all 220 MSAs EBG accounts for 19% and the inference for 81% of the
total time-to-completion. SH-like aLRT and UFBoot2 have a similar time-to-completion both
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for DNA and AA MSAs. For 97% of the datasets (DNA and AA), EBG outperformed UFBoot2
in terms of time-to-completion, with an average speedup of 9.4. Considering MSAs of size ≥
200 000, EBG yielded an average speedup of 2.8 in comparison to UFBoot2. With increasing
MSA sizes, the time-to-completion differences between UFBoot2 and EBG gradually decrease
for AA datasets. We do not observe an analogous trend for DNA data.
Additionally, we used a random sample of 84 MSAs from the total of 220 MSAs to assess

the disparity in accumulated CPU time between EBG and UFBoot2. In the median, running
EBG along with an adaptive RAxML-NG search requires 28% less accumulated CPU time in
comparison to the corresponding UFBoot2 execution. However, in sum over all 84 MSAs
EBG and the inference take 57% more accumulated CPU time (65 137 vs. 43 090 seconds) than
UFBoots2. This suggests that there are some outliers where UFBoot2’s time-to-completion is
substantially smaller than EBG’s time-to-completion when we include the ML inference time
in the calculation. According to our analysis, this seems to primarily be the case with MSAs
having a difficulty of ≥ 0.5 (see Appendix A.2.7 for a detailed visualization). Furthermore,
we observe, that on the same 84 MSAs EBG only accounts for 4% of the accumulated CPU
time while the remaining 96% are required for the adaptive RAxML-NG tree inference that is
required as an input for EBG.

We conclude that it is challenging to devise a fair time-to-completion comparison between
EBG and UFBoot2 as for EBG, we are undecided if the ML inference time should be included
or not. In contrast, for UFBoot2 it represents an intrinsic requirement for the computation
of support values as the ML search and the support calculations are necessarily intertwined.
Hence, the above time comparisons reflect, to a large extent, a time comparison between the
adaptive RAxML-NG and IQ-Tree ML search algorithms.

5.3.4. Feature Importances

Table 5.5 lists the five most important features of the EBG regressor. The feature importance
quantifies, how much a feature contributes to achieving an improved prediction during the
training. For a comprehensive overview of the feature importance, we refer to Appendix A.2.2.

Feature Importance in %
PBS 82.2
PS 3.1
Normalized branch length 2.0
# child inner branches 1.7
Skewness PBS 1.5

Table 5.5.: Overview of the five most important features that EBG uses for the prediction and
their respective importance in percent.

According to the feature importances of EBG, the PBS feature with a feature importance of
82.2% is by far the most important for the prediction of SBS values. We interpret the substantial
importance of the PBS features with an analogy to ensemble methods in machine learning.
These methods aggregate numerous weak learners, to create a robust, strong one. Similarly,
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we leverage the contributions of multiple “weak” parsimony inferences, to obtain a precise
estimate of the SBS values.

5.4. Digression: Branch Prediction

Within the use case of SBS prediction, we explored the problem of branch prediction. More
specifically, we tried to predict whether a branch we observe in the 1000 parsimony starting
tree consensus tree occurs in the consensus tree of 100 ML tree searches we perform with
RAxML-NG. We used 1060 TreeBASE MSAs with a total of 60 000 inner branches. 55% of the
branches we extracted from the parsimony consensus tree are present in the ML consensus
tree.
The feature set and the prediction pipeline are the same as for the SBS prediction. We

performed RFE down to 10 features which, in our experiments, still yielded the best accuracy.
We set the threshold of the class probability to 0.5 to predict whether the parsimony consensus
tree branch is present in the consensus ML tree. Table 5.6 summarizes the prediction results
for 10 random holdouts of size 20%. We established the baseline with the best split for the

Tool Acc f1 AUC
Classifier 0.79± 0.00 0.81± 0.01 0.88± 0.00
Baseline 0.65± 0.01 0.54± 0.01 0.68± 0.00

Table 5.6.: Test results for the branch predictor.

values of the minimum parsimony support of child branches on the training data. Our predictor
outperforms the baseline in every metric and yields an overall good performance. Table 5.7
provides an overview of the feature importances of the final predictor. With a set of lightweight

Feature Importance (%)
Min. parsimony support child branches 80
Support parsimony consensus tree 12
Min. parsimony support child branches (weighted2) 3
Skewness subtree imbalance ratio 1
Mean parsimony support child branches 1
Mean RF distance parsimony trees 1
Std. parsimony support child branches 0.5
Std. parsimony support child branches (weighted2) 0.5
Skewness subtree imbalance ratio 0.5
Std. parsimony support parent branches 0.5

2 by the branch length

Table 5.7.: Feature importances for the branch predictor.

features, we can predict if a branch we observe in a parsimony consensus tree will occur in
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the ML consensus tree as well with good accuracy. This predictor could speed up the process
of ML tree search by speeding up the candidate tree selection and, in general, provide a more
guided topological search during the inference process.

5.5. Conclusion

We observe that RB remains the most accurate approximation method for the direct prediction
of SBS values. We demonstrate how the EBG uncertainty measures can help to reduce the
accuracy gap between EBG and RB.

Filtering the predictions of the EBG classifier to an uncertainty level𝑢 ≤ 0.7was able to close
this gap in our experiments. EBG including the ML tree inference time requires substantially
lower time-to-completion compared to the major competitor UFBoot2 with an average speedup
of 9.4 (𝜎 = 5.5). This speedup comes at the cost of an increase in total accumulated CPU time
summed over all test MSAs of 57% due to outliers.
On 979 simulated MSAs, EBG, UFBoot2, and SH-like aLRT are generally too liberal and

provide mixed results. Besides that, EBG is the closest to the ideal branch support value out of
all three.
Currently, EBG implements the sampling part of the PB procedure in Python. The PB

is a performance bottleneck that substantially contributes to the prediction time and often
accounts for up to 70% of the overall time-to-completion of EBG excluding the ML inference
time. Furthermore, EBG performs 204 RAxML-NG calls: One for each of the 200 parsimony
bootstrap inferences, one for the parsimony inference, two for the support computation of
both, and one for the nRF distance computation. Additionally, we store and retrieve the results
of those calls in individual files, posing an I/O overhead. Unifying EBG’s feature computation
and the prediction as a command implemented within the RAxML-NG tool would likely result
in a substantial speedup and streamline the entire prediction process. Since RAxML-NG is
developed in our lab, the integration of EBG into RAxML-NG constitutes future work.

While EBG successfully establishes lower bounds for the EBG regression, we were not able
to provide an upper bound to the SBS values. In our experiments, the attempts to optimize
for any upper bound were unsuccessful, since they converged to the trivial upper bound of
an SBS of 100. An upper bound for EBG regression would be useful for the construction of
a comprehensive prediction interval. Future research could focus on the development of a
method or model that is capable of reliably estimating upper bounds. This would provide a
more informative prediction interval, which would be highly beneficial for the assessment of
the range of potential SBS values.
Finally, we note that parsimony-based methods may experience a renaissance, since as

we show here and as already demonstrated by the Pythia tool, they constitute the by far
most important and computationally inexpensive feature for conducting predictions about ML
method results.
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In this work, we explored two different use cases for predictive modeling in the context of
phylogenetic inference and placement.

The first use case in Chapter 4, phylogenetic placement difficulty prediction, is insight-driven.
Based on our definition of placement difficulty, we were able to provide a good predictor. The
most predictive features are summary statistics of matches and mutations between the QS and
conserved sites of the reference MSA. The predictor is available as command line tool BAD.
BAD can provide SHAP value-based explanations for the difficulty of individual phylogenetic
placements. A test we conducted on metagenomic test placements confirmed the performance
of BAD we observed during training on non-metagenomic data. Thus, biologists conducting a
metagenomic study can use BAD to hypothesize why specific sequences are easy or hard to
place in a reference phylogeny. This use case demonstrates how techniques of explainable AI
can be useful in analyzing otherwise inexplicable results. The major area of future research is
incorporating metagenomic data into the BAD predictor training.
Chapter 5 presented the prediction of SBS values as our second use case for predictive

modeling in phylogenetics. In contrast to the first use case, the SBS prediction is efficiency-
driven. In our experiments, the SBS predictor EBG can beat state-of-the-art alternatives in
terms of time-to-completion while predicting accurate branch support estimates. We were
able to harness multiple parsimony tree inferences to obtain an accurate estimate of the SBS
values. Thus, the idiom strength in numbers not only applies to EBG’s GBT predictor combining
multiple weak learners but also to the feature extraction from multiple parsimony trees. To
support trustworthy decisions by biologists conducting phylogenetic analysis using EBG we
put special emphasis on means to estimate the prediction uncertainty. Future research will
focus on the efficient embedding of EBG in RAxML-NG, a more efficient feature generation,
and the refining of the uncertainty estimates.
By successfully implementing both use cases, we reached our objective of exploring novel

applications of predictive modeling in the realm of phylogenetic inference and placements. We
have shown that ML can be used in these areas to elucidate previously unexplained mechanisms
and help gain efficiency in common analysis setups.
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A. Appendix

A.1. Use Case I: Phylogenetic Placement Entropy Prediction

A.1.1. Difficulty Distribution

Figure A.1.: Difficulty distribution of the datasets for the placement difficulty prediction. Sample
size: 1800 datasets.
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A.1.2. Placement Entropy Scatterplots

Figure A.2.: Placement entropy as a function of the kurtosis of the imbalance ratios of all
subtrees. Sample size: 1500.
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Figure A.3.: Placement entropy as a function of the standard deviation of the branch length.
Sample size: 1500.

Figure A.4.: Placement entropy as a function of the skewness of the closeness similarity. Sample
size: 1500.
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Figure A.5.: Placement entropy as a function of standard deviation of the fractions of non-major
residues for invariant sites (𝑡 := 0.5). Sample size: 1500.
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A.1.3. MSA Difficulty Correlations

Figure A.6.: MSA difficulty as a function of mean bootstrap support. Sample size figure: 1500.
Spearmans 𝜌 = −0.69 with 𝑝 ≪ 1 × 10−10.
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Figure A.7.: MSA difficulty as a function of skewness bootstrap support. Sample size figure:
1500. Spearmans 𝜌 = 0.68 with 𝑝 ≪ 1 × 10−10.

Figure A.8.: MSA difficulty as a function of mean bootstrap support. Sample size figure: 1500.
Spearmans 𝜌 = −0.71 with 𝑝 ≪ 1 × 10−10.
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A.1.4. SHAP Plot Examples

Figure A.9.: SHAP value waterfall plot for a placement with low placement entropy. The plot
depicts how the feature values influence the predicted placement entropy. The
base value is the expected prediction 𝐸 [𝑓 (𝑥)] = 0.31. Starting at the base value
the plot lists the individual influences of the feature values which accumulate in
the final prediction 𝑓 (𝑥) = 0.106.
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Figure A.10.: SHAP value waterfall plot for a placement with high placement entropy.

70



A. Appendix

A.1.5. Prediction Error Distribution

Figure A.11.: Prediction error distribution for the phylogenetic placement entropy prediction.
81% of the absolute prediction errors are ≤ 0.2.

A.2. Use Case II: Bootstrap Support Prediction

A.2.1. Command References
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Tool Version Commands
RAxML 8.2.12 Rapid Bootstrap: raxmlHPC-PTHREADS -T 60 -m GTRGAM-

MA/PROTGAMMALG -s msa_filepath -# 1000 -p 12345 -x 12345
Rapid Bootstrap (MPI): mpirun raxmlHPC-HYBRID-AVX -m
GTRGAMMA/PROTGAMMALG -s msa_filepath -# autoMRE -p 12345
-x 12345

RAxML-
NG

1.1.0 Search: raxml-ng −−adaptive −−msa msa_filepath −−model
GTR+G/LG+G −−threads auto{60}
SBS: raxml-ng −−bootstrap −−model model_filepath −−bs−trees 1000
−−msa msa_filepath
SBS (MPI): mpirun raxml-ng −−bootstrap −−model model_filepath
−−bs−trees 1000 −−msa msa_filepath −−workers 50

IQ-
TREE2

2.2.2.7 UFBoot2: iqtree2 -m GTR+G/LG+G -s msa_filepath -B 1000 -T AUTO
–threads-max 60
UFBoot2 (MPI): mpirun iqtree2-mpi -m GTR+G/LG+G -s msa_filepath
-B 1000 -T AUTO –threads-max 60
SH-like aLRT: iqtree2 -m GTR+G/LG+G -s msa_filepath -alrt 1000 -T
AUTO –threads-max 60

Table A.1.: Used commands for each tool

A.2.2. Features

• Parsimony Support (PS)
We compute the PS using the −−start-option of RAxML-NG for generating 1000 parsi-
mony starting trees. We calculate the support using RAxML-NG as well. More than 1000
parsimony starting trees do not yield a better predictor performance according to our
experiments.

• Parsimony Bootstrap Support (PBS)
We generate a PB by resampling the columns of the MSA with replacement. For each
of the sampled MSAs, we compute the corresponding parsimony starting tree using the
−−start-option in RAxML-NG. We infer a total of 200 PB trees. More than 200 PB trees
do not yield a better predictor performance according to our experiments.

• Normalized branch length
We normalize the branch lengths by the total sum of branch lengths of the tree.

• # children inner branches
The number of inner branches in the subtree below the branch.

• Skewness PBS
The skewness of the PBS of all inner branches of the input tree.

• Mean Robinson-Foulds-distance PB
The mean Robinson-Foulds distance of the trees generated by the PB procedure.
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Feature Importance (%)
Parsimony Bootstrap Support (PBS) 82.2
Parsimony Support (PS) 3.1
Normalized branch length 2.0
# children inner branches 1.7
Skewness PBS 1.5
Mean Robinson-Foulds-distance PB 1.1
Mean Parsimony Mutations per Site (PMS) 1.1
Branch length 1.0
Max. PMS 1.0
Coefficient of variation PSF 0.7
Max. PBS children* 0.6
Mean PBS parents 0.6
Max. PS children* 0.5
Branch number (ordered by level-order traverse) 0.5
Skewness PMS 0.5
Branch length ratio bipartition 0.5
Max. PS children* 0.3
Min. PS children 0.3
Std. PBS parent branches 0.3
Std. PBS children branches 0.3
Mean closeness centrality bipartition ratio 0.3
Min. PS children* 0.2
Min. PBS children* 0.1
*: weighted by branch length

Table A.2.: Overview of the subset of features used for the prediction and their final feature
importance for the EBG regressor. We obtained this subset via Recursive Feature
Elimination.

• Parsimony Mutations per Site (PMS) [statistic]
We compute the number of parsimony mutations per site using the tree and the MSA.
Afterwards, we calculate the summary statistics.

• [Min|Max|Mean|Std|Skewness] P(B)S [children|parents] [*]
We compute the statistics over the P(B)S for the inner branches below (children) or above
(parents) the branch. As indicated by *, we also weigh the P(B)S values of the child/parent
inner branches by their branch length for some features.

• Mean closeness centrality bipartition ratio
We split the tree into two parts at the branch. We then transform the trees into graphs
with networkx [44] and calculate their mean closeness centrality. We define the closeness
centrality of node 𝑖 as in Equation (A.1) [8] with 𝑁 being the number of nodes in a graph
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and 𝑑 (𝑥,𝑦) as the shortest branch distance between two nodes.

𝐶 (𝑖) = 1
𝑁∑
𝑖=1

𝑑 (𝑥, 𝑖)
(A.1)

By dividing the smaller by the larger closeness centrality we obtain the final feature.

A.2.3. Pearson Correlation EBG Regressor

MSA Pearson correlation p-value
10098_1 0.91 0.0
10115_3 0.88 0.0
10118_0 0.94 0.0
10169_0 0.95 0.0
10169_2 0.93 0.0
10196_0 0.94 0.0
10264_0 0.9 0.0
10268_3 0.96 0.0
10270_3 0.83 0.0
10271_5 0.92 0.0
10436_0 0.94 0.0
10436_8 0.84 0.0
10454_1 0.94 0.0
10542_1 0.93 0.0
10562_0 0.94 0.0
10568_0 0.95 0.0
10629_0 0.96 0.0
10652_0 0.92 0.0
10703_5 0.95 0.0
10714_0 0.95 0.0
10727_0 0.92 0.0
10749_0 0.97 0.0
10782_0 0.95 0.0
10791_9 0.87 0.0
10801_0 0.67 0.0
10856_1 0.87 0.0
10949_2 0.83 0.0
10983_0 0.78 0.0
10986_0 0.91 0.0
11032_4 0.9 0.0
11331_0 0.89 0.0
11376_0 0.94 0.0

74



A. Appendix

11487_7 0.95 0.0
11712_1 0.92 0.0
11768_1 0.93 0.0
11777_0 0.86 0.0
11783_0 0.93 0.0
11966_0 0.83 0.0
11972_1 0.94 0.0
11988_0 0.88 0.0
11991_4 0.95 0.0
12013_0 0.9 0.0
12020_0 0.95 0.0
12165_2 0.92 0.0
12306_1 0.91 0.0
12306_13 0.97 0.0
12334_0 0.93 0.0
12339_0 0.93 0.0
12493_1 0.91 0.0
12493_7 0.86 0.0
12717_2 0.93 0.0
12746_0 0.91 0.0
12855_2 0.95 0.0
13184_0 0.89 0.0
13664_0 0.9 0.0
13801_2 0.92 0.0
13808_7 0.93 0.0
13815_2 0.97 0.0
13887_0 0.86 0.0
13909_0 0.93 0.0
13909_1 0.93 0.0
13985_6 0.92 0.0
14035_0 0.94 0.0
14151_0 0.98 0.002
14188_0 0.91 0.0
14232_0 0.83 0.0
14244_0 0.7 0.0
14504_0 0.94 0.0
14526_0 0.94 0.0
14534_25 0.95 0.0
14643_2 0.92 0.0
14663_0 0.85 0.0
14688_0 0.85 0.033
14688_13 0.92 0.0

75



A. Appendix

14688_23 0.92 0.0
14725_5 0.95 0.0
14725_7 0.96 0.0
14833_4 0.94 0.0
14923_0 0.95 0.0
14954_0 0.9 0.0
14959_2 0.96 0.0
15019_5 0.89 0.0
15021_3 0.92 0.0
15021_7 0.94 0.0
15039_2 0.87 0.0
15097_1 0.93 0.0
15179_2 0.95 0.0
15253_0 0.82 0.0
15306_5 0.93 0.0
15368_0 0.91 0.0
15427_0 0.91 0.0
15635_1 0.89 0.0
15636_0 0.82 0.0
15639_0 0.87 0.0
15669_9 0.92 0.0
15682_0 0.92 0.0
15769_0 0.94 0.0
15828_0 0.95 0.0
15861_2 0.93 0.0
15908_1 0.86 0.0
16007_0 0.87 0.0
16009_1 0.89 0.0
16105_0 0.88 0.0
16141_1 0.78 0.041
16190_2 0.94 0.0
16269_0 0.92 0.0
16313_11 0.94 0.0
16453_0 1.0 1.0
16629_0 0.88 0.0
16632_2 0.96 0.0
16637_2 0.97 0.0
16675_0 0.88 0.0
16737_0 0.84 0.0
16748_0 0.84 0.0
16785_1 0.9 0.0
16855_2 0.97 0.0
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17014_0 0.9 0.0
17168_0 0.95 0.0
17390_1 0.92 0.0
17443_0 0.92 0.0
17594_11 0.93 0.0
17594_13 0.95 0.0
17666_0 0.89 0.0
17723_0 0.94 0.0
17749_1 0.9 0.0
17761_0 0.91 0.0
17774_4 0.97 0.0
17791_0 0.85 0.0
17814_0 0.93 0.0
17878_9 0.85 0.0
17885_1 0.96 0.0
17896_31 0.92 0.0
18077_0 0.94 0.0
18131_0 0.84 0.0
18218_1 0.96 0.0
18258_2 0.92 0.0
18438_0 0.75 0.003
18448_0 0.89 0.0
18465_0 0.94 0.0
18638_0 0.87 0.0
18638_1 0.92 0.0
18654_0 0.95 0.0
18850_2 0.62 0.574
18883_0 0.92 0.0
19060_0 0.96 0.0
19447_0 0.91 0.0
19466_3 0.92 0.0
19509_1 0.99 0.0
19579_0 0.91 0.0
19740_5 0.82 0.0
19782_3 0.78 0.0
19797_0 0.95 0.0
19889_1 0.89 0.0
19925_0 0.96 0.0
19925_6 0.95 0.0
20079_4 0.94 0.0
20196_18 0.96 0.0
20196_19 0.96 0.0
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20239_0 0.93 0.0
20239_3 0.95 0.0
20250_1 0.87 0.0
20736_0 0.94 0.0
20944_1 0.79 0.0
21191_0 0.83 0.0
21303_0 0.92 0.0
2180_2 0.95 0.0
21817_6 0.87 0.0
2191_2 0.94 0.0
21973_9 0.98 0.0
22052_0 0.93 0.0
22091_1 0.78 0.0
2217_0 0.93 0.0
22200_0 0.91 0.0
2224_0 0.92 0.0
22408_11 0.97 0.0
22429_0 0.9 0.0
22442_11 0.92 0.0
22442_6 0.85 0.002
22475_0 0.9 0.0
2248_0 0.96 0.0
2250_0 0.91 0.0
22552_1 0.91 0.0
2256_1 0.98 0.0
22751_1 0.95 0.0
22798_0 0.85 0.0
22805_0 0.93 0.0
22941_0 0.92 0.0
22999_3 1.0 0.017
23036_0 0.94 0.0
23279_0 0.96 0.0
23282_0 0.95 0.0
23436_0 0.82 0.0
23535_1 0.84 0.0
23593_0 0.95 0.0
23768_0 0.89 0.0
23884_0 0.93 0.0
25031_0 0.8 0.0
25084_2 0.9 0.0
25181_0 0.94 0.0
25256_20 0.93 0.002
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25256_23 1.0 0.0
25284_1 0.9 0.0
25341_1 0.92 0.0
25554_1 0.92 0.0
25635_1 0.83 0.0
25818_4 0.94 0.0
25829_8 0.87 0.0
26085_4 0.95 0.0
26188_0 0.85 0.0
26212_1 0.91 0.0
26551_4 0.95 0.0
26628_4 0.97 0.0
26669_46 0.96 0.0
26988_12 0.79 0.0
26988_8 0.97 0.0
27016_1 0.94 0.0
27176_0 0.93 0.0
27689_0 0.91 0.0
28112_0 0.85 0.0
28258_0 0.98 0.0
28360_17 0.98 0.0
28360_18 0.96 0.0
28360_2 0.95 0.0
28360_30 0.95 0.0
28360_8 0.96 0.0
362_1 0.89 0.0
684_1 0.96 0.0
688_1 0.95 0.0
9936_1 0.97 0.0
9972_0 0.96 0.0
9987_1 0.89 0.0

Table A.3.: EBG regressor correlationwith the SBS ground truth of 1000 replicates. In three cases
the Pearson correlation is < 70 (10801_0, 18850_2). For 10801_0 and 18850_2 the
mean SBS support is extremely low (5 and 23) suggesting very uncertain phylogenies.
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A.2.4. Tool Balanced Accuracy and MSA Difficulty

Figure A.12.: Balanced accuracy comparison of EBG, UFBoot2, and SH-like aLRT concerning
MSA difficulty.

We compared the BAC of the three tools in predicting whether a branch is in the true tree or
not. We set the decision threshold for EBG and SH-like aLRT to 80, as they behave similarly on
the simulated MSAs. For UFBoot2 we set the threshold for predicting the branch is in the true
tree to 95. According to the authors, this yields a 5% false positive bound [70]. It is difficult to
compare the BAC values of the three tools due to the definition of individual thresholds. At
least with this set of thresholds, EBG yields the most consistent performance on the simulated
MSAs.
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A.2.5. Different Models

Tool MAE BAC
Logistic/Ridge Regression 10 ± 0.2 0.89 ± 0.00
Random Forest 12 ± 1.6 0.89 ± 0.00
LightGBM 8.3 ± 0.2 0.91 ± 0.00

Table A.4.: Performance of different machine learning models on the regression and classifi-
cation task formulation. The table shows the mean and standard deviation of the
metrics based on 10 repeated random holdouts of size 20%.

A.2.6. Number of Parsimony Trees

Configuration MdAE RMSE
100 parsimony bootstrap starting trees 7.9 13.8
200 parsimony bootstrap starting trees 7.6 13.1
500 parsimony bootstrap starting trees 7.5 13.0

100 parsimony starting trees 9.3 14.9
1000 parsimony starting trees 8.5 14.2
10000 parsimony starting trees 8.4 14.0

Table A.5.: Performance comparison of the EBG regressor with different numbers of parsimony
(bootstrap) trees as the basis for the P(B)S features. The table shows the mean of the
metrics based on 10 repeated random holdouts of size 20%. As 500 PB trees did not
yield a significantly better MdAE compared to 200 PB trees, we chose to use 200 PB
trees for a better runtime. The same rationale led to the choice of 1000 parsimony
starting trees.
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A.2.7. CPU times EBG and UFBoot2

Figure A.13.: Ratio of the EBG and inference CPU time against the UFBoot2 CPU time on 84
MSAs.
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