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Abstract

In this thesis, newly developed distance-based methods to infer a species tree from
gene family trees are studied.

The methods are based on species distances as calculated from the respective gene
family trees. The distances from the gene family trees are merged via the novel NJst+,
mini, and tagging methods into a single distance matrix each which summarises all
pairwise distances among the species. Based on this merged distance matrix, each
method computes a species tree.

We evaluate our methods via empirical and simulated data sets. The relative
Robinson–Foulds distance between a given species tree and the newly calculated
distance-based species tree is our main accuracy metric. We find that our best
methods perform reasonably well with a mean relative Robinson-Foulds distance of
0.0470 (4.7 %) for miniNJws and 0.0400 (4 %) for tagNJMAD on the STANDARD
data set (Tab. 5.1). For comparison, the most accurate tool (A-pro), we compared
with, has a relative Robinson-Foulds distance of 0.0461 (4.6 %). The STANDARD
data set has all used parameters on default setting, while other data sets have certain
parameters varying. We used a total of 44 distinct sets of parameters with 3 different
sequence lengths and 50 data sets each. Additionally, we evaluated our methods on 5
empirical data sets. The mean run times for the STANDARD data set are 0.10 s for
miniNJws and 4.23 s for tagNJMAD, while A-pro needed a mean run time of 7.17 s.

Deutsche Zusammenfassung

Diese Arbeit behandelt neu entwicklete distanzbasierte Methoden zur Berechnung
von Speziesstammbäumen aus Genfamilienstammbäumen.

Die Methoden basieren auf Speziesabständen, die aus entsprechenden Genfami-
lienstammbäumen berechnet werden. Die Distanzen der Genfamilienstammbäume
werden mit den neuartigen NJst+, mini und tagging Methoden zu jeweils einer
einzigen Distanzmatrix zusammengführt, die alle paarweisen Distanzen zwischen
den Spezies zusammenfasst. Basierend auf dieser Distanzmatrix, wird jeweils ein
Speziesstammbaum berechnet.

Wir bewerten unsere Methoden anhand empirischer und simulierter Datensätze. Die
relative Robinson-Foulds Distanz zwischen einem gebenen Speziesstammbaum und
dem neu berechneten Speziesstammbaum stellt unsere wichtigste Genauigkeitsmetrik
dar. Wir stellen fest, dass unsere besten Methoden, mit einer durchschnittlichen
relativen Robinson-Foulds Distanz von 0,0470 (4,7 %) für miniNJws und 0,0400 (4 %)
für tagNJMAD auf dem STANDARD Datensatz (Tab. 5.1), verhältnismäßig gut
funktionieren. Zum Vergleich, A-pro, das bisher genaueste Programm, mit dem wir
verglichen haben, erreicht ein arithmetisches Mittel bezüglich der relativen Robinson-
Foulds Distanz von 0,0461 (4,6 %). Der STANDARD Datensatz ist mit den Standard-
Parametern erstellt, während bestimmte Parameter bei anderen Datensätzen variieren.
Wir haben insgesamt 44 unterschiedliche Parametersets zu je 3 Sequenzlängen und 50
Datensätzen. Zusätzlich haben wir unsere Methoden auf 5 empirische Datensätzen
getestet. Die erforderliche Laufzeiten für den STANDARD Datensatz sind 0,10 s für
miniNJws , 4,23 s für tagNJMAD und 7,17 s für A-pro.
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1. Introduction

1.1. Motivation
Species play an important role for numerous aspects of biology [1]. Representing their
evolutionary relationships in species trees as in Fig. 1.1 is crucial for numerous analytical
purposes, for instance to rise awareness to human induced mass extinction [2]. For over
100 years, scientist have estimated species trees based on so-called apomorphies. They
considered external characteristics, that groups of species share or that are unique to a
single species. In 1895, Ernst Haeckel estimated species trees for primates among other
species. He distinguished between, for example, species with claws or fingernails and how
the nostrils are arranged [3]. Fig. 1.1a shows one of his species trees.

Today, species trees are estimated on the basis of DNA-sequences. Fig. 1.1b shows a
species tree from one of the DNA-sequence data sets we used. A widely used method for
sequencing was the Sanger method [4][5] which was developed in the 1970s. In the 2000s,
the development of next Generation Sequencing enabled scientists to obtain DNA-sequences
substantially faster and cheaper than with the previous Sanger method [6]. With the faster
methods it is possible to obtain longer sequences from more species.

To infer a species tree from DNA-sequences, often a two-step procedure is used. The
first step estimates gene family trees from the sequence data. The second step combines
these trees into a single species tree, that best explains the gene family tree. Tools such
as ParGenes [7] [8] can infer gene family trees from large data sets with ’good’ parallel
efficiency. For the second step there exist methods and tools such as NJst [9], A-pro
[10], DupTree [11], and FastMulRFS [12] among many others. The time complexities and
associated execution times heavily depend on the number of species and gene family trees.
For data sets with more than 100 species it takes some tools several days to estimate a
species tree. Incomplete lineage sorting, duplication and loss events, and horizontal gene
transfer make it difficult to correctly estimate species trees [13]. Thus, there is a need for
new methods that handle these challenges better and run in a reasonable time.

1.2. Objectives of this thesis
The objectives of this thesis are to develop and evaluate new methods for the step of
combining gene family trees into a single species tree. The methods focus on recognising
paralogies in the gene family trees. To achieve this, we use distance based methods. We
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1. Introduction

(a) A primates species tree from
1895 [3].

Pan Troglodytes

Pan Paniscus

Homo Sapiens

Gorilla Gorilla
Pongo Abelii

Nomascus Leucogenys

Papio Anubis

Theropithecus Gelada

Macaca Fascicularis

Macaca Mulatta
Chlorocebus Sabaeus

Callithrix Jacchus

Microcebus Murinus

0.01

(b) A primates species tree based on the primates data set
(Tab. 5.1). Visualized using Dendroscope 3 [14].

Figure 1.1.: Species trees in comparison.

calculate distances in the gene family tree and use several techniques to compute a single
pair-wise species distance matrix. We then use clustering methods to estimate species
trees from the distance matrix. We evaluate our methods on simulated and empirical
data sets with respect to their species tree reconstruction accuracy. Furthermore, we show
the advantages of the theoretical time complexity of our methods in comparison to other
methods.

1.3. Own contributions
My contribution was to combine existing techniques with our techniques into newly
developed methods for species tree inference from gene family trees. Our techniques aim
to filter paralogy. One approach is to decide, for every pair-wise distance in the gene
family trees, if we consider it to be based on paralogy or not. Another technique is a
heuristic, which only uses minimum distances. I implemented the methods in C, which can
be executed in extremely short times compared to the time required for the inference of
the gene family trees. Furthermore, we simulate data sets, to evaluate our methods on.
We simulate large data sets using Simphy [15], INDELible [16], and ParGenes [7]. Among
the new methods miniNJws and tagNJMAD showed the best accuracy.
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2. Background

In this Chapter we introduce the necessary background knowledge, methods and terminol-
ogy that will help the reader to understand the following Chapters more easily. Sec. 2.1
introduces biological background knowledge about genetics. Sec. 2.2 explains how phylo-
gentic trees represent genetic relationships. Sec. 2.3 introduces methods for species tree
inference. Sec. 2.4 describes existing methods for computing a distance matrix on a set of
gene family trees. Sec. 2.5 explains the tagging procedure and the associated necessary
rooting methods for phylogenetic trees.

2.1. Genetics
The thesis is motivated by biology, therefore, we introduce some relevant models and
terminology in genetics first.

2.1.1. Species

In biology, a species is a unit of classification for organisms. Biologists still disagree on
the species definition [17] and providing such a definition is not part of this thesis. In the
scope of this work, we consider a species to be a group of organisms that share a pool of
common genes and that are able to interbreed [18]. An example for some closely related
species would be the following group of primates: Bonobo, Chimpanzee, Gorilla, Human,
and Orangutan.

2.1.2. Genes, DNA, sequence and genome

There is still some disagreement on what a gene is [19]. For this thesis, we consider a gene
to constitute information which children inherit from their parents. Biological properties of
the offspring are derived from this information. The Deoxyribonucleic acid (DNA) sequence
encodes the respective information. It is a sequence of the four nucleotides cytosine (C),
guanine (G), adenine (A), and thymine (T) [20]. A sequence is usually represented by the
abbreviated nucleotides. The genome contains the entire DNA of a species including all
genes and also the non-coding DNA [21].

2.1.3. Evolutionary events

The genome evolves with the species over time. It can evolve differently in distinct
populations of the same species. Evolutionary events that occur are

3
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Gorilla

Chimpanzee
Orangutan

Bonobo

Human

0.0
098

6

0.00325
0.0

02
49

0.002

<0.0015

<0.0015<0.0015

Figure 2.1.: Species tree of Bonobo, Chimpanzee, Gorilla, Human, and Orangutan [25]. A
mapping assigns every leaf to exactly one species. The colours of the leaves
represent the mapping. Branch lengths are not drawn to scale.

• Speciation (spec): the genome of two populations evolves differently and the popula-
tions form two new species. The genome of an individual belongs to one and only
one of the two new species.

• Duplication (dup): a gene duplicates and is present more than once in the genome
afterwards. The gene’s copies can evolve differently, which makes them to not be
exactly identical. Multiple duplications can also take place, yielding more than two
copies of the gene in the genome.

• Loss (loss): a gene is erased from the genome. It is not present in the genome
anymore. The species no longer inherits the gene.

• Horizontal gene transfer (hgt): a gene is not inherited by evolutionary descend but
transferred from another species. This can be frequently observed between bacteria
[22].

Gene pairs in distinct species that are a result of a speciation event are called orthologous
genes [23]. Duplication events form pairs of paralogous genes [24]. A paralogy describes the
relationship between paralogous genes.

2.2. Phylogenetic trees

A phylogenetic tree T represents the evolutionary relationships between species, genes,
populations, or individuals [26]. It is an undirected graph, where any pair of vertices is
connected by exactly one path. Fig. 2.1 shows an example of a species tree. Vertices are
generally denoted as nodes pi. Nodes with degree 1 are called leaves or terminal nodes and
represent contemporary species or genes. Nodes with degree strictly greater than one are
termed internal nodes and represent hypothetical ancestors. Fig. 2.1 shows internal nodes
in black and leaves in colour. Edges are called branches. Branch lengths can represent true
evolutionary time on the species trees or quantify the amount of sequence divergence in
gene trees [26].
Trees are either rooted or unrooted. In rooted trees, the root node represents the hypo-
thetical common ancestor of all species that are present in the tree. Unrooted trees do not
contain information about the chronological order of speciation events.
The topology of a tree determines the arrangement of the branching pattern between the
nodes of the tree. There are

n−2∏
i=1

2i+ 1 = (2n− 3)!
2n− 2(n− 2)! (2.1)

4



2.2. Phylogenetic trees

different possible rooted tree topologies and
∏n−3
i=1 2i+ 1 possible unrooted tree topologies

with n species [27]. A set of trees is a forest. A bifurcating node is an internal node of
degree 3 or a root node of degree 2. Such a node assumes that speciations yield pairs of
species. A multifurcating node or polytomy is an internal node that is not bifurcating. A
polytomy assumes that simultaneous speciation into more than two species occurred. It can
also be the result of insufficient phylogenetic signal for resolving the topology. A bifurcating
or fully resolved tree is a tree where every internal node is bifurcating. A multifurcating
tree is a tree that is not bifurcating. The Lowest Common Ancestor (LCA) of two leaves ai
and aj , LCA(ai, aj), in a rooted tree is the node qi, which is furthest away from the root
and that has both ai and aj as descendants.

2.2.1. Species tree
Species evolve through speciation and extinction events. A speciation event gives rise
to two new descendant species that subsequently evolve independently. An extinction
event does not give rise to any descendant. A species tree is the representation of such
a history, where internal nodes correspond to speciation events and leaves correspond to
contemporary species. In the scope of this work, extinction events do not appear on a
species tree because they are not observable.

2.2.2. Gene family tree
Genes are present in the species’ genomes and evolve along the species tree. A leaf xai,s

in the gene family tree represents the sth copy of a gene in the genome of species ai. A
given mapping assigns each leaf to exactly one species. Fig. 2.2 shows a species tree and a
corresponding gene family tree. In this work, we make the assumption that genes evolve
through the evolutionary events described in Sec. 2.1.3, that we represent via a gene family
tree. Internal nodes can have different origins. In Fig. 2.2b internal nodes represent different
events which are distinguished by the nodes’ shapes. The chain of events that generated
the gene tree can be the following

• A spec event generated species a1 and the ancestor of a2. The gene evolved differently
in the species. The root node represents this event.

• Another spec event resulted in a2 and the ancestor of a3. The second node marked
as spec shows this event.

• A third spec event gave rise to species a3 and a4.

• But a loss event in species a3 erased the gene from a3’s genome. That is the reason,
why no leaf is mapped to a3, and why there is no third spec node in the gene family
tree.

• A dup event in species a4 caused the gene to be present twice in a4’s genome. A dup
node represents this phenomenon in the gene family tree. Furthermore, two leaves
are mapped to species a4.

• In a hgt event species a4 transferred a gene copy to species a1. The genes evolved
differently in distinct species. Therefore, the two leaves mapped to species a1 are
located far apart in the gene family tree. The event is denoted by the hgt node in
the gene family tree.

2.2.3. Incomplete lineage sorting
Apart from the aforementioned events that explain the differences between species tree
and the gene family trees, studies [13] [28] [29] also conclude that large population sizes
and short times between speciation events yield strong divergence between the trees. This
effect is known as Incomplete Lineage Sorting (ILS).

5



2. Background

a1

a2

a4a3
(a) Rooted species tree for species a1, a2, a3,

and a4. Colours represent the mapping
to species.

a1,1x

a2,1x

a1,2x

a4,1x

a4,2x

spec
dup
hgt

(b) Rooted gene family tree for species tree
2.2a. Colours show the mapping of
leaves to species. Node shapes indicate,
which event gave rise to the internal
node.

Figure 2.2.: Rooted species tree and corresponding gene family tree showing duplication
(dup), speciation (spec), and horizontal gene transfer (hgt) events. Loss events
are not visible in a gene family tree.

2.2.4. Gene family tree construction

To construct gene family trees the genomes of a set of species A are sequenced. Within
each genome sequence, genes are detected that belong to a specific gene family. For each
gene copy of a gene family in a species’ genome, a leaf that is mapped to one of the species
is added to the corresponding gene family tree. Tools like RAxML-NG [8] use maximum
likelihood methods to estimate the tree topology of the gene family tree. The tool can
work with different evolutionary models [8] and yields a topology which is likely to have
generated the data under the selected model.

2.2.5. Tree comparison

A standard metric to objectively measure the similarity of two phylogenetic trees is the
Robinson-Foulds-Distance (RFD) [30]. The two operations used to calculate the distance
are α and α−1. The operator α contracts two nodes pi and pj by removing the edge epi,pj

between them from the tree. The new tree contains a new node pij instead of nodes pi
and pj . The node contains the union of labels of the nodes pi and pj as labels and the
union of edges of the nodes pi and pj as edges. The deconstruction operator α−1 inverses
the contraction operator α. An arbitrary split of the union of edges and of the labels
allocates edges and labels to the new nodes. Leaves must be allocated exactly one label.
The minimum number of α and α−1 operations needed to transform tree T1 into tree T2 is
the RFD(T1, T2) [30].
The maximum number of operations needed for transforming an unrooted tree with n
species into another is 2(n− 3) [8]. The relative RFD (rRFD) is therefore

rRFD(T1, T2) = RFD(T1, T2)
2(n− 3) (2.2)

6



2.3. Distance-based methods for species tree inference

a1 a2 a3 a4 a5
a1 × 2 2.5 3.8 5
a2 × 2.6 4 5.3
a3 × 2.7 4
a4 × 3.4
a5 ×

Table 2.1.: Example distance matrix for species a1, a2, a3, a4, and a5

2.3. Distance-based methods for species tree inference

Different methods to infer species trees exist. This Section introduces four of them. Distance
based methods use a distance matrix D, which represents the distances between every
pair of sequences or species (ai,aj), to calculate a phylogenetic tree. Sec. 2.4 outlines the
calculation of the distance matrix D.

2.3.1. Neighbor Joining

The neighbor-joining (NJ ) algorithm constructs a phylogenetic tree for n species from
a given distance matrix D. Neighbors are nodes that are only separated by exactly one
node. Starting from a star shaped tree in step 0 (Fig. 2.3a) the algorithm joins neighbors
until a single unrooted bifurcating tree is obtained. NJ joins nodes pi, pj by adding an
internal node qs in between them. It chooses the pair of nodes such that the sum of branch
lengths is minimized [31]. To do so, the NJ algorithm calculates a matrix Q at every step
as follows:

Qpi,pj = (n− 2)Dpi,pj −
n∑
k=1

Dpi,pk
−

n∑
k=1

Dpj ,pk
(2.3)

The algorithm selects the pair of nodes (pi,pj), which corresponds to the minimum of
matrix Q and joins them as follows. A new internal node qs connects the node pair by
being added in between them. The algorithm removes the pair of nodes from the pool of
nodes and matrices and adds the new node. Distances from the joined nodes pi, pj to the
new internal node qs are calculated as follows:

Dpi,qs = 1
2Dpi,pj + 1

2(n− 2)

∣∣∣∣∣
n∑
k=1

Dpi,pk
−

n∑
k=1

Dpj ,pk

∣∣∣∣∣ (2.4)

Dpj ,qs = Dpi,pj −Dpi,qi . (2.5)

Distances from other nodes pk to the new node are calculated as follows:

Dqs,pk
= 1

2[Dpi,pk
+Dpj ,pk

−Dpi,pj ]. (2.6)

NJ needs a total of (n−3) joining steps. For each step i a quadratic matrix Q of size (n− i)
must be calculated. The time complexity is, therefore, O(n3). Fast Neighbor Joining is an
algorithm with a time complexity of O(n2) that only induces a minimal loss of accuracy
[32].

Tab. 2.1 shows an example distance matrix, Fig. 2.3 visualizes the first step of the NJ
algorithm and Fig. 2.4 shows the resulting tree.
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Figure 2.3.: First steps of NJ method for the distance matrix given in Tab. 2.1
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Figure 2.4.: Phylogenetic tree obtained from Tab. 2.1 with the NJ algorithm

2.3.2. UPGMA, WPGMA

The unweighted pair group method with arithmetic mean (UPGMA) and the weighted pair
group method with arithmetic mean (WPGMA) are methods to build a phylogentic tree
with n species from a given distance matrix D. The method joins two clusters of elements
Ai and Aj , which have the lowest distance of all current clusters, at every step. A new
internal node qs in the phylogentic tree represents the new cluster. The method calculates
distances to the new node qs, such that all elements of the cluster have the same distance to
qs. Distances of the new cluster Ai∪Aj to an outside cluster Ak after joining are calculated
as follows:

• DAi∪Aj ,Ak
=
|Ai| ·DAi,Ak

+ |Aj | · dAj ,Ak

|Ai|+ |Aj |
for UPGMA and

• DAi∪Aj ,Ak
=
DAi,Ak

+ dAj ,Ak

2 for WPGMA [33].

In WPGMA elements that were added early to the cluster receive a lower weight than
elements that are added later on to the cluster. This step is repeated until all elements
form one cluster.
Both UPGMA and WPGMA need (n − 1) joining steps. At every step i, the method
updates the distance matrix of size (n− i) and finds the minimum within this matrix. In a
naïve implementation the time complexity is, therefore, O(n3).

Fig. 2.5 shows trees inferred with UPGMA and WPGMA from the example distance matrix
in Tab. 2.1.

2.3.3. Least squares method

The least squares method calculates branch lengths for a phylogenetic tree with n species
for given distance matrix D. The branch lengths are calculated, such that the squares of
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Figure 2.5.: Phylogenetic trees from distance matrix Tab. 2.1
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Figure 2.6.: Phylogenetic tree from Tab. 2.1 with least squares method

the differences between the given distances Dai,aj and the estimated distances D̂ai,aj on
the tree are minimized. A key assumption is, that branch lengths are additive regarding
the distance of species within a tree [27]. In Fig. 2.6 the distance between species a1 and
a2 is therefore D̂a1,a2 = 1.1 + 0.9. The branch lengths are calculated by minimizing the
least squares score which is defined as follows

S =
∑
i<j

(Dai,aj − D̂ai,aj )2 (2.7)

Minimizing the score requires solving a set of linear equations. Among different tree
topologies, the one with the lowest score S is chosen. Since the number of possible
topologies grows super-exponentially (Eq. 2.1) with the number of species, Cavalli-Sforza
and Edwards proposed heuristics for choosing topologies [27]. Without using heuristics
for choosing topologies, there is a factorial number of possible tree topologies. Therefore,
the time complexity is O(n!). Fig. 2.6 shows the least squares method tree for the distance
matrix of Tab. 2.1. It yields the same tree as the NJ method.

2.4. Computing distance matrices on sets of gene family trees
The main objective of this thesis is to develop and evaluate methods to infer species trees
from sets of gene family trees. An essential step in these methods is to compute distance
matrices on sets of gene family trees. This Section introduces existing methods. Sec. 2.4.1
shows the NJst method, Sec. 2.4.2 describes the ustar method.

2.4.1. NJst

The NJst-method [9] calculates a distance matrix DNJst based on every pair of leaves of a
set of gene family trees T. D(xai,s, xaj ,t) denotes the distance between the sth leaf, which
has a mapping to species ai, and the tth leaf, which has a mapping to species aj . The
distance is defined as the number of internal nodes on the path connecting them [9]. This is
equal to the path length minus 1, when every edge has a uniform length of 1. For example,
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2. Background
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Figure 2.7.: A set K of gene family trees

in Fig. 2.7a the distance between leaves xa1,1 and xa2,1 is D(xa1,1, xa2,1) = 2 . The variable
mai,Tk

denotes the number of occurrences of species ai in gene family tree Tk, whereas T is
the set of all gene family trees. In the example in Fig. 2.7a, the number of occurrences of
leaves mapped to certain species is ma1,Tk

= ma2,Tk
= ma3,Tk

= 2. The overall distance
DNJst(a1, a2) between two species a1, a2 is then:

DNJst(ai, aj) =
∑
Tk∈T

∑mai,Tk
s=1

∑maj ,Tk

t=1 D(xai,s,Tk
, xaj ,t,Tk

)∑
Tk∈Tmai,Tk

maj ,Tk

(2.8)

The subscript Tk in the distance function indicates in which tree Tk the distance occurs.
In the example in Fig. 2.7 the resulting distances are

DNJst(a1, a2) = 18
7 ≈ 2.57 ,

DNJst(a1, a3) = 18
7 ≈ 2.57 and

DNJst(a2, a3) = 11
5 = 2.2 .

NJst uses the NJ algorithm to calculate a species tree from the distance matrix. The time
complexity for calculating the distance matrix for a gene family tree with O(m) leaves is
O(m2). For a forest of K trees the time complexity for calculating the distance matrix is,
therefore, O(m2K). Given n species, the complexity for NJ is O(n3).

2.4.2. Ustar

USTAR WITH MULTIPLE SAMPLES PER TAXON [34] calculates a distance matrix
Dustar from a set of gene family trees T. Like the NJst method (Sec. 2.4.1) it uses ever pair
of leaves in the gene family trees and calculates an average. The difference is, that ustar
calculates the average first per tree and then over all trees. The distances Dustar(ai, aj) is
defined as follows

Dustar(ai, aj) =

∑
Tk∈T

1
Θ(mai,Tk

·maj ,Tk
)

 ∑
Tk∈T

∑mai,Tk
s=1

∑maj ,Tk

t=1 D(xai,s,Tk
, xaj ,t,Tk

)
mai,Tk

maj ,Tk

(2.9)
where Θ is a step function:

Θ(mai,Tk
·maj ,Tk

)) =
{

1 , if mai,Tk
6= 0 ∧maj ,Tk

) 6= 0
0 , else

(2.10)
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In the example in Fig. 2.7 the resulting distances are

Dustar(a1, a2) = 1
2 ·
(10

4 + 8
3

)
= 86

24 = 2.583 ,

Dustar(a1, a3) = 1
2 ·
(10

4 + 8
3

)
= 86

24 = 2.583 and

Dustar(a2, a3) = 1
2 ·
(10

4 + 1
1

)
= 22

8 = 1.75 .

The averaging of the distances per species pair for every tree does not add time complexity
to the averaging steps compared to NJst. The time complexity for calculating the distance
matrix for K gene family trees with O(m) leaves per tree is O(m2K).

2.5. Gene tree tagging
To develop methods that do not use every distance of pairs of leaves in gene family trees,
we need a classification of gene leaf pairs in orthologous and paralogous pairs. A method
for classifying such pairs is to label every internal node and classify each pair by a LCA
label. In this context the labels are called tags. Assigning tags to nodes is called tagging.

2.5.1. Astral-Pro tagging and rooting

The ASTRAL method for paralogs and orthologs (A-Pro) [10] is a refinement of the
Accurate Species TRee ALgorithm (ASTRAL) tool. Among other approaches, A-Pro uses
tagging and rooting of untagged and unrooted gene family trees. The root is chosen by
calculating a score S for every possible root r. The root with the lowest score is then
selected. The score Sqi for a node qi is recursively defined as

Sqi =



0, if qi is leaf node, else

Sqi,l + Sqi,r+


1, if N(qi, l) = N(qi, r)
2, else if N(qi, l) ⊂ N(qi, r) ∨N(qi, r) ⊂ N(qi, l)
3, else if N(qi, l) ∩N(qi, r)) 6= ∅
0, else

(2.11)

where Sqi,l and Sqi,r are the scores of the left and right children of node qi. The function
N(qi) describes the set of species present in the subtree of qi.
The method tags every node as being either a speciation (spec) or a duplication (dup). The
node qi is tagged as spec, if its score is equal to the sum of scores of its child nodes qi,l
and qi,r: Sqi = Sqi,l + Sqi,r and as dup otherwise. This means that every node that has at
least one species represented in two different child nodes will be tagged as dup. There are
O(m) possible roots for a tree with O(m) leaves. The score calculation needs to compare
O(m2) gene leaf mappings. The time complexity for rooting and tagging a set of K gene
family trees in a naïve implementation is, therefore, O(m3K). Using memoization, the
time complexity can be reduced to O(m2K) [10]. Fig. 2.8 shows the tags of internal nodes
for two rooted gene family trees.

2.5.2. MAD rooting

Another rooting method is the Minimal Ancestor Deviation (MAD) approach. It uses all
pairwise LCAs and branch lengths in unrooted trees to root them [35]. It calculates a score
S for every branch in the tree. The score S is the mean-square of the relative deviation

S =
(
r2
ab,α

) 1
2 (2.12)
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Figure 2.8.: A set K of APro rooted gene family trees. Same colours represent that leaves
are mapped to the same species.

for a possible root r<pi◦pj> at the branch between nodes pi and pj . The method then
chooses the root with the lowest score. The relative deviation rps,pt,r<pi◦pj > between two
nodes ps and pt is defined relative to their LCA given a root r<pi◦pj>.

rps,pt,r<pi◦pj > =
∣∣∣∣∣ 2dbps,pt

dbps,LCA(ps,pt)
− 1

∣∣∣∣∣ =
∣∣∣∣∣2d

b
ps,LCA(ps,pt)

dbpt,LCA(ps,pt)
− 1

∣∣∣∣∣ (2.13)

Where dbps,pt
is the sum of branch lengths along the path between nodes ps and pt. The

superscript b shows that real branch length values are used and not uniform branch length
values. The root r<pi◦pj> has distances dbr<pi◦pj >,pi

= ρdbpi,pj
and dbr<pi◦pj >,pj

= (1− ρ)dbpi,pj

to node pi and pj , where ρ is chosen such as to minimize the squared relative deviations

r(ρ) =
∑
ps∈I

∑
pt∈J

(2(dps,r<pi◦pj >)2

dbps,pt

− 1
)2

(2.14)

where I = {leaves xk : dxk,pi < dxk,pj}, J = {leaves xk : xk /∈ I}. In a tree with O(m)
leaves there are O(m) possible roots. For each root the MAD algorithm calculates O(m2)
relative derivations. For a set of K gene family trees, the time complexity is therefore
O(m3K).

2.6. Non distance-based methods
There also exist methods that do not use a distance matrix D. They will be briefly
introduced here. DupTree [11] is a tool to estimate species trees from a set of gene family
trees using a parsimony procedure. It evaluates a species tree based on the number of gene
duplications, that are needed to explain the gene family trees. The species tree with the
lowest such number is the estimated species tree.
A-pro [10] uses a tagging strategy on the gene family trees as described in Sec. 2.5.1 to
generate gene family trees without duplications. It then uses the Accurate Species TRee
ALgorithm (ASTRAL) [36] to calculate a species tree. ASTRAL divides the gene family
trees into sets of quartets which consist of 4 leaves and finds the species tree that explains
most of the quartets. FastMulRFS [12] is an implementation that solves the Robinson-
Foulds supertree problem to estimate a species tree. It tries to find the species tree that
has the lowest RFD between itself and the gene family trees.
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3. Properties of empirical data

For a better understanding of the empirical data sets, we did a prestudy on them. For
every species in each of the data sets we counted the number of gene family trees it appears
in (Sec. 3.1). We calculated the average number of leaves per tree that are mapped to a
species for each species (Sec. 3.2). Finally, we show the distribution of numbers of leaves
per gene family tree (Sec. 3.3).

3.1. Coverage of species
First, we counted the number of gene family trees each species appears in. Fig. 3.1 shows
how the species coverage among the gene family trees are. We observe that not all species
are present in the same number of gene family trees. For instance, in the vertebrates
data set (Fig. 3.1a) one species is represented in 2 000 gene family trees and some other
species are present in up to 16 000 gene family trees. Since this difference is substantial,
our inference methods should take the difference in coverage over all gene family trees into
account.

3.2. Average coverage per gene family tree
We now study the coverage of species within the gene family trees. For each species we
compute the average number of leaves that are mapped to the species per gene family tree.
We only consider a gene family tree for the species if at least one leaf is mapped to the
species. Fig. 3.2 shows the distributions on the different data sets. There are differences
among the species. Fig. 3.2a shows the biggest differences with several species just above 1
and one species going over 3. Our methods consequently have to take that into account.
All averages are strictly above 1.0. Therefore, for each species, there is at least one gene
family tree with more than one copy.

3.3. Gene family tree sizes
We define the size of a gene family tree by the number of its gene leaves. Because of
different coverages (Sec. 3.1) and average numbers of leaves per gene family tree (Sec. 3.2)
we expect different gene family tree sizes. Fig. 3.3 shows the distribution of gene family tree
sizes on the empirical data sets. The distributions have a clear peak around the number of
species in the data set. But there is also a large variance in the sizes. Fig. 3.3a shows that
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Figure 3.1.: Absolute coverage

there are small gene family trees with less than 10 leaves and large trees with more than
300 leaves. Thus, our species tree inference methods should take into account the sizes of
the gene family trees.

3.4. Summary
We observed that the empirical data sets have very heterogeneous gene family trees with
respect to species coverage, average coverage per tree, and tree sizes. In the next Chapter,
we will present several solutions to account for this heterogeneity when inferring a species
tree from gene family trees.
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Figure 3.2.: Average coverage
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Figure 3.3.: Gene family tree sizes
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4. Methods

As part of this thesis we developed novel methods for calculating distance matrices. We
categorise our techniques into 3 groups:

• Picking distances from gene family trees. Here, we do not take all distances between
the leaves in the gene family trees into consideration for calculating the distance
matrix.

• Norming and weighting of distances. We norm distances between leaves, such that
they are better comparable among different gene family tree sizes. We also weight
distances, because some distances are more probable to be close to the distance in
the true species tree.

• Furthermore, we use different statistical methods for averaging over a set of distances
within a gene family tree and over different gene family trees.

We combined the above methods of calculating the distance matrices with different methods
for species tree inference, which we describe in Sec. 2.3.

4.1. Picking distances
For our distance matrix, we only want to consider orthologous gene pairs. Therefore, we
attempt to filter out paralogous gene pairs. Paralogous gene pairs are a result of duplication
events. The more speciations happened, after a duplication, the more additional leaf pairs
will appear in the gene family tree compared to the species tree. Fig. 4.1 shows an example
for that. Fig. 4.1a shows an early duplication resulting in 12 distance pairs between leaves
that are mapped to different species. In contrast to this, Fig. 4.1b shows a late duplication,
which results in only 5 distance pairs between leaves of different species. Under both
scenarios there are pairs of paralogous genes among pairs of orthologous genes in the
gene family tree as well as orthologous genes. To filter paralogous gene pairs, we use the
following tagging technique.

4.1.1. Tagging

To identify paralogous gene pairs, we decide for every internal node if it is the result of a
duplication event or not. Every node that is not categorised as a duplication is assumed to
be a speciation. To achieve this, we use the A-Pro tagging technique described in Sec. 2.5.1.
We classify every pair of leaves in the gene family tree that has a LCA tagged as dup as a
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Figure 4.1.: Species tree and corresponding gene family tree showing the impact of an early
and a late duplication

pair of paralogous genes. Therefore, we do not use its distance for our distance matrix. To
be able to tag a gene family tree it has to be rooted. We use A-Pro rooting (Sec. 2.5.1)
and MAD rooting (Sec. 2.5.2) to root the unrooted gene family trees. The tagged distance
function Dtag is defined as follows:

Dtag(ai, aj) = {D(xai,s, xaj ,t) | (xai,s, xaj ,t) has LCA tagged as spec} (4.1)

Where xai,s is the leaf corresponding to the sth gene copy in species ai’s genome, and
D(xai,s, xaj ,t) is the distance between the leaves xai,s and xaj ,t measured in the number of
internal nodes along the path between them. Fig. 4.1b shows how duplication events create
additional internal nodes between pairs. To take these nodes into account, we developed
an additional approach Dtag,spec. For this approach, we consider as well only gene pairs
which we consider to be orthologous. Furthermore, we count the distance without internal
nodes that are tagged as dup. We define the number of nodes tagged as dup along the path
from xai,s to xaj ,t as mdup(xai,s, xaj ,t). The function Dtag,spec is defined as follows:

Dtag,spec(ai, aj) = {D(xai,s, xaj ,t)−mdup(xai,s, xaj ,t) | (xai,s, xaj ,t) has LCA tagged as spec}
(4.2)

In the example in Fig. 4.1 the resulting distances for tree T0 are:

Dtag(a1, a2) = {1, 1} Dtag,spec(a1, a2) = {1, 1}
Dtag(a1, a3) = {2, 2} Dtag,spec(a1, a3) = {2, 2}
Dtag(a2, a3) = {2, 2} Dtag,spec(a2, a3) = {2, 2}

The distances for tree T1 are:

Dtag(a1, a2) = {2, 2} Dtag,spec(a1, a2) = {1, 1}
Dtag(a1, a3) = {3, 3} Dtag,spec(a1, a3) = {2, 2}
Dtag(a2, a3) = {2} Dtag,spec(a2, a3) = {2}

The time complexity for using this method on K gene family trees with O(m) leaves per
gene family tree is dominated by the rooting time complexity O(m3K) as described in
Sec. 2.5.1.

4.2. Norming and weighting
Gene family trees come with a different number of total leaves as Sec. 3.3 shows. They
also have different number of species that are represented and different accuracy towards
the real gene family tree. This is because of the following reasons:
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4.2. Norming and weighting

• Certain genes are only present in a subgroup of species, because there were loss
events.

• Genes are more or less often duplicated and lost.

• There is missing or imprecise data, which is caused by sequencing errors or gene
family tree inference inaccuracies.

With norming and weighting techniques we try to alleviate these differences. All norming
and weighting techniques take constant time per distance and, therefore, do not add time
complexity to the method.

4.2.1. Using branch lengths

Instead of counting the number of internal nodes along a path, we can also use the path
length by taking into account the corresponding branch length. The distance Db is then
defined as

Db(xai,s, xaj ,t) =
∑

epu,pv∈Exai,s,xaj ,t

|epu,pv | (4.3)

Where |epu,pv | is the branch length of the branch epu,pv and Exai,s,xaj ,t is the set of branches
along the path from xai,s to xaj ,t. Branch lengths represent the change in the gene sequence
along the path. Duplication and gene loss events along the path add and delete internal
nodes, but should not affect the branch length.

4.2.2. Normalizing by gene family tree size

We normalize distances by multiplying with 1
s(Tk)

, where s(Tk) is the number of leaves
in a gene family tree Tk. Thereby the distances have a maximum value of 1. With this
approach we attempt to represent distances between leaves on an equal scale independent
of the tree size.

4.2.3. Normalizing by logarithm of gene family tree size

In a similar manner we ’normalize’ distances by 1
log(s(Tk))

. So they are normalized by the

minimum possible maximum depth of a tree with s(Tk) species.

4.2.4. Weighting by the gene family tree size

For this technique, we assume that larger trees contain less missing data. Therefore,
we multiply distances by the number of leaves s(Tk) of the gene family tree Tk. When
averaging the weighting factor s(Tk) is also considered. For example, the mini technique
with additional weighting by the gene family tree size function Dws

mini, where the superscript
ws indicates the corresponding weighting, is:

Dws
mini(ai, aj) =

∑
Tk∈T minmai,Tk

s=1 min
maj ,Tk

t=1 D(xai,s,Tl
, xaj ,t,Tk

)s(Tk)∑
Tk∈T Θ(mai,Tk

maj ,Tk
)s(Tk)

(4.4)

4.2.5. Weighting by the number of covered species in the gene family tree

Weighting by the number of leaves gives more weight to gene family trees with more
duplication events. But we attempt to not give too much weight to paralogous gene pair
distances. Because of that, in this technique we weight by the number of species |N(Tk)|
present in a gene family tree Tk. Thereby we intend to weight trees that cover more species
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stronger than trees that only cover a small subgroup. We also consider the weighting in
the averaging. For example, the mini technique with additional weighting by number of
covered species in gene family tree function Dw|N|

mini, where the superscript w|N | indicates the
corresponding weighting, is:

D
w|N|
mini(ai, aj) =

∑
Tk∈T minmai,s,Tk

s=1 min
maj ,Tk

t=1 D(xai,s,Tk
, xaj ,t,Tk

)|N(Tk)|∑
Tk∈T Θ(mai,Tk

maj ,Tk
)|N(Tk)|

(4.5)

4.3. Statistical average
As results in Sec. 3.1 and Sec. 3.2 show, each species is present in a different number
of gene family trees and in a different number per gene family tree. To take that into
account we use statistical averaging per gene family tree and over all gene family trees. The
NJst method uses the arithmetic mean over all distances per species pair as statistic for
averaging. But there are more statistics that can potentially be better representations of
the average distance per species pair. We distinguish between finding a statistical average
per gene family tree (Sec. 4.3.1) and over the set of all gene family trees (Sec. 4.3.2).

4.3.1. Statistical average per gene family tree
For the statistical average per gene family tree techniques we average the set of distances
and per tree per species pair, before adding them to the set of distances per species tree
over all trees. We use two different techniques for that.

4.3.1.1. ustar averaging

We calculate the arithmetic mean of the set of distances per species pair as described in
Sec. 2.4.2. The distance between two species ai, aj per tree is

DTk
ustar(ai, aj) =

∑mai,Tk
s=1

∑maj ,Tk

t=1 D(xai,s,Tk
, xaj ,t,Tk

)
mai,Tk

maj ,Tk

(4.6)

4.3.1.2. Minimum distance

Furthermore, we use the smallest distance D(xai,s, xaj ,t) within a gene family tree between
leaves mapped to species ai and aj . With this technique we filter out all paralogous gene
pairs as they yield larger distances than pairs of orthologous genes. The resulting distance
Dmin(a1, a2) for species a1, a2 in a tree Tk is:

DTk
min(ai, aj) =

mai,Tk

min
s=1

maj ,Tk

min
t=1

D(xai,s,Tk
, xaj ,t,Tk

) (4.7)

The step function Θ and number of occurrences mai,Tk
are defined as in Sec. 2.4. Finding

the minimum takes linear time in the number of pairs and does, therefore, not increase the
time complexity of the method. In the example in Fig. 4.1, the resulting distances for tree
T0 are

DT0
min(a1, a2) = 1

DT0
min(a1, a3) = 2

DT0
min(a2, a3) = 2

The distances for tree T1 are

DT1
min(a1, a2) = 2

DT1
min(a1, a3) = 3

DT1
min(a2, a3) = 2
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Figure 4.2.: Graphical representation of arithmetic mean, median and mode for the dis-
tribution of tree sizes for the vertebrates data set 5.1. The mode is at 4, the
median is at 50, and the mean is at 112.8.

4.3.2. Statistical averaging over all gene family trees

The NJst and ustar methods use the arithmetic mean as the statistical average over the
set of distances per species pair from all gene family trees. In the following we use two
different statistical values, the median (Sec. 4.3.3) and the mode (Sec. 4.3.4).

4.3.3. Median

The median is the value which lies in the middle of a sorted list of the data. Fig. 4.2
shows that in a graphical representation of a distribution, the median cuts the area in
two equal sized halves. It is more robust against outliers than the arithmetic mean. The
distance between species ai and aj is chosen as the median from the set {DTk

ai,aj
}T =

{DTk(ai, aj)|Tk ∈ T} of distances from all gene family trees T.

Dmedian = median({DTk
ai,aj
}T) (4.8)

4.3.4. Mode

Additionally to the arithmetic mean and the median, we also used the mode for averaging.
It is the value that appears most often in a data set. The distance between species ai and
aj is chosen as the mode from the set of distances of all gene family trees. Fig. 4.2 shows
that the mode is represented by the highest peak of a histogram of a distribution.

Dmode = mode({DTk
ai,aj
}T) (4.9)
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5. Experiments & Results

In this Chapter we describe the simulated data sets (Sec. 5.1.2) and empirical data sets
(Sec. 5.1.1), which we used to test our methods. Sec. 5.2.1 presents the accuracy and
execution times for our methods and for existing tools on the simulated data sets. Sec. 5.2.2
contains the results for the empirical data sets.

5.1. Experimental setup
To test our new techniques, we implemented them in C, which is accessible online1. Our
tool can combine several of the techniques, which we describe in Ch. 4. We tested the
following methods which are based on the NJst (Sec. 2.4.1) method. We call them NJst+
methods:

• NJstb: using branch lengths (Sec. 4.2.1) and Neighbor Joining (NJ ) (Sec. 2.3.1)

• NJstns : normed by gene family size (Sec. 4.2.2) and NJ (Sec. 2.3.1)

• NJstnlog(s) : normed by the logarithm of gene family size (Sec. 4.2.3) and NJ (Sec. 2.3.1)

• ustarNJ : ustar (Sec. 2.4.2) averaging and NJ (Sec. 2.3.1)

• miniNJ : mini (Sec. 4.3.1.2) technique and NJ (Sec. 2.3.1)

• tagNJA−pro: tagging (Sec. 4.1.1) with A-pro rooting (Sec. 2.5.1) and NJ (Sec. 2.3.1)

We also evaluate the following methods, which all contain the mini technique. We call
them mini methods:

• miniNJ : mini (Sec. 4.3.1.2) technique and NJ (Sec. 2.3.1)

• miniNJws : mini (Sec. 4.3.1.2) technique, weighting by gene family size (Sec. 4.2.4),
and NJ (Sec. 2.3.1)

• miniNJw|N| : mini (Sec. 4.3.1.2) technique, weighting by number of covered species in
gene family (Sec. 4.2.5), and NJ (Sec. 2.3.1)

• miniUPGMA: mini (Sec. 4.3.1.2) technique and UPGMA (Sec. 2.3.2)

• miniWPGMA: mini (Sec. 4.3.1.2) technique and WPGMA (Sec. 2.3.2)

• miniMedianNJ : mini (Sec. 4.3.1.2) technique, median (Sec. 4.3.3) and NJ (Sec. 2.3.1)
1https://github.com/SchadePaul/MasterThesis
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• miniModeNJ : mini (Sec. 4.3.1.2) technique, mode (Sec. 4.3.4), and NJ (Sec. 2.3.1)

We also assess the following methods, which all contain the tagging technique. We call
them tagging methods:

• tagNJA−pro: tagging (Sec. 4.1.1) with A-pro rooting (Sec. 2.5.1) and NJ (Sec. 2.3.1)

• tagSpecNJA−pro: tagging (Sec. 4.1.1) only counting spec with A-pro rooting (Sec. 2.5.1),
and NJ (Sec. 2.3.1)

• tagNJMAD: tagging (Sec. 4.1.1) with MAD rooting (Sec. 2.5.2) and NJ (Sec. 2.3.1)

• tagNJMAD,ns : tagging (Sec. 4.1.1) with MAD rooting (Sec. 2.5.2), normed by gene
family tree size (Sec. 4.2.2), and NJ (Sec. 2.3.1)

• tagNJMAD,nlog(s) : tagging (Sec. 4.1.1) with MAD rooting (Sec. 2.5.2), normed by
gene family tree size (Sec. 4.2.3), and NJ (Sec. 2.3.1)

• tagNJMAD,ws : tagging (Sec. 4.1.1) with MAD rooting (Sec. 2.5.2), weighted by gene
family tree size (Sec. 4.2.4), and NJ (Sec. 2.3.1)

• tagSpecNJMAD: tagging (Sec. 4.1.1) only counting spec with MAD rooting (Sec. 2.5.2)
and NJ (Sec. 2.3.1)

We used our tool variations to estimate a species tree from a set of gene trees. We calculated
the rRFD of the estimated tree to the true species tree to assess accuracy. We also measured
running times of the tools. We did the same with the existing tools A-Pro [10], DupTree
[11], and FastMulRFS [12][37][38][39] for the sake of comparison.

5.1.1. Empirical data sets

Tab. 5.1 describes the empirical data sets, including the number of species in the species
tree and the number of gene family trees. The data sets are taken from the HOGENOM
[40] and ENSEMBL [41] databases, and the A-Pro [10] paper.

Name Number of species Number of gene family trees Database
Fungi 16 7 180 A-pro [10]
Cyano 36 1 099 HOGENOM [40]

Primates 13 16 670 ENSEMBL [41]
Mammals 35 18 525 ENSEMBL [41]
Vertebrates 193 33 396 ENSEMBL [41]

Table 5.1.: Empirical data sets

5.1.2. Simulated data sets

To generate additional data sets to test the methods on, we also simulated data sets in 3
steps.

• First, we simulated sets of species trees and their gene family trees using the SimPhy
software package [15]. We show the parameters, which we used for SimPhy, in
Tab. 5.2.

• On the gene family trees, we simulated DNA-sequences with INDELible [16]. The
parameters for INDELible are provided in Tab. 5.3.

• In the last step we inferred gene family trees from the DNA-sequences using ParGenes
[7][8] with parameters as specified in Tab. 5.4.
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Parameter name Parameter value
Standard parameters (STANDARD)

Speciation rate 5e-9
Number of gene family trees per species tree 1 000
Number of species 25 + an outgroup
Duplication rate (events/generation) 4.9e-10
Loss rate relative to duplication rate 1
Effective population size 4.7e+8
Ingroup divergence to the ingroup ratio 1.0
Generations LogN(21.25,0.2)
Global substitution rate LogN(-21.9,0.1)
Lineage specific rate gamma shape LogN(1.5,1)
Gene family specific rate gamma shape LogN(1.551533,0.6931472)
Gene tree branch specific rate gamma shape LogN(1.5,1)
Seed 9644

Controlling Duplication and Loss Rates (5 × 4 conditions) (DUPLOS)
Duplication rate (events/generation) 4.9e-10, 2.7e-10, 1.9e-10, 5.2e-11, 0
Loss rate relative to duplication rate 1, 0.5, 0.1, 0

Controlling Duplication and ILS rate (3 × 4 conditions) (ILS)
Duplication rate (events/generation) 4.9e-10, 1.9e-10, 0
Effective population size 4.7e+8, 1.9e+8, 4.8e+7, 1e+4

Controlling number of species (SPECIES)
Number of taxa 10, 25, 35, 50, 100 + an outgroup

Controlling number of gene family trees per species tree (GENES)
Number of locus trees per species tree 100, 250, 1 000, 2 500, 10 000

Table 5.2.: Parameters used for SimPhy

We used different parameters for different data sets. We have a STANDARD data set with
the default parameters. Based on that we simulated a data set DUPLOS with varying
duplication and loss rates. Additionally we simulated the data set ILS with varying
duplication rates and population sizes. The data set SPECIES has different number of
species per species tree. Last, there is the data set GENES with different number of gene
family trees per species tree. For every set of parameters, in Simphy, we simulated 50 sets
of species trees with their corresponding gene family trees. For every set of gene family
trees we simulated DNA-sequences with a length of 100 and 500 base pairs (bp). The
simulating of DNA sequences and inferring of gene family trees induces inaccuracies to the
gene family trees compared to the true gene family trees. With a shorter sequence length
of 100 bp, the inaccuracy increases. In addition, we also conducted additional experiments

Parameter name Parameter value
Sequence length 100, 500
Sequence base frequencies Dirichlet(A=36,C=26,G=28,T=32)
Sequence transition rates Dirichlet(TC=16,TA=3,TG=5,CA=5,CG=6,AG=15)

Table 5.3.: Parameters used for INDELible
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Parameter name Parameter value
Sequence type nucleotide
Model RAxML global parameter option GTR

Table 5.4.: Parameters used for ParGenes

directly on the gene family trees (true gt) from Simphy without simulating DNA sequences
and inferring gene trees.

The CUT data set

To model missing data in the simulated data sets, we removed data from the data sets. To
do so, we selected a random node from the rooted true gene trees and removed the DNA
data contained in the subtree below that node. We repeated this to get different level of
missing data. Including the trees without missing data the CUT data set contains 10 levels
of missing data. We limited all data sets to the same total number of gene family tree
leaves to not let the total numbers of gene family tree leaves influence the results. To do
so, we removed all gene family trees that added more gene family tree leaves to the data
set than needed.

5.2. Results
In this Section we provided results for the simulated (Sec. 5.2.1) and empirical data sets
(Sec. 5.2.2).

5.2.1. Results on simulated data sets

In this Subsection we present the results for the different simulated data sets STANDARD
(Sec. 5.2.1.1), SPECIES (Sec. 5.2.1.2), GENES (Sec. 5.2.1.3), ILS (Sec. 5.2.1.4), DUPLOS
(Sec. 5.2.1.5), and CUT (Sec. 5.2.1.6).

5.2.1.1. The STANDARD data set

The STANDARD data set provides an overview over the results of all methods we intend
to test. Fig. 5.1 shows the rRFD for the NJst+ methods.

Norming

The different norming techniques behave very differently. Using branch lengths (Sec. 4.2.1),
increases the rRFD to ≈ 0.081 (8.1 %) compared to ≈ 0.052 (5.2 %) for the NJst method.
Using branch lengths does not improve the method. Normalizing by gene family tree size
(Sec. 4.2.2) yields an even lower accuracy with a rRFD of ≈ 0.164 (16.4 %). Thus, norming
seems to not be able to handle distances well. Normalizing by the logarithm of the gene
family tree size (Sec. 4.2.3) yields a marginally improved rRFD of ≈ 0.050 (5 %) than NJst.
But its influence is not substantial, since the logarithm of gene family tree sizes does not
vary substantially among the trees.

Averaging per gene family tree

The ustar averaging yields higher rRFDs than NJst. Having gene family trees with many
distance pairs contribute the same weight as gene family trees with few distance pairs to
the overall distance appears to be less accurate. MiniNJ improves the accuracy despite
the large discrepancy in the averaging per gene family trees. Therefore, we will evaluate
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Figure 5.1.: Comparison of the rRFD for NJst+ methods on the STANDARD (500 bp)
data set. Additional plots are available in App. A.

some mini methods on this data set. Fig. 5.2a shows the rRFD of the mini methods on the
STANDARD data set. Using other clustering methods than NJ and different averaging
approaches yield much worse rRFDs. All of their rRFD values are at least twice the value
of miniNJ. The weighting techniques have low impact on the accuracy. Weighting by gene
family tree size improves the rRFD and is the most accurate method among the mini
methods.

Tagging

The tagNJA−pro technique can lower the rRFD even though many distances between gene
tree leaves are not considered for the overall distance calculation at all. Therefore, we will
also evaluate additional tagging methods on this data set. Fig. 5.2b shows the rRFD of
the tagging methods. Using tagSpec instead of tag yields lower accuracy. It appears that
counting nodes that are labeled dup improves accuracy. Different norming and weighting
techniques do not improve the results further. Using MAD rooting instead of A-pro rooting
yields a slightly lower rRFD and is, therefore, the most accurate method among the tagging
methods.

Number of pairs used

With the mini and tag techniques we attempted to not count the distances among paralogous
gene pairs in the distance matrix. Fig. 5.3 shows how many distances in all gene family
trees the mini and tag techniques used to calculate the distance matrix. The number
of distances is relative to the number of all leave pairs, which is equal to the number of
distances NJst uses. While mini only uses less than 10% of the pairs, the tag techniques
with different rooting strategies use around 20% of the pairs. We conclude that the mini
technique filters out most paralogous gene pairs, but also filters out many orthologous
gene pairs. The tag technique filters less orthologous gene pairs. This is why the tagging
methods show better results than the mini methods. We conclude that because of the low
number of used pairs, weighting helps to improve the accuracy of the mini technique. The
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Figure 5.2.: Comparison of the rRFD for the mini and tagging methods on the STANDARD
(500 bp) data set. Additional plots are provided in App. A.
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Figure 5.3.: Comparison of the mean number of distance pairs with standard deviation
used relative to NJst method on the STANDARD data set

tag technique on the other hand, already uses enough distances such that is does not profit
from the weighting.

Sequence length

For all following results we will only consider at NJst, miniNJws , and tagNJMAD. While
NJst is used as a reference, miniNJws and tagNJMAD are the best among our methods.
Fig. 5.4 shows the results for different sequence lengths used in the simulations. NJst,
miniNJws , and tagNJMAD yield worse accuracy for smaller sequence length. This is expected
since there is less information.

Comparison with other tools

Fig. 5.5a shows the accuracy of our methods compared to other tools. tagNJMAD has
better accuracy than any other tool we tested. A-pro has the second best accuracy with
a mean of ≈ 0.0461. The tagNJMAD and miniNJws methods outperform DupTree and
FastMulRFS, which have a mean rRFD of ≈ 0.0583 and ≈ 0.1603 respectively.
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Figure 5.4.: Comparison of the rRFD for true gene trees and sequence lengths of 100 bp
and 500 bp

Fig. 5.5b shows mean running times for our best methods compared to those of other tools.
The miniNJws method outperforms all other tools with a lower run time for calculating
the distance matrix. Our implementation of tagNJMAD is also faster than the other tools
we tested. The competing tools take around 1 s of runtime with A-pro being faster than
the other two. While DupTree and FastMulRFS are implemented as sequential algorithms,
A-pro is parallelized and uses 80 cores at the same time. Despite the parallelization of
A-pro, sequential miniNJws attains a speedup of 75 compared to A-pro.

5.2.1.2. The SPECIES data set

Fig. 5.6 shows the accuracy for NJst, miniNJws , and tagNJMAD with different number
of species in the species tree, but all other parameters fixed. For increasing number of
species our methods yield lower accuracy. This can explained by a the decreasing ratio of
gene family trees per species. To estimate a species tree with a higher number of species
with the same accuracy, a larger number of gene family trees would be needed as results
in Sec. 5.2.1.3 suggest. Fig. 5.7a shows mean running times for NJst, miniNJws , and
tagNJMAD with different numbers of species per species tree n. We calculated best fitting
curves of shape f(n) = a · nb to assess the runtime increase. We base the empirical run
time estimate on the fitted exponent b. MiniNJws has an empirical run time estimate of
O(n2.0), and NJst has an empirical run time estimate of O(n2.1). TagNJMAD behaves
worse with an empirical run time estimate of O(n2.3). The NJ algorithm has a theoretical
time complexity of O(n3) (Sec. 2.3.1). Therefore, the distance matrix calculation dominates
the time. Theoretical complexities depend on the number of gene family trees K and
the number of leaves per gene family tree m. The theoretical complexities for distance
matrix calculation for miniNJws and NJst is O(m2K) and O(m3K) for tagNJMAD. Since
we do not have information about the relationship between the number of species n and
the number of leaves per gene family tree m, we can not compare the empirical run time
estimates with the theoretical time complexities.
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Figure 5.5.: Results for different tools on the STANDARD (500 bp) data set. Additional
plots are provided in App. A.
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Figure 5.6.: Comparison of the rRFD for different methods on the SPECIES (500 bp) data
set. Additional plots are provided in App. B.
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Figure 5.7.: Running times for different methods on the SPECIES (500 bp) data set
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Figure 5.8.: Comparison of the rRFD for different methods on the GENES (500 bp) data
set. Additional plots are provided in in App. C.

Fig. 5.7b shows also the mean running time on a logarithmic scale for different number of
species for our methods and the other tools we tested. The empirical run time estimates
are FastMulRFS : O(n2.1), A-pro: O(n3.1), and DupTree: O(n3.7). We see that miniNJws

is by far the fastest followed by NJst. The tagging technique outperforms the DupTree,
A-pro, and FastMulRFS for the SPECIES data sets.

5.2.1.3. The GENES data set

Fig. 5.8 shows the accuracy for NJst, miniNJws , and tagNJMAD for different numbers of
gene family trees and all other parameters being fixed. For an increasing number of gene
family trees our methods yields higher accuracy. A higher number of gene family trees
yields more information. Therefore, the higher accuracy is not surprising. Fig. 5.9 shows
the mean running time of NJst, miniNJws , and tagNJMAD with different numbers of gene
family trees. All methods show linear running time as predicted by the theoretical time
complexity.

5.2.1.4. The ILS data set

Fig. 5.10 shows the accuracy of NJst, miniNJws , and tagNJMAD for different population
sizes. With smaller population size the rRFD decreases for our methods. For a very small
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Figure 5.9.: Comparison of the mean running times with standard deviation for different
methods on the GENES (500 bp) data set

population of 10 000 all estimated species trees are identical to the real species trees. The
increase in accuracy is expected, since the ILS rate decreases with smaller population sizes.

We chose the true gene family trees (true gt) for generating the results with this data
set, because the inferred trees did not show increasing accuracy with decreasing ILS so
clearly. Fig. 5.11 shows the results for the (500 bp) data set. The differences between the
inferred gene family trees and the true gene family trees appear to increase with decreasing
population size.

5.2.1.5. The DUPLOS data set

Fig. 5.12a shows accuracy of our methods for different gene loss rate to gene duplication
rate ratios with a constant gene duplication rate of 4.9 · 10−10. Accuracy tends to increase
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Figure 5.10.: Comparison of the rRFD for different methods on the ILS (true gt) data set.
Additional plots are provided in App. D.
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Figure 5.11.: Comparison of the rRFD for different methods on the ILS (500 bp) data set.
Additional plots are provided in App. D.

1 0.5 0.1 0
Loss to duplication rate ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rR
FD

 to
 tr

ue
 sp

ec
ie

s t
re

e

500 bp    duplication rate: 4.9e-10
Compare loss to duplication rate ratio

median
mean
NJst
miniNJws

tagNJMAD

(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

4.9e-10 2.7e-10 1.9e-10 5.2e-11 0
duplication / loss rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rR
FD

 to
 tr

ue
 sp

ec
ie

s t
re

e

500 bp
Compare duplication / loss rates

median
mean
NJst
miniNJws

tagNJMAD

(b) Comparison of the rRFD for different meth-
ods on the DUPLOS data set with different
duplication and loss rates

Figure 5.12.: Results for the DUPLOS data set. Additional plots are provided in App. E.

with lower gene loss rate. This could mean that loss events are problematic for the methods.
The analyses of the CUT (Sec. 5.2.1.6) data set reveals more details, since loss and missing
data can not be distinguished from each other by our methods.

Fig. 5.12b shows the accuracy for NJst, miniNJws , and tagNJMAD for different gene
duplication and gene loss rates. The gene duplication rate and gene loss rate are equal
for this data set. Accuracy varies for different rates. At rate 0 all methods yield the same
results. With no gene pairs in the data set no method will identify a paralogous gene pair
and all methods use all gene pairs.

5.2.1.6. The CUT data set

Fig. 5.13 shows the accuracy of the NJst (Fig. 5.13a), miniNJws (Fig. 5.13b), and tagNJMAD

methods for the CUT data set. All methods tend to show decreasing accuracy with
increasing number of missing data. The linear fit line shows the highest gradient for the
NJst method. This could mean that miniNJws and tagNJMAD better handle missing data.
A reason could be that NJst uses every distance pair, so every missing sequence will affect
the resulting distance matrix. In contrast, miniNJws and tagNJMAD do not consider every
pair for the distance matrix, so there is a probability that the missing data was not used
for the distance matrix.
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Figure 5.13.: Comparison of the rRFD for different numbers of cuts with different methods.
Additional plots are provided in App. F.
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Figure 5.14.: Results of the empirical data set

5.2.2. Results on empirical data sets

Fig. 5.14a shows the accuracy of our NJst, miniNJws , tagNJMAD methods, and the A-pro,
DupTree, and FastMulRFS tools on empirical data sets. NJst shows the worst accuracy
over all data sets. miniNJws and tagNJMAD can compete with the other tools regarding
accuracy. They almost always attain the same accuracy.

Fig. 5.14a shows the running times of NJst, miniNJws , tagNJMAD, and A-pro, DupTree,
and FastMulRFS on empirical data sets on a logarithmic scale. While NJst and miniNJws

can estimate species trees within seconds for all data sets, tagNJMAD takes about 45min
to calculate a tree for the vertebrates data set. The tested tools have higher running times
on all empirical data sets than all of our methods. Requiring more than 12 h (A-pro)
and several days (DupTree, FastMulRFS) for the vertebrates data sets. While all of our
methods, as well as DupTree and FastMulRFS are implemented sequentially, A-pro runs
parallelized on 80 cores. MiniNJws ’s speedup of 547 towards A-pro is a crucial difference,
especially when taking A-pro’s parallelization into account.
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6.1. Conclusion
We developed new distance-based methods for species tree inference from gene family trees.
The best performing methods are miniNJws and tagNJMAD. Both methods are able to
filter out paralogous gene pairs (Fig.5.3), which is the main goal of this work.

Their accuracy is analogous to that of the existing tools A-pro [10] and DupTree [11].
The rRFD on the STANDARD data set (Sec. 5.2.1.1) is 0.0470 (4.7 %) for miniNJws ,
0.0400 (4 %) for tagNJMAD, 0.0461 (4.6 %) for A-pro, and 0.0583 (5.3 %) for DupTree.
In particular on the simulated data sets our methods were much more accurate than
FastMulRFS [12] (rRFD 0.1603 (16 %)). The execution time of miniNJws is substantially
lower than the execution times of any other tool. The mean run times for the SPECIES
data set (Sec. 5.2.1.2) with 100 species are 1.3 s for miniNJws , 93.3 s for tagNJMAD, 251 s
for A-pro, 1 696 s for DupTree, and 250 s for FastMulRFS. MiniNJws attains substantial
speedups of 75 on the STANDARD data set (Sec.5.2.1.1) and of up to 547 on the vertebrates
data set (Sec.5.2.2) compared to the parallelized tool A-pro.

The experiments on simulated data sets showed that our methods behave well. An increase
of information in the gene family trees per species (Fig. 5.6, 5.8), a low ILS rate (Fig. 5.10),
and a low gene loss rate (Fig. 5.12) increase accuracy. The empirical run time estimate for
miniNJws is O(n2.0) and for tagNJMAD O(n2.3) where n is the number of species. This
shows that the time complexity is dominated by calculating the distance matrix and not
by the Neighbor Joining algorithm.

However both, miniNJws , and tagNJMAD, are sensitive to missing data (Fig.5.13). Which
constitutes the main limitation.

The miniNJws method as well as other variants of the mini technique can be used to quickly
generate a starting tree for maximum likelihood tree search methods. MiniNJws is useful
for generating starting trees as it is very fast and shows ’good’ accuracy.

6.2. Future work
Our methods do not always estimate the true species tree yet. Further studies of the impact
of ILS and gene loss could possibly help to further improve the methods and increase the
accuracy of the estimated species trees.
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Refining our filtering techniques for identifying paralogous gene pairs for polytomies in
gene family trees could also improve accuracy.

Our tool is able to combine several of the techniques, which are grouped as picking
distances (Sec. 4.1), norming and weighting (Sec. 4.2), and statistical averaging (Sec. 4.3).
A dedicated, highly optimized implementation just for miniNJws and tagNJMAD could
outperform our implementation regarding running time and memory usage. Furthermore,
the distance matrix calculation on the set of gene family trees could easily be parallelized.
Since this is the part that dominates run-times, a parallelization could substantially improve
efficiency.

An evaluation on more simulated and empirical data will help to improve our understanding
of how accurate the methods are.
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A. STANDARD data set
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Figure A.1.: Comparison of the rRFD for the NJst+ methods on the STANDARD (100
bp, true gt) data set
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Figure A.2.: Comparison of the rRFD for themini and tagging methods on the STANDARD
(100 bp) data set
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Figure A.3.: Comparison of the rRFD for themini and tagging methods on the STANDARD
(true gt) data set
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Figure A.4.: Comparison of the rRFD for different tools on the STANDARD (100 bp, true
gt) data set
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using the miniNJws method
on the SPECIES (100 bp)
data set
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Figure B.5.: Comparison of the rRFD for different methods on the SPECIES (100 bp) data
set
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(b) Comparison of the rRFD for
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using the miniNJws method
on the SPECIES (true gt)
data set
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Figure B.6.: Comparison of the rRFD for different methods on the SPECIES (true gt) data
set
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C. GENES data set
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set
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(b) Comparison of the rRFD for
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using the miniNJws method
on the GENES (100 bp)
data set
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Figure C.7.: Comparison of the rRFD for different methods on the GENES (100 bp) data
set
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set
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(b) Comparison of the rRFD for
different numbers of species
using the miniNJws method
on the GENES (true gt)
data set
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Figure C.8.: Comparison of the rRFD for different methods on the GENES (true gt) data
set
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Figure D.9.: Comparison of the rRFD for different methods on the ILS (100 bp) data set
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Figure D.10.: Comparison of the rRFD for different methods on the ILS (true gt) data set
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Figure D.11.: Comparison of the rRFD for different methods on the ILS (500 bp) data set
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470000000 190000000 48000000 10000
Population size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rR
FD

 to
 tr

ue
 sp

ec
ie

s t
re

e

100 bp    miniNJws

speciation rate/loss rate: 1.9e-10
median
mean

(b) Comparison of the rRFD for
different numbers of species
using the miniNJws

method
on the ILS (100 bp) data set
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Figure D.12.: Comparison of the rRFD for different methods on the ILS (100 bp) data set
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using the NJst method on
the ILS (true gt) data set
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Figure D.13.: Comparison of the rRFD for different methods on the ILS (true gt) data set
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Figure D.14.: Comparison of the rRFD for different methods on the ILS (500 bp) data set
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Figure D.15.: Comparison of the rRFD for different methods on the ILS (100 bp) data set
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E. DUPLOS data set
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(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

Figure E.16.: Results for the DUPLOS data set
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(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios
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(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

Figure E.17.: Results for the DUPLOS data set
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Figure E.18.: Results for the DUPLOS data set
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(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

1 0.5 0.1 0
Loss to duplication rate ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rR
FD

 to
 tr

ue
 sp

ec
ie

s t
re

e
100 bp    duplication rate: 1.9e-10

Compare loss to duplication rate ratio
median
mean
NJst
miniNJws

tagNJMAD

(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

Figure E.19.: Results for the DUPLOS data set
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(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios
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(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

Figure E.20.: Results for the DUPLOS data set
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(b) Comparison of the rRFD for different meth-
ods on the DUPLOS data set with different
duplication and loss rates

Figure E.21.: Results for the DUPLOS data set
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(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

1 0.5 0.1 0
Loss to duplication rate ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rR
FD

 to
 tr

ue
 sp

ec
ie

s t
re

e
true gt    duplication rate: 1.9e-10

Compare loss to duplication rate ratio
median
mean
NJst
miniNJws

tagNJMAD

(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios

Figure E.22.: Results for the DUPLOS data set
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(a) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
to duplication rate ratios
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(b) Comparison of the rRFD for different methods
on the DUPLOS data set with different loss
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Figure E.23.: Results for the DUPLOS data set
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F. CUTS data set
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(a) Comparison of the rRFD dif-
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(b) Comparison of the rRFD dif-
ferent numbers of cuts with
the miniNJws method
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ferent numbers of cuts with
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Figure F.24.: Comparison of the rRFD different numbers of cuts with different methods
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Figure F.25.: Comparison of the rRFD for different numbers of cuts with different methods
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