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Abstract

Terraces in phylogenetic tree space are, among other things, important for the
design of tree space search strategies. While the phenomenon of phylogenetic
terraces is already known for unlinked branch length models on partitioned
phylogenomic data sets, it has not yet been studied if an analogous structure
is present under linked and scaled branch length models. To this end, we
analyze aspects such as the log-likelihood distributions, likelihood-based signif-
icance tests, and nearest neighborhood interchanges on the trees residing on
a terrace and compare their distributions among unlinked, linked, and scaled
branch length models. Our study will show that there exists a terrace-like
structure under linked and scaled branch length models as well. We denote
this phenomenon as quasi-terrace. Therefore quasi-terraces should be taken
into account in the design of tree search algorithms as well as when reporting
results on “the” final tree topology in empirical phylogenetic studies.

Deutsche Zusammenfassung

Terrassen im phylogenetischen Raum der Bäume sind unter anderem wichtig
für die Implementierung von Suchstrategien für die Stammbaumrekonstruktion.
Während das Phänomen der phylogenetischen Terrassen bereits für unverknüpfte
Astlängenmodelle auf partitionierten phylogenomischen Datensätzen bekannt
ist, wurde noch nicht untersucht, ob eine analoge Struktur unter verknüpfte
und skalierten Astlängenmodellen existiert. Zu diesem Zweck analysieren wir
Aspekte wie die Log-Likelihood-Verteilungen, wahrscheinlichkeitsbasierte Sig-
nifikanztests und die nächstgelegenen Nachbarschaftsveränderungen an den
Bäumen, die sich auf einer Terrasse befinden, und vergleichen deren Verteilun-
gen zwischen unverknüpften, verknüpften und skalierten Astlängenmodellen.
Unsere Studie wird zeigen, dass auch bei verknüpften und skalierten Astlän-
genmodellen eine terrassenartige Struktur existiert. Wir bezeichnen dieses
Phänomen als Quasi-Terrasse. Daher sollten Quasi-Terrassen bei der Entwick-
lung von Baumsuchalgorithmen sowie in der Darstellung der Ergebnisse einer
Baumsuche in empirischen phylogenetischen Studien berücksichtigt werden.
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1. Introduction

From the dawn of time scientists have been interested in where we come from and how
we are related to each other. Therefore, the inference and analysis of phylogenetic
trees is an important �eld of research. We will give a more detailed motivation in
the following section.

1.1. Motivation
Phylogenetic trees are widely used to explain and visualize the evolutionary rela-
tionships of species. One approach to reconstructing phylogenies consists in using
genome data assembled into a large data matrix that is typically divided into disjoint
partitions, often representing genes.

A common problem with these large phylogenomic matrices are missing data. That
is, a taxon can have no data present in a speci�c partition. This can be due to
sampling problems, or that this particular partition of the genome is not present in
the speci�c taxon. Often this can arise due to errors in the sequencing process or
because some species simply do not have data in this partition (do not have a speci�c
gene) or if the gene has not been sampled yet (Dobrin, Zwickl, & Sanderson, 2018;
Sanderson, McMahon, Stamatakis, Zwickl, & Steel, 2015). This type of missing data
complicates phylogenetic tree inference under likelihood-based criteria (maximum
likelihood (ML) or Bayesian inference). For numerical reasons, the logarithm of the
likelihood instead of the likelihood itself is typically calculated.

When distinct tree topologies have the same log-likelihood (henceforth denoted as:
LnL) score, which indicates that they are equally 'good', they reside on a so-called
terrace in tree space, a phenomenon �rst described by Sanderson, McMahon, and
Steel (2011).

Mathematically terraces in tree space can only occur under unlinked branch length
models. Beside this, there exist two alternative approaches to modeling branch
lengths in phylogenomic analyses: scaled and linked branch length estimates.

As linked and scaled branch length models are less computational expensive, and also
induce a substantially smaller number of free model parameters, they are frequently
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1. Introduction

used in large scale empirical phylogenomic analyses. To this end, the question arises
if a phenomenon, that is analogous to terraces in the unlinked case, can also be
observed under linked and scaled branch length models. We term this phenomenon
a quasi-terrace.

1.2. Objectives

In this thesis we conduct a thorough study of14 published empirical phylogenomic
data sets to assess (i) if quasi-terraces exist and (ii) what their potential impact on
phylogenomic analyses and the design of tree search algorithms is.

The advances in sequencing technologies produces an unprecedented data �ood.
Therefore speeding up the tree search algorithms is of interest. The function calcu-
lating the likelihood takes up to 95% of the execution time in current phylogenetic
inference programs. Additionally, these programs have run times on the order of
days to weeks. Hence if one can reduce the number of likelihood calculations, the
search algorithm speeds up, saving signi�cant amounts of time. The state of the art
ML tree search algorithms start with a tree containing all taxa from the data set.
This tree can be produced by fast, but inaccurate, methods. Alternatively, random
starting trees can be used, although they normally have lower likelihood scores and
so might not accelerate the inference process (Elloumi & Zomaya, 2011).

When searching for the best tree, any method must search through tree space. Unfor-
tunately, tree space is poorly understood, and quite large (Felsenstein, 2004), growing
exponentially with the number of taxa present on the tree. This makes total enumer-
ation of tree space impractical, and so heuristics must be used. Identifying terraces,
which are sections of tree space with identical likelihoods, o�er an opportunity to
evaluate many trees at once, thus allowing terrace aware methods to skip evaluation
of trees present on the terrace. By skipping computation, terrace aware methods
are able to search a much larger section of tree space, with little additional cost.
Therefore, we want to evaluate, if a terrace-like structure is present under linked and
scaled branch length model as well.

Now that we understand the importance of terraces and hence of �nding and using
quasi-terraces to reduce computational cost, we needed to develop an approach to
�nd quasi-terraces. Therefore, we developed a pipeline, where all analytical steps
are performed under all three branch length models (unlinked, linked, and scaled).
With these analyses we want to evaluate if quasi-terraces exist and if they do, obtain
further insights about them and their neighborhood in tree space. The pipeline
steps include preprocessing of the data, LnL score calculation, signi�cance tests, and
neighborhood assessment.

Through all these steps we want to con�rm our hypothesis about quasi-terraces.
Their existence could be used to speed up all algorithms that search tree space, as
only one tree on the terrace has to be computed and can then act as a representative
for all trees on the terrace. We search in tree space to �nd the ML tree and the tree
space grows exponentially with the number of taxa. Depending on the size of the
terrace, the savings in computational expenses could be signi�cant.
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1.3. Structure

1.3. Structure
After we have stated the motivation and objectives of this thesis, we explain the
fundamentals of phylogenetic trees in Chapter 2 to provide a basic understanding of
the topic. In Section 2.1 we give the general structure of the data, a detailed expla-
nation of the branch length models, as well as a de�nition of terraces and the related
literature. Afterwards we review the Robinson-Foulds distance, signi�cance tests,
and nearest-neighbor interchanges. Finally in the background chapter we introduce
the programs used for the later analysis. Section 2.2 also includes information about
own scripts.

In Chapter 3 we describe the data sets which are used in this thesis (see Section 3.1)
as well as the relevant �le formats (see Section 3.2). Thereafter, the experimental
setting is expounded by us in Section 3.3. This includes a description of the data
preprocessing that we performed, followed by an explanation on how to infer ML
trees. Afterwards we explain how the enumeration of trees on a terrace work as
well as the calculation of LnL scores. The chapter ends with a section about further
analyses.

The results of the di�erent analyses are described and visualized in Chapter 4.
After a general overview of the results in Section 4.1, we report the outcome of the
signi�cance tests (see Section 4.2). At the end of this chapter we provide the results
of the nearest-neighbor interchange analysis in Section 4.3.

This thesis ends in Chapter 5, where we shortly review our work and conclude the
thesis in Section 5.1. At the end we reveal possible avenues of future work (see
Section 5.2).
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2. Background and related work

To gain a better understanding of phylogenetic inference, we start this section with
important de�nitions and explanations, related work as well as the programs used
for our analyses.

Phylogenetics is the study of the evolutionary relationships and history of species.
These relationships are often inferred by modeling the e�ects of evolution as a random
process for a DNA sequence (Felsenstein, 2004).
As it is known that species are linked to each other by common ancestors, a phylo-
genetic tree can display those connections in form of a tree diagram (Robinson &
Foulds, 1981). These phylogenetic trees are the basis for all further de�nitions and
the analyses we conduct in this thesis.

2.1. De�nitions and related literature

In this section we explain the general structure of our data, followed by a visualization
of branch lengths. Thereafter, we give the de�nition of terraces in phylogenetic tree
space and brie�y review important related work. Then, the Robinson-Foulds distance,
the signi�cance tests, and the nearest-neighbor interchanges is explained.

2.1.1. General structure

Before starting with any de�nitions, we need to explain in general how the data we
intend to analyze is represented. Figure 2.1 shows a simpli�ed scheme. For each
species (taxa) we have the information for the gene as a DNA (deoxyribonucleic acid)
or protein sequence, where a single letter denotes one site. The alignment is given
by the number of homologous sites (columns) and the number of taxa (rows), often
also denoted as species or sequences. Hence, a partition is a subset of alignment
sites. These large matrices (also called supermatrix or phylogenomic data set) are
structured in rows representing the taxa and columns denoting the set of sites to be
analyzed.
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2. Background and related work

Figure 2.1.: Simpli�ed data representation
S1; :::; Sn : species;P1; :::; P5: partitions

2.1.2. Branch length

One important parameter of a phylogenetic tree is its branch lengths (also called edge
length), which represent the distance between two nodes in the phylogenetic tree.
The options for modeling branch lengths in a partitioned data set are linked, scaled,
and unlinked, as shown in Figure 2.2. The branch lengths are estimated for the
same underlying tree topology. The length of a branch represents the evolutionary
distance (under maximum likelihood: the mean number of expected substitutions
per site) between two nodes in the tree. Hence, the shorter the distance, the closer
the two species are related, which are represented by the nodes.

Figure 2.2.: Visualization of the three branch length options: linked, scaled, and
unlinked

Mathematically terraces in tree space have only been shown to exist under unlinked
branch length models. That is, when a separate independent set of branch lengths is
estimated for each partition in the phylogenomic data set. Beside this, there exist
two alternative approaches to modeling branch lengths in phylogenomic analyses:
scaled and linked branch length estimates. Under a linked branch model a single set
of branch lengths over all partitions is being estimated. The same underlying branch
lengths are scaled via a single parameter for each partition under the scaled model.

6



2.1. De�nitions and related literature

As linked and scaled branch length models are less computationally expensive, and
also induce a substantial smaller number of free model parameters, they are frequently
used in large scale empirical phylogenomic analyses.

2.1.3. Terraces in phylogenetic trees

The concept of terraces in phylogenetic tree space was �rst implicitly used by
Stamatakis and Alachiotis (2010) for accelerating ML calculations. In 2011 Sanderson
et al. described the phenomenon in detail for unlinked branch lengths. Besides the
mathematical de�nition, they de�ne it as follows: "All trees on a terrace are
distinct from each other, but they are indistinguishable in two important
respects: They display the same set of subtrees, and they have the same
optimal score" (Sanderson et al., 2011).

In the following years di�erent aspects of terraces were analyzed, for example by
Chernomor, Minh, and von Haeseler (2015); Chernomor, von Haeseler, and Minh
(2016); Dobrin et al. (2018); Sanderson et al. (2015). Software libraries for detecting
terraces and counting/enumerating the trees on the terraces were built (for example
(Biczok et al., 2018)) as well as existing programs updated to take advantage of the
terrace structure or to report the presence of terraces (for example (Biczok et al.,
2018; Chernomor et al., 2016; Kozlov, Darriba, Flouri, Morel, & Stamatakis, 2019;
Nguyen, Schmidt, von Haeseler, & Minh, 2014)). A description of the used library
and programs is given in Section 2.2.

The paper by Sanderson et al. (2015) evaluates the in�uence of terraces on phyloge-
netic inference. According to the authors ambiguity is added through terraces as well
as complexity, especially when sparse data sets yield the inference challenging. Fur-
ther, the authors stated that due to the procedure of maximum likelihood approaches,
one has to ensure that the neighborhood of the terraces does not contain trees with
higher scores (Sanderson et al., 2015). Therefore, their �ndings are relevant to our
analysis as our data sets contain missing data and are also partitioned. Moreover, the
distinguishability between a terrace and its immediate neighborhood is a challenge
for our analysis as well when using linked and scaled branch length models.

Chernomor et al. (2015) emphasize the importance of checking for terraces before
evaluating the trees to save computational time by skipping the trees with identical
scores. The total tree score is the addition of all the partition log-likelihoods evaluated
with that tree. In focus are the rearrangements (changes of tree topology) of those
trees which in�uence their topologies and hence their score. The authors investigated
the following rearrangements/tree moves: nearest neighbor interchange, subtree
pruning and regrafting, and tree bisection and reconnection (Chernomor et al.,
2015). One of the rearrangements, nearest neighbor interchange, will be described in
Section 2.1.6 as it is of further interest to this thesis. Subtree pruning and regrafting
is brie�y described in Section 5.2.

The second paper by the same authors a year later 2016, stresses again that terraces
need to be considered during tree search in order to reduce the computational cost.
They developed a data structure, which is aware of terraces, so that under partition
models the analyses is e�cient. They then implemented it in their program IQ-Tree
and experimentally veri�ed the respective time saving (Chernomor et al., 2016). The
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2. Background and related work

paper emphasizes the need for further examination of terraces and related structures
to accelerate the analysis of large data sets.

Dobrin et al. (2018) conducted a study of 26 data sets containing missing data.
Their main question focused on the correlation between percentage of missing data
and terrace size (Dobrin et al., 2018). Their results were the starting point for our
analysis. Furthermore we used their collection of data sets, retrieved from twelve
di�erent publications, for our study. Detailed information about the sources and
composition of the data sets used throughout this thesis can be found in Section 3.1.

2.1.4. Robinson-Foulds distance

One aspect of the later analysis, and generally when examining phylogenetic trees,
is to calculate how similar two trees are. One method is the Robinson-Foulds (RF)
distance: to calculate the distance between two trees, elementary operations (� and
� � 1) are used to transform the �rst tree into the second one. The� operation, called
contraction, removes those edges from the �rst tree, which are not present in the
second. Then, the� � 1 operation, called decontraction, adds the edges only present
in the second tree. Hence the transformation of the �rst into the second tree is the
sum of � and � � 1 operations (Robinson & Foulds, 1981). The minimum number of
those tree edit operations required to transform the �rst into the second tree is the
Robinson-Folds distance between the trees.

Figure 2.3.: Example of RF distance between two trees

Broadly speaking for both trees all possible bipartitions contained in the two trees
are calculated. A bipartition is the decomposition of a taxa present on the tree into
two distinct parts at a branch of the tree topology at hand. In Figure 2.3 we listed
all possible bipartitions of the two given example trees, labeled with number1 to
6, and the partition we represented with the pipe symbol ( | ). The absolute RF
distance is calculated as follows: Sum up all bipartitions induced by the two trees
(number 1 to 6 in our example), then subtract the duplicated bipartitions (in our
example number1 and 4). As this result (in our example the absolute RF distance
is 4) can not be interpreted by itself, the relative RF distance is more commonly
used. It puts into proportion the absolute RF distance with the number of inner

8



2.1. De�nitions and related literature

branches in the trees. Figure 2.3 gives a short example for the absolute and relative
RF distance between two trees.

The results can range between zero and one. When interpreting the results, zero
implies that the trees are identical. A number close to zero indicates a large similarity,
while a number close to one reveals that the trees are very di�erent. The concept of
RF distance can be extended to compare more than a single pair of trees by simply
calculating the average over all pairwise RF distances.

2.1.5. Signi�cance tests

Later in the thesis, when we conduct further analyses, one part will be to examine
whether the trees on the terrace are signi�cantly di�erent from each other with respect
to their likelihood scores. Therefore, we �rst need to shortly explain log-likelihood
based signi�cance tests. For interested readers the relevant papers for each test are
stated below. Note that we will only describe those tests used by the program later,
even though other tests do exists. The most common tests are listed below:

1. Bq-RELL test (Bootstrap proportions using resampling estimated log-likelihood)
This method performs a random sampling of the estimated log-likelihoods with
replacement. Within this procedure we intend to obtain the probability, that
the current tree is chosen as the best one out of all others, for each tree
(Kishino, Miyata, & Hasegawa, 1990). In case of the program IQ-Tree, the test
is performed with 10000 resamplings (Nguyen et al., 2014).

2. Kishino-Hasagewa (KH) test
The KH-test can be performed one sided and weighted. In contrast to the
bootstrap resampling, this method estimates the variance in the log-likelihood
for the di�erent trees. This leads to reduced computational expenses (Kishino
& Hasegawa, 1989).

3. Shimodaira-Hasagawa (SH) test
This test is a modi�cation of the KH-test. As the KH-test was originally
designed to compare only two trees, the KH-test is frequently used for the
comparison of many trees. In this con�guration an incorrect tree (i.e. not
the optimal one) is often chosen due to overcon�dence, which results from the
overlooked the sampling error while selecting the topology. The SH-tests solves
the problem, by automatically correcting for this bias (Shimodaira & Hasegawa,
1999).

4. Approximately unbiased (AU) test
This test overcomes the selection bias in the KH-test, but is not as conservative
as the SH-test. A newly developed multiscale bootstrap technique is used for
selecting the maximum likelihood tree (Shimodaira, 2002). The developers of
IQ-Tree therefore recommend to replace the both, the KH- and the SH-test
with the AU test.

5. Expected likelihood weight (ELW) test
Trees and their information such as substitution model are assumed to be correct
by many tests. Without verifying this information, other tests can produce
con�icting results. The ELW test in comparison uses expected likelihood
weights when inferring the con�dence of a tree (Strimmer & Rambaut, 2002).

9



2. Background and related work

At the end it should be stated, that the bq-RELL-, KH- and SH-test extend the
ideas from Felsenstein (1981), whereas the theory of Efron, Halloran, and Holmes
(1996) is the basis for the AU-test.
The output can be diveded into two di�erent groups: p-values, which KH-, SH-
and AU test return, and weights, which the bq-RELL and the ELW test emit. The
weights of all tested trees sum up to one.

2.1.6. Nearest-neighbor interchange

Nearest-neighbor interchange (NNI) is a tree rearrangement operation which can
be used in heuristic tree searches. Via small rearrangements of the branches of an
existing tree one intends to obtain a better tree with respect to its score. NNI is
applied to an inner branch of the tree and exchanges two neighbors adjacent to that
branch (Felsenstein, 2004). In Figure 2.4 a short example visualizes the method. In
the later analysis NNI trees will be used to obtain more insights about the trees
surrounding a terrace. To be more precise, for each tree on the terrace we will
calculate all possible NNI trees, which then is our NNI neighborhood.

Figure 2.4.: Example of NNI for a tree consisting of four subtrees (A-D)

2.2. Programs used for analysis
There are various programs to conduct di�erent phylogenetic analyses. For our
analyses we used RAxML-NG (Randomized Axelerated Maximum Likelihood-Next
Generation) by Kozlov et al. (2019) for several parts of the pipeline. For our purpose
we only used the following RAxML-NG functions: inferring ML trees, scoring trees
on a terrace as well as calculating the RF distance.

Terraphast I (Biczok et al., 2018) was used to count and enumerate all trees on a
terrace. It outputs the number of trees on the terrace and additionally enumerate all
trees in Newick format.

To perform signi�cance tests and validate some results we used IQ-Tree (Chernomor
et al., 2016; Nguyen et al., 2014). IQ-Tree is the successor ofIQPNNI and TREE -
PUZZLE. It has a similar range of functionality as RAxML-NG. Additionally it
also o�ers some functions (e.g., signi�cance tests), which are not yet available in
RAxML-NG.

10
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In addition we wrote some Python scripts to automate our analysis process. With
one of the scrips we could convert the NEXUS �les into the formats needed for
further analysis. To receive �les containing a comprehensive taxon, which will be
explained in Section 3.3.1, we build another Python script. The next script can
create the NNI trees of a data set.
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3. Experimental setting

Now that we have a general understanding of the topic and related de�nitions from
the previous chapter, we now will describe our experimental setting. We �rst present
our data sets and then the existing �le formats used in our analyses. Following this
we will specify each step of our pipeline, from the beginning until further analyses,
in an own section.

3.1. Data sets

The data sets used for our analyses are from two papers which have already addressed
di�erent aspects of terraces in tree space (Chernomor et al., 2016; Dobrin et al.,
2018).

Dobrin et al. (2018) assembled data sets from numerous studies (Burleigh, Kimball,
& Braun, 2015; Meredith et al., 2011; Miadlikowska et al., 2014; Misof et al., 2014;
Rabosky, Donnellan, Grundler, & Lovette, 2014; Shi & Rabosky, 2015; Soltis et al.,
2013; Springer et al., 2012; Tolley, Townsend, & Vences, 2013; Wickett et al., 2014;
Yang et al., 2015; Zanne et al., 2014) to assess the prevalence of terraces in published
empirical phylogenomic studies. Out of the26 data sets,23 contain DNA data and 3
contain protein data. Dobrin et al. (2018) found that terrace sizes vary between a
single tree and1:30� 10388 trees for the data sets they studied.

Three of the data sets in Chernomor et al. (2016) are protein alignments, while the
others are DNA alignments. The authors also collected published empirical data
sets from a plethora of studies (Bouchenak-Khelladi et al., 2008; Dell'Ampio et al.,
2013; Fabre, Rodrigues, & Douzery, 2009; Hinchli� & Roalson, 2012; Nyakatura
& Bininda-Emonds, 2012; Pyron et al., 2011; Springer et al., 2012; Stamatakis &
Alachiotis, 2010; Van Der Linde, Houle, Spicer, & Steppan, 2010). Some data sets
from Chernomor et al. (2016) are excessively large for our analysis, as their terrace
sizes exceed 850,000 trees. Hence, they exceed the 24 hour time limit job run time
on the cluster that was at our disposal.

In total, we analyzed38 phylogenomic data sets. For14 out of those38 we were
able to complete all analysis steps of our pipeline (see Section 3.3). Of those14 fully
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3. Experimental setting

analyzed data sets,11 contain DNA and 3 contain protein data. Table 3.1 provides
an overview of the data sets. For the data sets from Dobrin et al. (2018) we got
the species, as they are written directly into the paper. Regarding the data sets
from Chernomor et al. (2016) we could only detect the data type but not the species.
Therefore we can state, that from the known data sets8 are plants, one is a lizard
and one is a chameleon.

Table 3.1.: Overview of data sets
Data set Data type #Taxa #Partitions #Sites Reference

Dobrin et al. (2018)
Asplenium* DNA 133 3 4,782 (Zanne et al., 2014)
Eucalyptus* DNA 136 4 6,205 (Zanne et al., 2014)
Euphorbia* DNA 131 6 9,154 (Zanne et al., 2014)
Iris* DNA 137 4 5,815 (Zanne et al., 2014)
Primula* DNA 185 5 7,321 (Zanne et al., 2014)
Rabosky.scincids DNA 213 6 5,373 (Rabosky et al., 2014)
Ranunculus* DNA 170 6 10,799 (Zanne et al., 2014)
Rhododendron* DNA 117 5 7,321 (Zanne et al., 2014)
Szygium* DNA 106 4 5,815 (Zanne et al., 2014)
Tolley.chameleons DNA 202 6 5,054 (Tolley et al., 2013)

Chernomor et al. (2016)
d128_34 DNA 128 34 29,198 (Stamatakis & Alachiotis, 2010)
d69_31 PROTEIN 69 31 8,546 (Dell'Ampio et al., 2013)
d70_35 PROTEIN 70 35 11,789 (Dell'Ampio et al., 2013)
d72_51 PROTEIN 72 51 12,548 (Dell'Ampio et al., 2013)
*: Subsampled data sets. Data sets were subsampled until they contained a comprehensive taxon.

See Section 3.3.1 for details

3.2. File formats

Before we start describing our experimental setup, we initially describe the basic �le
formats we used in our analyses.

3.2.1. NEXUS

The NEXUS alignment �le format is commonly used in bioinformatics. We will
describe the parts which are used in our pipeline. A NEXUS �le starts with general
information about the dimensions of the subsequent alignment: the number of taxa
and the number of sites are listed. The next line contains the data type, which
is either DNA or PROTEIN, and the gap symbol, used to represent missing data.
Afterwards the taxa are listed with their names followed by their sequence. At
the end of the �le one can �nd the partition information. We show an example in
Figure 3.1

3.2.2. PHYLIP

Another alignment �le format is PHYLIP. In Figure 3.2 we show an example. It is
structured similar to the NEXUS format, but contains less information. The �rst
line only holds two numbers, without any label: number of taxa and number of sites.
Thereafter the taxon names and their sequences are listed.
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3.3. Experimental setup

Figure 3.1.: Example NEXUS �le (shortened Rhododendron data set)

Figure 3.2.: Example PHYLIP �le (shortened Rhododendron data set)

3.2.3. NEWICK

Another �le format is NEWICK. In contrast to the two formats we described above,
a NEWICK �le speci�es a tree structure. Commas separate the nodes of the tree,
in our case the species. The tree structure is given through brackets, where each
level in the tree is encapsulated by brackets: the further down the node, the more
brackets are around it. Figure 3.3 shows an example.

Figure 3.3.: Example NEWICK �le (shortened Rhododendron data set)

3.3. Experimental setup

For the quantitative analysis we �rst designed a data preparation and analysis
pipeline, so that every data set is prepared and analyzed in exactly the same way to
obtain comparable results. For readability we introduce several acronyms: linked
branch model (LB), unlinked branch model (UB), and scaled branch model (SB) as
well as unlinked branch model for the tree search and linked or scaled model in the
LnL calculation (UB-LB respective UB-SB).

We will �rst outline the basic steps of our pipeline and subsequently will discuss each
of them in an own section in detail. After each section we state the main command,
where we use[name] as replacement for the data set name. For readability we include
only the UB model, except for one analysis, which was only performed under LB
model. The whole code of the pipeline can be found in the appendix in Figures A.1
and A.2. We conduct the following steps for each data set:
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3. Experimental setting

1. Data preprocessing: Create a PHYLIP formatted alignment, a binary pres-
ence/absence matrix (indicating which species has data for which partition),
and a partition �le from the original NEXUS input �les

2. Conduct ML tree searches under LB, SB, and UB branch length models with
RAxML-NG

3. Calculate if best-scoring ML tree for LB, SB, and UB from these tree searches
resides on a terrace and enumerate trees on that terrace with Terraphast I

4. Calculate the LnL scores for all trees on the respective terrace with RAxML-NG
under LB, SB, and UB models as well as for UB-LB and UB-SB

5. Further analyses:

a) Calculate RF-distance between the best ML trees under LB, SB, and UB
models from ML searches with RAxML-NG

b) Signi�cance tests of LnL scores under the LB model using IQ-Tree

c) LnL calculation for the set of a NNI trees generated from the treeson the
terrace under UB, UB-LB, and UB-SB

d) Signi�cance tests of NNI tree set and trees on the terrace under UB,
UB-LB, and UB-SB (and additionally for a random Yule�Harding tree
(Harding, 1971))

As terraces only occur under UB, we applied all of the above analysis steps using
UB, to obtain a reference for comparison with the respective tree scores under LB
and SB. We used RAxML-NG (Kozlov et al., 2019) for scoring the trees on a terrace,
Terraphast I (Biczok et al., 2018) to enumerate all trees on a terrace, and IQ-Tree
(Chernomor et al., 2016; Nguyen et al., 2014) to conduct statistical signi�cance tests.
We visualized the whole process in Figure 3.4 at the end of this chapter. In this
representation we excluded the further analyses to improve readability.

3.3.1. Data preprocessing

As we had a collection of NEXUS data �les, but required other formats for analyses
we initially transformed our data accordingly. To analyze terraces we required a
binary presence/absence matrix, which describes for which species we have data in
which partitions.

An important aspect for the downstream analysis of terraces is that all data sets need
to comprise a comprehensive taxon. In other words, each data set needs to contain
at least one taxon that has data forall partitions (Biczok et al., 2018). However,
not all of our data sets comprised such a comprehensive taxon a priori. Therefore,
we needed to reduce some data sets by systematically removing partitions, until
the reduced data set comprised at least one comprehensive taxon. We conduct this
reduction as follows: we count the number of partitions containing data for all taxa
and save the one taxon which has the most. Once such a taxon is selected, we remove
all partitions from the data set for which this taxon does not have data which yields
a smaller data set. This process is repeated until at least one comprehensive taxon is
present in the data set. When such a reduction is applied, we need to propagate it
to all subsequent �les used within the analysis pipeline.
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3.3. Experimental setup

3.3.2. Inference of ML trees

We inferred best-known ML trees under LB, UB, and SB models with RAxML-
NG. For each data set and branch length model con�guration, we performed20
independent tree searches, and recorded the best tree of all searches. We used10
random trees and10 randomized stepwise addition order parsimony trees as starting
trees.

3.3.3. Enumeration of trees on the terrace

Using Terraphast I, we computed the number of trees and enumerated the trees on a
terrace for all best-known ML trees under LB, SB, and UB models. Apart from the
ML tree �le Terraphast I also requires the aforementioned binary presence/absence
matrix as input. Terraphast I then outputs the number of trees on the terrace and
enumerates all trees on that terrace in Newick format. As we only require these
Newick trees for further downstream analyses, we extracted these from the output
�le and deleted the �le header that only contains information about the number of
trees on the terrace.

3.3.4. Calculation of log-likelihood scores

Applying the corresponding tree scoring option, we used RAxML-NG to calculate the
LnL scores of all trees on the respective terraces. The input is a PHYLIP alignment
�le, the partition �le, and the terrace tree �le created for the UB ML tree. In addition
to this analysis for UB terrace trees (later denoted as: UB-LB, UB-SB), we also
computed the LnL scores of terrace trees originating from ML trees under the same
branch length model (later denoted as: UB, LB, SB). Note that the best-known ML
trees per data set from tree searches under UB, LB, and SB models are often not
identical. For analyzing quasi-terraces we used the UB, UB-LB, and UB-SB results
and for signi�cance testing the LB results.
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3.3.5. Further analyses

To better understand quasi-terraces, we performed additional analyses. These include
RF distance, LnL-based signi�cance tests as well as NNI analysis.

3.3.5.1. Robinson-Foulds distance

We computed the RF distance between the best ML trees under each branch length
model, to assess their similarity. To archive this RAxML-NG calculates the pairwise
relative RF distance between all possible two-tree combinations and the average
accordingly.

3.3.5.2. Signi�cance tests

We also conducted signi�cance tests with IQ-Tree. As input we used the partition
�le, the terrace trees, and the respective best-known ML tree. For this analysis both,
the terrace trees as well as the best tree �le were analyzed under the LB model.
We did so for LB only due to time saving, as the results for SB are expected to be
similar.

IQ-Tree performs the following common LnL-based signi�cance tests:

� Bootstrap proportions using the RELL method (Kishino et al., 1990)

� Kishino-Hasegawa test (one sided and weighted) (Kishino & Hasegawa, 1989)

� Shimodaira-Hasegawa test (weighted and unweighted) (Shimodaira & Hasegawa,
1999)

� Expected likelihood weight (Strimmer & Rambaut, 2002)

� Approximately unbiased (AU) test by Shimodaira (Shimodaira, 2002)

A short explanation of all the tests can be found in Section 2.1.5.

3.3.5.3. NNI analysis

To explore the trees in the surrounding of a (quasi-) terrace, we additionally performed
NNI analyses. Therefore, we applied all possible NNIs to the trees on the terrace and
compared them with trees which reside on the terrace. We applied this to all three
models (UB, UB-LB, and UB-SB). We then calculated the LnL scores for the NNI
trees and calculated the range between the respective maximum and minimum LnL
of the trees on the terrace. We also computed the fraction of NNI trees which fall
within this minimum-maximum range of LnLs of the treeson the terrace and also
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recorded NNI trees that had a better LnL than any treeon the terrace. With the �rst
we wanted to evaluate, if the NNI trees can reach the good scores of the terrace trees
and if so, how many are as good as them. Furthermore we were interested, if NNI
trees can even achieve better scores than the trees on the terrace. Additionally, we
conducted signi�cance tests (as described in the previous paragraph) on an extended
tree set, containing, both treeson the terrace and the NNI trees.

With this analysis, we intended to obtain further insights on how trees on a terrace
di�er from those in the NNI neighborhood of the terrace. Especially if there is a
similarity in the results compared with the previous ML trees results or if terraces and
their neighborhood di�ered when not dealing with ML trees. Therefore, we generated
a random Yule-Harding tree for one of our data sets (Rhododendron) with IQ-Tree,
which has as input the partition and PHYLIP alignment �le. The random tree is
generally not a ML tree but can also lay within a terrace. Hence we performed the
same steps as in the aforementioned analyses, to gain deeper knowledge of terraces
and their neighborhood developed without ML criterion.
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Figure 3.4.: Graphical process overview
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4. Results of analyses

After we described the experimental setting of this thesis, we now will present the
results from our various analyses. Therefore we �rst give an overview including the
terrace size, average LnL, standard derivation, and relative RF distance. Next the
outcome of the signi�cance tests will be described. The last section of this chapter
contains the di�erent results from the NNI analysis.

4.1. Overview of results
In Table 4.1 we summarize the results of our analyses. Regarding the average LnL
(Avg. LnL), we clearly see that the scores under UB are always better than for SB
and in turn for LB. This was expected as the number of free model parameters
decreases from UB to SB to LB. For the data sets which have a terrace size of one
(i.e., the ML tree does not reside on a terrace) the standard LnL variation (Std. Dev.)
is not applicable. For the remaining eight data sets the LnL Std. Dev. is near zero
for all data sets under UB and also for four data sets under UB-LB and UB-SB.
For the UB-LB and UB-SB case of Eucalyptus and Euphorbia the LnL standard
deviation is considerably larger (between2:14 and 4:58). The same holds for Primula
and Rabosky.scincids (between1:21 and 1:78). The relative RF distance (Rel. RF)
between the best tree under LB, UB, and SB is smaller than0:25 for 93%, and even
smaller than 0:1 for 29% of the data sets. The rel. RF ranges between0:06 and 0:25,
except for Eucalyptus where we observe the highest value with0:5.

For data sets with a terrace size larger than one, we created graphs which enumerate
the trees on thex axis by the order in which they appear in the tree �le and their
LnL on the y axis. The blue line shows the average LnL for each branch length
model.

In Figure 4.1 we show an example for the Asplenium data set under all three branch
length models. Figure 4.1a shows the UB LnL scores which should, in principle,
all be exactly identical. The slight deviations are due to numerical rounding errors
associated with �oating point numbers. The maximal di�erence amounts to0:0012
LnL units. However, for UB-SB in Figure 4.1b and UB-LB in Figure 4.1c the
di�erences are also comparatively small (0:0036and 0:0028LnL units, respectively).
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4. Results of analyses

Table 4.1.: Overview of results
Dateset Terrace

Size
Avg. � LnL Std. � Dev. Rel.

RFUB UB-LB UB-SB UB UB-LB UB-SB
(Dobrin et al., 2018)
Asplenium* 261 -19,900.7 -19,999.6 -19,951.1 0.0003 0.0005 0.0007 0.17
Eucalyptus* 267 -10,902.7 -11,263.9 -11,098.0 0.0120 3.2669 2.1400 0.50
Euphorbia* 1,863 -39,580.3 -41,201.1 -40,173.6 0.0009 4.5787 3.7331 0.15
Iris* 1 -23,493.5 -24,808.8 -24,295.6 N/A N/A N/A 0.21
Primula* 1,125 -37,034.1 -38,491.0 -38,084.1 0.0006 1.2102 1.2684 0.15
Rabosky.scincids 3 -125,550.6 -128,649.7 -127,973.0 0.0006 1.7823 1.607 0.13
Ranunculus* 9 -28,709.8 -29,674.1 -29,447.7 0.0009 0.0922 0.1452 0.18
Rhododendron* 27 -17,830.8 -18,216.8 -18,181.8 0.0005 0.1619 0.1644 0.25
Szygium* 5 -11,931.6 -12,214.3 -12,125.0 0.0003 0.1604 0.0155 0.18
Tolley.chameleons 1 -183,197.7 -187,550.7 -185,807.9 N/A N/A N/A 0.12

Chernomor et al. (2016)
d128_34 1 -770,304.1 -810,956.9 -804,359.8 N/A N/A N/A 0.06
d69_31 1 -179,745.7 -186,100.3 -185,475.6 N/A N/A N/A 0.08
d70_35 1 -249,464.4 -258,459.8 -257,418.1 N/A N/A N/A 0.07
d72_51 1 -329,019.2 -339,845.6 -339,099.4 N/A N/A N/A 0.10
*: Subsampled data sets. Data sets were subsampled until they contained a comprehensive taxon

The same is the case for Ranunculus, Rhododendron, and Szygium, where the LnL
di�erences under all branch length models are near zero. In the following paragraph
we describe the results for the Eucalyptus data set. For the remaining three data sets
(Euphorbia, Primula, and Rabosky.scincids) the di�erences for UB-SB and UB-LB
are larger and range between3:4 and 22:4 LnL units.

We present another data set, Eucalyptus, in Figure 4.2. Even though it looks more
distributed than the Asplenium data set, the numbers are within a range we expected
in regards to numerical round of error propagation. For UB, shown in Figure 4.2a,
the di�erence between minimum and maximum LnL amounts to0:0568LnL units.
In contrast to UB-LB (Figure 4.2c) and UB-SB (Figure 4.2b), where the di�erence is
7:4991and 15:6402LnL units. Besides the numerical results, the Eucalyptus data
set has a clearly visible pattern with several peaks under UB. But for UB-LB and
UB-SB this pattern is visible accordingly, even though it is fuzzier. As we plotted
the LnL in order of trees in the tree �le, this pattern comes from the algorithm
implemented in Terraphast I.

To verify the somewhat structured LnL variations that are visible in the plots, we
also performed the calculation of LnL scores with IQ-Tree. The results are so similar,
that we do not show them in separate graphs.

4.2. Signi�cance tests

Table 4.2 shows the results of the signi�cance tests with IQ-Tree. As the tests
compare the best ML tree on the terrace to all the trees on that terrace under LB, we
only included those data sets with more than one tree on the terrace in the results.
For each data set, we counted the number of signi�cant and non-signi�cant LnL based
di�erences using a 95% con�dence cuto�. For Rabosky.scincids, Ranunculus, and
Szygium all trees are not signi�cantly di�erent to each other. For the Primula and
Rhododendron data sets six, respectively seven tests show non-signi�cance and for
Eucalyptus and Euphorbia the results are mixed. There is no single data set where
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(a) Asplenium unlinked

(b) Asplenium unlinked-scaled

(c) Asplenium unlinked-linked

Figure 4.1.: Log-likelihoods for the data set Asplenium under 4.1a UB, 4.1b UB-SB,
and 4.1c UB-LB model
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(a) Eucalyptus unlinked

(b) Eucalyptus unlinked-scaled

(c) Eucalyptus unlinked-linked

Figure 4.2.: Log-likelihoods for the data set Eucalyptus under 4.2a UB, 4.2b UB-SB,
and 4.2c UB-LB model
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the trees on the terrace predominantly show signi�cant LnL di�erences compared to
the best ML tree on this terrace under LB.

Table 4.2.: Overview IQ-Tree results of signi�cance tests
bp-RELL p-KH p-SH p-WKH p-WSH c-ELW p-AU

(Dobrin et al., 2018)
Eucalyptus 27.0% 43.4% 82.0% 21.7% 51.7% 68.2% 24.7%
Euphorbia 1.4% 26.1% 63.4% 24.5% 98.1% 32.8% 41.9%
Primula 19.0% 97.7% 100% 96.1% 100% 77.9% 98.8%
Rabosky.scincids 100% 100% 100% 100% 100% 100% 100%
Ranunculus 100% 100% 100% 100% 100% 100% 100%
Rhododendron 57.8% 100% 100% 93.3% 97.8% 95.6% 100%
Szygium 100% 100% 100% 100% 100% 100% 100%

Results in percent of trees with non-signi�cant di�erences

4.3. NNI analysis

With the NNI analysis we intend to explore the neighborhood of the terrace. Due
to time limits for the computations on the cluster we used to perform the analyses,
the NNI analysis was only performed for the Rhododendron data set. This data
set contains su�cient trees on the terrace (27) but is, at the same time, still small
enough in terms of taxa (117) such that the resulting NNI trees (6141unique trees)
can be analyzed within a reasonable time frame.

Nevertheless, for the comparison of the LnL of the trees on the terrace and the
NNI trees, we only used a subsample of the NNI trees, due to time limits (UB:
2389corresponds to 38.9%, UB-LB:3720corresponds to 60.58%, and UB-SB:3705
corresponds to 60.33%). For all branch models we calculated the fraction of NNI
trees whose LnL fall within the range between the maximum and minimum LnL of
the treeson the terrace: 15.8% for UB, 30.2% for UB-LB and 27.9% for UB-SB. In
addition, we also computed the fraction of NNI trees with a LnL that is better than
the maximum LnL from the trees on the terrace. The respective tree sets are very
small with only 3.9% for UB, 1.4% for UB-LB, and 2.2% for UB-SB.

We performed the same analysis for a random Yule-Harding tree generated with
IQ-Tree from the Rhododendron data set. This random tree yields a terrace of
size9, a NNI neighborhood of2048trees (duplicates already removed) and hence
a total 2057trees to be analyzed. Here we found that 18.9% NNI trees fall within
the maximum-minimum LnL range of treeson the terrace for UB, 30.3% for UB-
LB, and 51.5% for UB-SB, which was similar to the results for the ML tree of the
Rhododendron data set. We did so to further understand the neighborhood of the
terrace. And again, as for the original data set, we calculated the NNI trees with
a better LnL than the treeson the terrace. The results are: 38.2% for UB, 36.5%,
and 18.2% UB-SB, which was between16 and 35:1 percent higher than in the former
analysis.

For all three models we performed another signi�cance test with IQ-Tree. As in the
previous signi�cance tests, we counted the number of signi�cant and non-signi�cant
LnL based di�erences using a 95% con�dence cuto�. Table 4.3 shows the results.
The �rst 27 trees in the input �le are the trees on the terrace (denoted as terrace
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Table 4.3.: Results of signi�cance test on data set Rhododendron
bp-RELL p-KH p-SH p-WKH p-WSH c-ELW p-AU

UB
All trees 6.89% 76.46% 97.37% 59.34% 81.71% 59.57% 80.89%
Terrace trees 0.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00%
NNI trees 6.92% 76.36% 97.36% 59.60% 82.07% 59.39% 80.80%

UB-LB
All trees 6.29% 78.75% 96.50% 48.98% 87.01% 60.30% 83.04%
Terrace trees 0.00% 100.00% 100.00% 0.00% 55.56% 100.00% 100.00%
NNI trees 6.32% 78.65% 96.48% 49.19% 87.15% 61.12% 82.97%

UB-SB
All trees 6.91% 79.12% 96.50% 40.24% 84.14% 61.69% 83.80%
Terrace trees 0.00% 100.00% 100.00% 0.00% 74.07% 100.00% 100.00%
NNI trees 6.94% 79.03% 96.48% 40.42% 84.19% 61.52% 83.73%

Results in percent of trees with non-signi�cant di�erences

trees in the Table 4.3). The following6141trees are the NNI trees (denoted as NNI
trees in the Table 4.3). This results in a total of6168trees for the tests (denoted as
all trees in the Table 4.3). The results are mixed, as three tests (bq-RELL, p-WKH,
and p-WSH) yield predominantly signi�cant di�erences and four tests (p-KH, p-SH,
c-ELW, and p-AU) predominantly non-signi�cant di�erences for the trees on the
terrace. The NNI trees follow the same pattern for the test results as the results for
the treeson the terrace and this is the case for all three models.

Table 4.4.: Results of signi�cance tests on a random tree based terrace for the
Rhododendron data set

bp-RELL p-KH p-SH p-WKH p-WSH c-ELW p-AU

UB
All trees 1.94% 4.23% 19.54% 4.38% 40.25% 2.43% 7.00%
Terrace trees 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NNI trees 1.95% 4.25% 19.63% 4.39% 40.43% 2.44% 7.03%

UB-LB
All trees 1.56% 3.89% 13.08% 2.04% 37.92% 1.99% 2.92%
Terrace trees 0.00% 0.00% 0.00% 0.00% 22.22% 0.00% 0.00%
NNI trees 1.56% 3.91% 13.13% 2.05% 37.99% 2.00% 2.93%

UB-SB
All trees 1.51% 3.60% 14.05% 2.14% 47.59% 1.94% 2.92%
Terrace trees 0.00% 0.00% 0.00% 0.00% 55.56% 0.00% 0.00%
NNI trees 1.51% 3.61% 14.11% 2.15% 47.56% 1.95% 2.93%

Results in percent of trees with non-signi�cant di�erences

Additionally we performed the signi�cance analysis again for the random tree from
the Rhododendron data set. We show the results in Table 4.4. The annotation is the
same as for the preceding table and description. In this case we counted9 terrace
trees, 2048NNI trees, and hence used a total of2059trees. Here, the results are
clearer as we predominately observe signi�cant di�erent results under all models and
all tree sets. Only the results of the WSH test showed up to 47.59% of non-signi�cant
di�erences. We want to emphasize that, in contrast to the results for the best-known
ML trees, the trees on the terrace are 100% signi�cant di�erent, except for the WSH
test under UB-LB and UB-SB.
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In this last chapter we summarize our work, provide a conclusion and discuss possible
avenues of future work.

The question which motivated our research was if there exists a terrace-like structure
under LB and SB length models, which we call a quasi-terrace. We �rst explained
the necessary background in phylogenetics. Thereafter we described the experimental
setting of our analysis pipeline. Step-by-step we prepared our data and then performed
several analyses to explore structures under LB, SB, and UB model. Throughout the
analysis steps we gained the insight, that there indeed exists a terrace-like structure
under all three branch length models. Our results thus support the presence of
quasi-terraces. We visualize and present our results in Chapter 4.

5.1. Conclusion

Our analysis of14 data sets indicates that there exists a terrace-like structure under
the linked as well as scaled branch length models. We conclude so, based on the
computations performed by our analysis pipeline, that is, resulting LnLs under
UB-LB and UB-SB, signi�cance tests as well as neighborhood analyses. The average
LnL as well as the standard variation are within the same range under all three
models. The signi�cance tests under the linked model in Table 4.2 show that most
trees are not signi�cantly di�erent from each other. In addition, the NNI evaluation
for the Rhododendron data set shows that there is an additional structure in the
trees on a quasi-terrace. They are generally better than the surrounding NNIs, even
if the subsequent signi�cance tests do not show an uniform result.

Overall, we do observe a quasi-terrace like pattern under linked and scaled branch
length models in our empirical test data sets. Even though we could not entirely
distinguish the trees on the quasi-terrace from their NNI neighborhood, there is a
clear quasi-terrace structure. Therefore, we recommend to further investigate the
structure of quasi-terraces, in particular to improve the e�ciency of tree search
algorithms that should only evaluate one tree per quasi-terrace.

27



5. Conclusion and future work

5.2. Future work
Current analysis suggests that quasi-terraces might be helpful for speeding up tree
inferences by considering only one representative tree from it. An extensive analysis
of more and larger data sets would solidify this notion. Additionally, a mathematical
characterization of quasi-terraces would be desirable. We need, for instance, new
mathematical tools to better distinguish a quasi-terrace from its neighborhood.

We saw in Table 4.4 that the trees on the terrace and the NNI trees are predominantly
signi�cant di�erent. In contrast the results from the ML tree, we showed in Table 4.3,
where at least four test show that the trees on the terrace are not signi�cantly
di�erent. Hence we conclude that trees on the terrace and the surrounding NNI
trees are more diverse, if not generated from a ML tree. On the other hand, terraces
and the surrounding NNI trees generated and calculated from ML trees appear to
be more similar. But as we only performed this analysis for one data set and one
random tree, this should be repeated with more data sets and more random trees to
verify this trend.

Regarding to the distinctness of terraces and their surrounding neighborhood, we
suggest to use another method called subtree pruning and regrafting (SPR), as this
would result in a larger neighborhood. The size of the SPR neighborhood is also the
reason why we did not use these moves in our analyses. From such an analysis we
hope to obtain additional insights about terraces and their surroundings as well as
maybe a clearer distinguishability of them.
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Appendix

A. Pipeline

Figure A.1.: Code of pipeline, line 1-35
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