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Abstract

In this thesis we develop an error-correction-toolkit for de novo (without a reference
genome) DNA sequencing which takes into account technology-specific error profile
and coverage bias information. By splitting error profile learning, G/C coverage
bias correction and k-mer classification into separate modules, the error correction
algorithm itself can remain technology-agnostic. We develop multiple variants for
each of these modules.

We evaluate the performance of each module separately by isolating it from the
remaining framework modules. The separate isolation shows that especially the
coverage bias estimation, the k-mer classification, the context-free error profile
estimation (which infers only overall error probabilities) and the sequence-specific
error profile estimation (which infers the influence of short sequences up to 6 bases
surrounding an erroneous position in a read) already show satisfying results. However,
our machine learning variant for estimating the full-context-specific error profile
(which takes the complete information into account, this is, the current base in the
read, its quality score, the read length, and surrounding bases) still requires further
improvements.

We implement an example error correction algorithm for showing how to combine
the modules provided by our framework. We briefly compare its performance with
current state-of-the-art error correction tools on genome re-sequencing datasets from
Illumina and PacBio sequencers, using both simulated and empirical data. Our
comparison shows that our example error correction algorithm still demands further
work before being able to compete with current state-of-the-art error correction
approaches.

Deutsche Zusammenfassung

Diese Masterarbeit handelt von der Korrektur von de novo (d.h., ohne ein bekanntes
Referenzgenom) DNA-Sequenzdaten unter Berücksichtigung von technologiespezifis-
chen Fehlerprofilen. Durch die Aufteilung des dazu nötigen Programms in separate,
untereinander austauschbare Module wird u. a. ermöglicht, dass der Fehlerkorrektur-
Algorithmus leichter benutzbar und erweiterbar ist. Wir entwickeln mehrere Varianten
für die jeweiligen Module unseres Frameworks und entwickeln einen beispielhaften
Korrekturalgorithmus, um das Zusammenspiel der einzelnen Frameworkmodule zu
zeigen. Wir evaluieren die einzelnen Module des resultierenden Fehlerkorrekturframe-
works, wobei wir sowohl reale Datensätze von Illumina und Pacific Biosciences als
auch simulierte Datensätze betrachten.

Unsere Experimente zeigen, dass die meisten Frameworkmodule zufriedenstellende
Resultate zeigen. Jedoch benötigen insbesondere der hier entwickelte Fehlerkorrektur-
Algorithmus sowie der hier entwickelte Maschinelles-Lernen-Ansatz zur Erfassung
des gesamten technologiespezifischen Fehlerprofils weiteren Entwicklungsaufwand,
um konkurrenzfähig zu sein.
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1. Introduction

1.1. Motivation
Deoxyribonucleic acid (DNA) is the blueprint of life. Knowing the genetic sequence of a
living being has many benefits and applications. Example applications include forensics
such as combating the illegal trade in African elephant ivory [WJCD+08], building the tree
of life [Sta06], categorizing living things into different species based on their DNA [KLZ+17]
and improved understanding of genetic diseases [KC91]. Only since the late 1970’s, people
are able to obtain the DNA sequence of an organism by a process called DNA sequencing.

Genome sizes of different species vary significantly. An organism with one of the smallest
known genomes is a RNA virus called bacteriophage MS2 which infects bacteria. Its
genome consists of only 3,569 base pairs and it was the first completely sequenced genome
in 1976 [FCD+76]. The bacterium Escherichia coli K-12 has a genome size of 4,639,221
base pairs [BPB+97]. In contrast, the human genome has 3,234,830,000 base pairs per
haploid genome [VAM+01]. Note that genome size is not directly linked to complexity. An
organism with one of the largest known genome sizes is Paris japonica, a flower with a
genome of about 150,000,000,000 base pairs [PFL10] which is nearly 50 times larger than
the human genome.

Current sequencing methods cannot directly infer the DNA sequence of a full-length genome.
Instead, the DNA is split into many shorter pieces and each of these pieces is processed
separately. By sequencing these shorter pieces of DNA, we obtain so-called DNA sequencing
reads. Depending on the sequencing technology used, a read can contain 150 bases (Illumina
NextSeq) [Ill17a] or up to 100,000 bases (Oxford Nanopore MinION) [LHO+15]. In order
to reconstruct the genome, millions of reads are stitched together in a process called genome
assembly. Ideally, one would assemble a genome by creating a multiple sequence alignment
of all reads. Unfortunately, the task of creating an optimal multiple sequence alignment is
known to be NP-hard for most optimality criteria [WJ94] [Eli06]. Thus, genome assemblers
rely on heuristic methods. As the process of assembling a genome is already very hard,
errors in reads yield obtaining a good assembly even more difficult.

Back in 2001, the cost of sequencing a human genome was estimated to be around
$100,000,000. Due to advances in the field of Genomics, the cost for sequencing a human
genome dropped to slightly above $1,000 in 2015 [Ins17]. This progress has been achieved
by introducing new sequencing technologies (Next Generation Sequencing and Third
Generation Sequencing) which have a higher throughput due to their massive sequencing
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1. Introduction

parallelism, leading to a smaller per-base sequencing cost. However, they also produce
reads with a higher error rate, thus increasing the need for appropriate error correction
methods.

Different sequencing technologies have different error characteristics. To complicate the
matter further, there are notable differences even between two sequencing runs using the
same machine. For instance, companies that produce sequencing machines frequently
modify the chemistry and usage protocols. Also, many library preparation (a step necessary
before sequencing) processes are not standardized. This leads to variations in data quality
not only between different laboratories, but also between different lab members who prepare
the specimen. This effect is known as the batch effect [LSB+10]. In general, this means
that it does not suffice to use a single one-solution-fits-all error correction method, but
that adaptive solutions are needed.

1.2. Objectives of this Thesis
A recent survey paper by Laehnemann et al. [LBM16] states that there is a need for a good
modular error correction toolkit. The authors state that such a toolkit should have the
following properties:

• optionally consider insertions and deletions

• optionally account for coverage bias (i.e., the influence of the percentage of G or C
bases in the genome on how many reads map to a genomic region)

• have pre-defined platform-specific error models or learn them from the dataset

• be open source and adapt a modular approach

• infer haplotypes and repeats from the data

• flexibly combine ideas from different error correction approaches

In this thesis we want to accomplish a first step in this direction. We develop an error-
correction toolkit which aims at fulfilling the requirements of Laehnemann et al. We mainly
focus on de novo whole-genome sequencing datasets of haploid genomes (e.g. bacterial
genomes or human mitochondrial genomes). Moreover, to show how our modules can
interact, we develop an example error correction method that is based on counting the
occurrences of DNA-substrings, so-called k-mers, in the read dataset. Figure 1.1 depicts
some of the most common errors that occur in DNA sequencing reads. We aim to correct
substitution, insertion, and deletion errors.

2



1.2. Objectives of this Thesis

Figure 1.1.: Common types of DNA sequencing errors.

The crucial steps in any sequencing error correction method are to retrieve the error profile,
to detect erroneous regions in a read, and to correct the read. In order to allow for a flexible
choice of the approach used for each of these steps and improve future extendability, we
split the framework into several modules (see Figure 1.2).

Error profile retrieval

We infer the general error profile of a sequencer given a set of reads and a well-known
reference genome from a genome re-sequencing dataset (e.g., E.coli K-12 ) by training a
machine learning classifier. In order to obtain the run-dependent error profile of a de-novo
sequencing run (i.e., a sequencing run where the genome is not previously known), we apply
an Empirical Bayes-like approach [Rob64]. In a warm-up phase, we take the general error
profile as the initial prior and correct the reads using this profile. Then, we re-train the
error profile by counting the error frequencies detected in this warm-up step and discard
all corrections afterwards.

Detecting erroneous regions

Based on its bias-corrected observed count in the read dataset and its expected count in
an ideal setting, we classify a k-mer as being either erroneous, unique, or belonging to a
repetitive region in the genome. This allows us to work with variable-length k-mers, always
selecting the smallest value for k such that the k-mer does not belong to a repetitive region.

Correct reads using a novel approach

Using locally adaptive k-mer sizes and a ranking of error probabilities for each position
in a read, we determine the best options for correcting a k-mer. So far, we only correct
substitution, insertion, and single-base deletion errors.

Figure 1.2.: Structure of the system. By encapsulating the technology-specific influences
(e.g. error profile and coverage bias) into separate modules, the error correction
and k-mer classification algorithms can remain technology-agnostic.

3



1. Introduction

Scientific Contribution

While most of the ideas we implement in this thesis are not entirely new, we combine, extend
and modify them. There does not exist a framework yet that integrates the approaches
from different methods in a unified system. Current error correction methods only take
into account a single aspect of the error profile (such as quality scores or position within a
read), but ignore others (such as surrounding motif information).

Thus, we present in this thesis the first comprehensive framework for read error correction.
It shortly will be available as open source at https://github.com/algomaus/PAEC.

1.3. Structure of the Thesis
The remainder of this thesis is structured as follows. In Chapter 2, we give an overview
of current sequencing technologies and their error characteristics. We also summarize the
current state-of-the-art error correction approaches with their underlying principles, advan-
tages, and disadvantages. Moreover, we provide a short introduction to the classification
problem in machine learning and present some well-known classification methods. We
explain how to deal with imbalanced datasets, that is, datasets where some classes are over-
or under-represented. We also briefly explain two metrics that are often used for evaluating
the performance of a classifier on a dataset, namely the accuracy and the average F-score.

The main algorithmic contribution of this thesis is contained in Chapters 3 to 6.

In Chapter 3, we explain the method we use for estimating the median G/C-coverage bias
using k-mers. It combines the approaches used in the EDAR [ZPB+10] and the Fiona
software [SWH+14] paper. However, since we want to use different k-mer sizes, some
extensions are needed.

Chapter 4 deals with classifying k-mers. By comparing bias-corrected observed and expected
counts of a k-mer, in an ideal setting, we can classify it as either untrusted (erroneous),
trusted (unique in the genome) or belonging to a repetitive region.

In Chapter 5, we describe how we learn the technology-specific error profile of a read dataset.
This yields a black box that takes in a read and returns a ranking of error probabilities for
each base in the read.

In Chapter 6, we develop a novel k-mer based method for read error correction to show
how the other modules in our framework can be combined. The method covers a read with
k-mers of variable size and then applies the most likely corrections to each k-mer until it
becomes a trusted k-mer. We correct substitutions, insertions, and single base deletions.
We additionally present a first idea for resolving deletions of multiple bases.

Chapter 7 contains some implementation aspects of this framework. We explain our solution
for automatically training some classification methods on a given dataset and select the
one with the highest average F-score. Then, we provide some noteworthy implementational
details for each of the main modules. We conclude this Chapter by explaining how to use
the framework.

In Chapter 8, we provide experimental results and their discussion. First, we evaluate each
component of the framework independently. Then, we briefly compare the performance of
our entire error correction framework with other state-of-the-art error correction methods,
using read datasets from Illumina and Pacific Biosciences sequencing machines. We use both
empirical bacterial datasets and simulated datasets for evaluation. Our comparison shows
that while the remaining modules already provide satisfying results, our error correction
algorithm can not compete with current state-of-the-art error correction tools. We further
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investigate the reasons and discover that this is mainly caused by our error correction
algorithm itself, not by the other modules within our framework.

Finally, the thesis ends with a conclusion and aspects of future work in Chapter 9.
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2. Related Work and Background

This chapter provides some background knowledge related to sequencing, error profiles,
error correction, and machine learning. Section 2.1 describes the DNA sequencing process.
After explaining the very first ever sequencing method used to sequence a genome in more
detail, we briefly describe currently used sequencing methods. We summarize well-known
factors that influence the sequencing error profile in Section 2.2. In Section 2.3, we provide
an overview of already existing approaches for error correction, by classifying them into
k-mer based methods, multiple sequence alignment (MSA)-based methods, and suffix tree
based methods. We conclude this chapter with a short introduction to the classification
problem in machine learning as well as some widely used classification and evaluation
methods in Section 2.4.

2.1. Sequencing Technologies and their Error Characteristics
Genomes tend to be much larger than the read lengths of current sequencing technologies.
Thus, in order to sequence a genome, one has to first create multiple copies of it and then
randomly break these copies into smaller fragments. These fragments are then sequenced
and later re-assembled in order to obtain the DNA sequence of the whole genome. This
approach is known as Shotgun Sequencing [Sta79][And81].

2.1.1. First Generation Sequencing (since 1977)

The first method to sequence DNA, Sanger Sequencing, was published in 1977 [SNC77].
Sanger Sequencing provides long (up to 1,000 bases) and highly accurate (per-base accurracy
up to 99.999%) reads [SJ08]. However, it has a low throughput and thus, a high per-base
sequencing cost. The most dominant error type in Sanger sequencing reads are substitution
errors. Errors in Sanger sequencing reads are more likely to occur at positions toward the
end of the read.

Sanger Sequencing uses the so-called Chain Termination Method. An easy way to under-
stand the Chain Termination method is to think of two people, Alice and Bob, playing a
game (idea taken from Olwen Reina [Rei17]). Alice thinks of a DNA-sequence. Bob’s task
is to learn the DNA sequence from Alice. The game works as follows: Alice keeps repeating
the sequence in her head, silently reciting each of its bases. Bob randomly interrupts Alice.
When interrupted, Alice tells Bob the position and base she was currently thinking of. For
example, Alice could say “The base at position 42 is an A”. Then, Alice restarts at the first
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2. Related Work and Background

position in the sequence, again waiting for Bob to interrupt her. By repeating this step
until all bases are known, Bob can recover the whole DNA sequence imagined by Alice.

The real steps of the Chain Termination Method are:

1. Heat up DNA to separate its strands.

2. Lower the temperature to allow the primer sequence to bind to its complementary
sequence in the template DNA strand.

3. Raise temperature such that the DNA Polymerase attaches itself to the primer and
creates a new strand of DNA (Polymerase Chain Reaction).

4. Deoxinucleotides (dNTPS; A, C, G, T) are added until a dideoxynucleotide (ddNTP;
chemically altered and colored version of A, C, G, T) is added which stops synthesis
(Chain Termination). This produces DNA fragments of different lengths.

5. Heat it again to separate the template strand from the complementary strand.

8



2.1. Sequencing Technologies and their Error Characteristics

6. Perform a capillary gel electrophoresis. In the electrophoresis, smaller DNA fragments
move faster than longer ones in the gel. The last base A, C, G, or T of a fragment
can be determined by its color (see Figure 2.1).

Figure 2.1.: Capillary gel electrophoresis used in the Chain termination method for
Sanger sequencing. Smaller DNA fragments move faster in the gel than
longer ones.
Image taken from https://upload.wikimedia.org/wikipedia/commons/c/cb/Sequencing.jpg

2.1.2. Next-Generation Sequencing (since 2005)

Next-Generation Sequencing approaches use so-called cyclic-array methods [SJ08]. After
fragmenting the DNA into smaller pieces, dedicated artificial DNA sequences, so-called
adapters, are added to both ends of the DNA fragments in order to create a sequencing
library. When creating copies of those library DNA molecules, copies that originate from the
same library molecule are spatially clustered on a planar substrate. Cyclic-array sequencing
consists of many iterations. In iteration i, the ith bases of all fragments are recovered
simultaneously. This explains the high throughput of Next-Generation sequencing methods.

While Next-Generation Sequencing methods are faster and cheaper than Sanger sequencing,
they unfortunately produce shorter reads (up to a few hundred bases) which are also less
accurate. Several companies, such as Illumina [Ill17b] and Ion Torrent [Tor17], offer Next-
Generation sequencers. The most common error in Illumina sequencing are substitution
errors which are more likely to occur toward the end of reads and after a preceding “GG”
motif [SDI+16]. Moreover, Illumina sequencing suffers from a G/C-coverage bias – less
reads cover regions of the genome with a high or low G/C-content [RRC+13]. The estimated
error rate of Illumina sequencers is between 1% and 2.5% [ARDB16]. As the sequenced
reads still contain adapter sequences, a post-processing step is needed to remove these
adapter sequences from the reads.

However, not only the sequencing step introduces errors [ARDB16]. The library preparation
step can induce errors, as well. Some library preparation methods rely on a Polymerase
Chain Reaction (PCR), but PCR-free library preparation approaches also exist. Library

9
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2. Related Work and Background

preparation methods that require a PCR can also increase the G/C coverage bias. DNA
consists of the bases A,C,G, and T. The G/C-content of a DNA sequence s is defined as

gc(s) = Number of G or C bases in s
Total number of bases in s .

Genomic regions with an extreme G/C-content suffer from non-uniform coverage issues
when being sequenced, especially if a PCR is used for library preparation. This means
that some regions in the genome are covered by less reads than other regions, leading to
difficulties in genome assembly [CLY+13].

In Illumina sequencing, errors that occur in one iteration also affect the later iterations.
This is why errors are more likely to occur toward the end of Illumina reads [ARDB16].

2.1.3. Third-Generation Sequencing (since 2010)

Third-Generation sequencing methods use single-molecule sequencing. In single-molecule
sequencing, each DNA molecule is sequenced directly, without the need to create multi-
ple copies of it [HC16]. The two main suppliers of Third Generation sequencing meth-
ods are Pacific Biosciences [Bio17] (Single-Molecule Real-Time Sequencing) and Oxford
Nanopore [Nan17] (Nanopore Sequencing). PacBio uses the so-called Real-Time Sequencing
technology. Here, the bases of the DNA are sequenced at the same time as when they are
added by the DNA Polymerase. The error rate of PacBio sequencers lies between 15% and
20% [ARDB16].

Oxford Nanopore uses pores on the nanometer scale, so-called nanopores to isolate and
identify bases. Only one molecule at a time can pass through such a nanopore. While
the molecule passes through the nanopore, the electrical current emitted by the nanopore
changes. This change is used to determine which molecule (A,C,G,T) passed through
the nanopore [ARDB16]. Insertions are the most frequent error type in Oxford Nanopore
sequencers. The average error rate in these sequencers is as high as 25% – 40%. However,
the technology is still under active development [ARDB16].

Third-Generation Sequencing technologies provide longer (a few thousand bases) and
cheaper reads, while being less susceptible to G/C coverage bias. Longer reads are
advantageous for the genome assembly process, as they facilitate handling repetitive regions
in the genome. The main error types in Third Generation sequencing are insertion and
deletion errors. Insertion and deletion errors are often summarized as indel errors.

2.2. Additional Sources of Sequencing Errors

There exist a plethora of additional factors which influence the sequencing error profile:

• Homopolymer bias Some technologies (e.g. Ion Torrent [BSB+13]) fail to exactly
determine the length of homopolymeric regions, thereby introducing new nucleotides
or missing out some of them. A homopolymer is a DNA sequence s = s1s2 . . . sn of
size n ≥ 3 such that s1 = s2 = . . . = sn.

• Strand Specificity A DNA molecule consists of a leading strand and a lagging
strand (see Figure 2.2). Some errors are more likely to occur on the leading strand of
the genome while others appear more often on the lagging strand. For example, in
Ion Torrent sequencing machines, it depends on the specific type of the DNA strand
whether errors occur mostly at homopolymeric regions or not [BSB+13].
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2.2. Additional Sources of Sequencing Errors

Figure 2.2.: The leading strand and the lagging strand of a DNA
molecule. The DNA polymerase on the leading strand
can continuously replicate the DNA. On the lagging strand,
the DNA Polymerase can only synthesize small pieces at
once as the replication fork grows in the opposite direc-
tion. Image taken from https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/
0323_DNA_Replication.jpg/640px-0323_DNA_Replication.jpg

• Motif bias (Sequence-specific Errors) Some errors are often surrounded by a
specific, short DNA substring, like, for instance, substitutions after GGC in Illumina
sequencing [SID+15].
• Systematic Error There are positions/regions in the genome where more errors

occur than at other sites [MBD+11].
• Chimeric Reads It can happen that a read consists of a sequence at one place of

the genome concatenated with another sequence from some other part of the genome.
• Sequencing Machine Different sequencing technologies have different error rates.
They also vary depending on the specific model. In Illumina sequencers, error rates
may even vary between the different sequencing lanes [SSB13].

Figure 2.3.: An Illumina flowcell with eight sequencing lanes. Samples
are loaded onto each of these lanes for simultaneous sequenc-
ing [Ill17c]. Image taken from https://upload.wikimedia.org/wikipedia/commons/0/
03/Next_generation_sequencing_slide.jpg
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2. Related Work and Background

• Involved Nucleotides Different substitutions/insertions/deletions occur with dif-
ferent probabilities. This can be due to the technology used to identify different bases.
Identifying a base is known as basecalling. The Phred quality scores [EHWG98]
indicate how confident the basecaller was that a nucleotide was correctly read. Low
quality scores may indicate substitution errors. The Phred Quality Score Q is defined
as

Q = −10 ∗ log10(P ), where P is the base-calling error probability.

• Uncalled Bases Sometimes the basecaller fails in identifying whether a base in a
read is an A, C, G, or T. This is denoted by the letter N.

• Polyploidy Substitution errors need to be distinguished from true biological variabil-
ity (i.e., heterozygous sites), and single nucleotide polymorphisms (in case multiple
genomes within a population are being sequenced).

• Repetitive Regions Complex genomes can have many repetitive regions, making
them difficult to assemble. These repetitive regions can also be problematic in error
correction if reads from different parts of the genome are identified as coming from
the same part.

• Inverted Repeats An inverted repeat is a DNA sequence followed by its reverse
complement. There may be other nucleotides in between (see Figure 2.4).

The reverse complement of a DNA sequence s = s1s2 . . . sn ∈ {A,C,G,T}n is defined
as ŝ := c(sn) . . . c(s2)c(s1) with c(A) := T, c(C) := G, c(G) := C, and c(T) := A.

A long inverted repeat is more likely to cause errors in Illumina sequencing [NOM+11].

TTACGNNNNNNNCGTAA
Figure 2.4.: An inverted repeat of the DNA sequence TTACG. The ’N’ bases

represent arbitrary bases.

• Human Error (Batch Effect) As library preparation protocols are not always
standardized, library preparation might even differ among members of the same lab.
This effect is known as the batch effect [LSB+10].

• Run-Dependency Error profiles can vary between different runs of the same se-
quencer [MLT12].

Error Profiles in Literature

Error profiles of various sequencers have been published [NOM+11] [BSB+13] [LHC+15].
There is no standardized way of describing an error profile. Most of these papers provide a
multitude of graphs and tables, showing various aspects related to errors. Unfortunately,
only a small fraction of this information can directly be used by de novo error correction
algorithms. Current sequencing error correction methods only take partial aspects of the
error profile into account, such as different substitution rates and quality score information.
Many error correction tools ignore sequence-specific errors. Moreover, instead of taking
run-specific error profile characteristics into consideration, most tools rely on a static,
pre-configured general error profile.

Potential Impact of improved Error Profiles

Many Bioinformatics applications, such as approaches for estimating the genome size
from the raw read dataset of an unknown genome [HVB15], could profit (i.e., in terms of
improved accuracy) from taking into account the error profile information of a sequencer.
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However, to the best of my knowledge, there is currently no stand-alone module available
that encapsulates the technology-specific error profile. This would allow other applications
to use error profile information without having to deal with the details.

2.3. An overview of Error Correction Approaches
Error correction methods can be classified into three main approaches. We will use the
same classification as used in the survey papers by Yang et al. [YCA13], Laehnemann et
al. [LBM16], and Alic et al. [ARDB16]. They classify them into k-mer based methods,
methods which use suffix trees, and methods that are based on multiple sequence alignment
(MSA). Most error correction tools target reads from a single sequencing technology. Some
tools however, such as Jabba [MHD+16] and LoRDEC [SR14], aim to correct long reads
(obtained by Third Generation Sequencing) with the help of Illumina reads (which exhibit
a lower error rate).

2.3.1. K-mer based methods

K-mer based error correction methods use k-mer frequencies. A k-mer is a subsequence
of a fixed size k within a read. The frequency (or coverage) of a k-mer is the number
of occurrences of the k-mer in the whole read dataset. Depending on the number of
occurrences of a k-mer in the read dataset, the methods decide whether the k-mer is correct
or not. For doing so, an – often global – cuttoff value is chosen such that all k-mers with a
frequency smaller than this value are considered as being erroneous (see Figure 2.5). Pal
and Aluru [PA14] improve this k-mer classification approach by also taking quality scores
and counts of highly similar k-mers into account.

cutoff

erroneous
   k-mers

trusted
k-mers

repetitive
  k-mers

coverage

  number
of k-mers

Figure 2.5.: Depending on the k-mer coverage distribution, k-mer based error correction
methods determine a cutoff value in order to classify k-mers as being either
erroneous, trusted or repetitive.

Most k-mer based error correction methods try to correct an erroneous k-mer by transform-
ing it into a trusted k-mer, using a pre-specified maximum number of nucleotide changes.
Some k-mer based methods use the entire k-mer spectrum [YCA13]. In a k-mer spectrum,
instead of storing only the number of occurrences of each k-mer, the actual positions of
the occurrences are also stored.
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Examples for k-mer based error correctors are EULER-SR [CP08], Lighter [SFL14],
BayesHammer [NKA13] (which clusters similar k-mers instead of using a global cut-
off value, and also considers quality scores), and Blue [GDPB14] (which re-infers the offset
for each read).

Advantages

• Counting k-mers is faster than building an MSA. There are heuristic approaches which
use dedicated probabilistic data structures, so-called Bloom Filters, for approximate
counting and memory-efficient storage of the approximate k-mer frequencies.

• K-mer based error correction methods perform well on datasets with a low error rate
that mostly exhibit substitution errors.

Disadvantages

• K-mer based error correction methods use a fixed size k. If k is chosen too
small, many k-mers belong to repetitive regions in the genome, thus leading to
mis-corrections. If k is chosen too large, correcting an erroneous k-mer becomes more
difficult as a larger k-mer is more likely to contain multiple errors.

• Many older k-mer based methods ignore the coverage bias altogether and use a single
global cutoff value. However, this means that k-mers with an extreme G/C-content
are under-represented in the read dataset. Thus, these k-mers will be mis-classified
as being erroneous, even if they are correct.

Newer k-mer based classification methods often use a local cutoff value instead of a
global one in order to bypass coverage bias issues. However, they do not explicitly
model the coverage bias itself.

• K-mer based error correction methods rely on the assumption that errors are rare
and random. Thus, these methods do not perform well if the sequencing error rate is
very high, such as 20 % in Third Generation sequencing.

• Most k-mer based error correction methods only correct substitution errors, but not
indels.

2.3.2. Suffix-Tree based methods

Suffix-tree based error correction methods store all reads in a suffix tree (or more efficient
variants thereof, such as suffix array [MM93] or FM index [FM00]) [LBM16]. This way,
they can efficiently compute k-mer frequencies for different sizes k.

In a suffix-tree, prefixes of reads are grouped together in a node until they show different
suffixes (see Figure 2.6). Splits in the suffix tree which lead to branches having a substantially
lower number of reads attached to them than their sibling branches, indicate sequencing
errors [ARDB16].
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Figure 2.6.: The suffix tree for a single read AACTTG. Suffix-tree based error correction
methods build a large suffix tree for all reads.

Examples for suffix-tree based error correction methods are HiTEC [IFI11] (which directly
corrects a detected error based on k-mer frequencies) and Fiona [SWH+14] (which applies
a statistical error model, assuming uniform coverage and uniform error rates).

Advantages

• Suffix-tree based error correction methods use k-mer of variable sizes.

• Using highly-optimized variants of suffix trees, suffix-tree based error correction
approaches are well-suited for high-throughput sequencing data [LBM16].

Disadvantages

• Suffix-tree based error correction methods are slower than simple k-mer based error
correction methods.

2.3.3. MSA-based methods

MSA-based error correction methods build an MSA of all reads. Given this MSA, errors
are then either corrected by performing a majority vote or by applying more complex
approaches (e.g., taking different substitution penalties into account).

Since building an MSA is NP-hard for most optimality criteria [WJ94] [Eli06], MSA-based
error correction methods apply heuristic approaches. Older MSA-based methods target
small datasets from Sanger sequencing which contain very long reads. These methods
compute the MSA by refining pair-wise alignments of all reads [LBM16]. More recent
MSA-based methods, such as Coral [SS11] and MuffinEc [ATMB16], pre-align the reads by
using k-mer seeds. Hence these methods instantly cluster reads which share a common
k-mer and then try to extend the alignment.

Advantages

• Most MSA-based error correction methods aim to correct not only substitutions, but
also insertions and deletions.

• Because of the alignment, MSA-based methods can better handle repetitive regions
than k-mer based methods.

• MSA-based error correction methods are well-suited for Third Generation Sequencing
datasets [LBM16].

Disadvantages

• Building an MSA is a time-intensive step.
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2.4. Machine Learning Classifiers

The classification problem in machine learning studies how to automatically make predic-
tions on new observations based on old observations. Given some labeled training data, a
machine learning algorithm is trained to determine a classification rule. Each data point
is represented by a vector of features x := (x1, x2, . . . , xn). For example, if we want to
classify a fruit as being either an apple, a pineapple, or a banana, we could look at its
size, color, and shape. Thus, size, color, and shape would constitute the dimensions of the
three-dimensional feature space in this fruit-classification problem.

id size color shape class
0 small red round apple
1 small yellow long banana
2 large brown round pineapple
3 small green round apple
4 large green long banana
5 small green round pineapple
6 small brown long banana
7 large red round ?

Table 2.1.: The training data consists of entries with 0 ≤ id ≤ 6, as their class label
is already known. Given the feature vector x = (large, red, round) for entry
number 7, we want to classify it as being either an apple, a pineapple, or a
banana. In order to do so, we automatically learn a classification rule from the
training data.

k-Nearest Neighbors Classifier

The k-Nearest Neighbors classifier [Alt92] assigns an unlabeled data point to a class by
performing a majority vote using its k nearest neighbors in feature space. The parameter
k is given as an input to the classifier. We can try different values for k and then decide
for the value that performs best on a test data set.

Figure 2.7.: Example of a k-Nearest Neighbor classification. The classes are red triangles
and blue squares. If k = 2, the green unknown data point is classified as a
red triangle. If k = 5, it is classified as blue square instead. Image taken
from https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#/
media/File:KnnClassification.svg
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2.4. Machine Learning Classifiers

Naïve Bayes Classifier

The Naïve Bayes classifier [LCS+06] assumes strong statistical independence between the
features, even if the features are known to be correlated in reality. It then uses the Bayes
Theorem to compute class probabilities:

P(class|x) = P(class) ∗ P(x|class)
P(x)

The probabilities are approximated by the relative frequencies in the training dataset. In
the example from Table 2.1,

P(banana) ≈ 3
7 and

P((large, red, round)|banana) = P(large|banana) ∗ P(red|banana) ∗ P(round|banana)

≈ 1
3 ∗

0
3 ∗

0
3

= 0.

Thus, the final probability P(banana|(large, red, round)) is 0.

Logistic Regression Classifier

In its original form, the Logistic Regression classifier [LCS+06] can be used to classify a
data point into the classes 1 (true) or 0 (false). It returns a probability that the data point
to be classified belongs to class 1. In order to compute this probability, it fits a logistic
regression function to the training data set. A logistic function has the form

f(t) = 1
1 + e−t

Figure 2.8.: Example for a Logistic Regression classifier that gives the probability
of passing an exam given the number of hours spent studying. Im-
age taken from https://en.wikipedia.org/wiki/Logistic_regression#/
media/File:Exam_pass_logistic_curve.jpeg
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2. Related Work and Background

In order to perform the classification for more than two classes, multiple logistic regression
classifiers are trained and subsequently combined. In our example from Table 2.1, we
wanted to classify a fruit as either being an apple, a banana, or a pineapple. In order
to approach this classification problem via Logistic Regression, three Logistic Regression
Classifiers need to be trained:

1. Is the fruit with features x a banana or not? This classifier estimates P(banana|x).

2. Is the fruit with features x an apple or not? This classifier estimates P(apple|x).

3. Is the fruit with features x a pineapple or not? This classifier estimates P(pineapple|x).

To make the final prediction for the fruit with features x, we pick the class C with the
highest probability P(C|x). All multi-class classification problems can be transformed into
several two-class classification problems using this one-versus-all method [Aly05] described
above.

Decision Tree Classifier

A Decision Tree classifier [SL91] partitions the feature space, assigning each of the partitions
to a class. It does so by recursively splitting the feature space into two parts.

Figure 2.9.: An example for a decision tree classifier for a two-dimensional feature space
and three classes A, B and C.

Random Forest Classifier

The Random Forest classifier [Bre01] trains multiple Decision Tree classifiers. Each Decision
Tree classifier is trained with a random subset of the training data. Then, the classification
of a data point to be classified is done by performing a majority vote using the classifications
obtained from the decision tree classifiers. Fernández-Delgado et al. [FDCBA14] show
that Random Forest classifiers often perform exceptionally well in real-world classification
problems.
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Figure 2.10.: An example of the classification process in a Random Forest classifier. The
classification is done by a majority vote on the classifications from various
Decision Trees.

AdaBoost Classifier

Adaptive Boosting (AdaBoost [FS95]) is a meta machine-learning algorithm. It takes a
weak base learner (i.e., one that does not have perfect, yet suitable classification accuracy,
but is fast to train) and then iteratively trains multiple instances of the weak learner. In
the first iteration, only one learner is trained. In each of the following iterations, mislabeled
data points from the previous classifier are weighted stronger than correctly labeled data
points. The final classifier is a linear combination of the weak classifiers trained by this
method.

Figure 2.11.: The first two iterations of training an AdaBoost classifier. Larger circles
represent data points with an increased weight.
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2.4.1. Evaluating a Classifier
In order to be able to evaluate a classifier, not all labeled data is used for training. Instead,
a certain percentage of the labeled data (e.g., one third) is retained in order to assess the
classifier’s performance on this data. The simplest measure for evaluating a classifier is
accuracy [Bro17a]. The accuracy of a classifier is the percentage of data points that have
been correctly assigned to their respective class.

However, the overall accuracy does not always constitute an informative measure. Imagine
the following situation: Someone wants to classify brain scans of people that belong either
to healthy individuals or serial killers. Since more than 99 percent of people are not serial
killers, let us assume that our training dataset also inherits this class distribution. A
classifier that would simply label all brain scans as healthy would thus already exhibit an
accuracy of more than 99%, while being totally useless for its intended application. To fix
this issue, we can look at the confusion matrix (see Figure 2.12). The confusion matrix
consists of four entries, representing the true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). All evaluation metrics for classifying use these
entries. For instance, the accuracy measure defined above can be written as:

accuracy = TP + TN

TP + TN + FP + FN

Predicted

Actual

NOYES

NO

YES

TN

FN

FP

TP

Figure 2.12.: An example for a confusion matrix for the binary classification problem “Is
this person a serial killer?”. The bars in the picture mean that the person has
been classified as serial killer and therefore is put into prison.

F-Score

Another widely used evaluation metric for classifying is the F-Score [Rij79]. The F-Score
is the harmonic mean of precision and recall (see Figure 2.13). If more than two classes
exist, one can compute the average F-score after transforming the multi-class classification
problem into several binary-class classification problems.

precision = TP

TP + FP

recall = TP

TP + FN

F-score = 2 ∗ precision ∗ recall
precision + recall = 2 ∗ TP

2 ∗ TP + FP + FN
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Figure 2.13.: Visualization of precision and recall. Image taken from https://upload.wikimedia.org/
wikipedia/commons/2/26/Precisionrecall.svg

2.4.2. Imbalanced Datasets

In real life applications, the classes are often not equally distributed in the dataset. While
some basic classifiers such as the k-Nearest-Neighbors classifier can naturally deal with
imbalanced datasets, others can not. Let us assume that we have a dataset with classes A
and B. Further assume that 95% of the data points belong to class A, and only 5% belong
to class B. Using this dataset as-it-is, many classifiers would over-fit on class A and ignore
class B completely, leading to an accuracy of 95%.

One way to resolve this issue is to use a different evaluation metric for training, for instance,
the average F-score. However, classifiers are often used as black boxes within machine
learning frameworks. This means that the user of such a framework has no easy access to
the algorithm used for training the classifier. Thus, another way to handle an imbalanced
dataset consists in modifying the dataset, using one of the following methods [Bro17b]:

• Artificially increase the number of data points that belong to class B by copying
them. This is known as over-sampling. Another way of doing this is by assigning
higher weights to classes that occur less often in the datasets.

Instead of just copying existing data, it is also possible to generate new samples of B
by combining the characteristics from the data points belonging to B.

• Artificially decrease the number of data points that belong to class A. This is known
as under-sampling. Alternatively, one can reduce the weights of data points belonging
to class A.

In our context of error correction, the error types are not equally likely to occur in the
sequencing data. Thus our framework needs to be able to handle imbalanced datasets.
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3. Coverage Bias Unit

Own Contributions

• Introduce the term Perfect Uniform Sequencing Model to describe an idealized
sequencing setting.

• Derive an exact formula for the expected count and standard deviation of a k-mer
under the Perfect Uniform Sequencing Model, distinguishing between circular
and linear genomes.

• Infer median coverage bias values for different G/C-contents, using the relative
difference between expected and observed count of a k-mer.

• Answer coverage bias queries by linear interpolation.

Some sequencing technologies, especially Illumina sequencing in combination with a library
preparation method that uses PCR (Polymerase Chain Reaction, a method to produce
multiple copies of DNA), show a bias in genome coverage depending on the G/C content.
If there was no bias, we would expect that all bases within the sequenced genome are
covered by approximately the same number of reads. However, this is rarely the case in
real sequencing runs. In literature, the term coverage is used in two different meanings
(see Figure 3.1). It can either describe the number of reads that map to a single position
in the genome or it can describe the number of reads that map to a unique k-mer in the
genome. In this thesis, we will always use the latter meaning.

In de novo error correction applications, the genome that has been sequenced has not
been sequenced before. Hence, there is no reference sequence to compare to. Thus, when
quantifying coverage for de novo correction, we need to start from a read’s perspective and
answer the following question:

When looking at a k-mer in a read, how often should this k-mer appear in the entire read
dataset if it would occur only once in the genome?

We model coverage-bias-correction by using a correction factor that is multiplied with the
observed k-mer coverage. This factor allows us to obtain a revised k-mer count without
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reference genome
base k-mer

mapped
   reads

4 2
Figure 3.1.: The two meanings of “coverage” in DNA sequencing: Coverage of a k-mer

versus coverage of a base. The base highlighted in green is covered by 4 reads
and the k-mer highlighted in blue is covered by 2 reads.

coverage bias. Hence, the main purpose of the Coverage Bias Unit is to return a real
number bias(k-mer) such that we can obtain a bias-corrected observed k-mer count:

covbias-corrected(k-mer) := 1
bias(k-mer) ∗ covobserved(k-mer)

3.1. Perfect Uniform Sequencing Model
Given a k-mer that is unique in the genome, we compute its expected coverage and
standard deviation in an idealized setting. In this thesis, we call this setting the Perfect
Uniform Sequencing Model (PUSM). In the Perfect Uniform Sequencing Model, we make
the following assumptions:

• There is no coverage bias, that is, it is equally likely for a read to map to any region
of the genome.

• The reads contain no errors and no adapter sequences.

• No read is longer than the estimated genome size (i.e., no position in the genome
occurs more than once in the same read).

• No read is shorter than the k-mer in question.

Since the expected coverage is used for estimating coverage bias in the case that the
sequenced genome is unknown, we further assume that the location of the specific k-mer
within the genome is unknown and that each location is equally likely.

Let (li, ni)i=1,...,m be the read length distribution for m read lengths. The number of reads
with length li is ni. In the Fiona software paper by Schulz et al. [SWH+14], the expected
coverage of a k-mer is approximated by

covexpected,pusm(k) ≈
m∑
i=1

ni ∗
li − k + 1
N − li + 1

where N is the estimated genome size. However, their approximation only works under the
assumption that the read lengths are much smaller than the estimated genome size. This
is not necessarily the case if long reads are obtained through single-molecule sequencing of
a small bacterial genome, for instance. Thus, we need to derive an exact formula for the
expected coverage and standard deviation of a k-mer here.
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3.1. Perfect Uniform Sequencing Model

We have to distinguish between two cases. Either the genome is circular or the genome is
linear. Since the number of possible positions a read can start at differs between these two
cases, the expected coverage of a k-mer is also influenced by this.

3.1.1. Circular Genome

If the genome in question is circular, the formula for expected coverage of the k-mer is
very similar to the formula from the Fiona software paper. In a circular genome, a read
can start at any position in the genome (see Figure 3.2). Thus, we have N possibilities
for mapping a read to the genome. For a read of length l and a k-mer of length k, there
are l − k + 1 possible mappings of the read to the genome such that the read covers the
k-mer. Notice that this holds regardless of the position of the k-mer in the genome. Since
we assume that the read is equally likely to be mapped to any position in the genome, the
probability that the read covers the k-mer is

P(read of length l covers k-mer) = l − k + 1
N

, where N is the estimated genome size.

read

genome
Figure 3.2.: The first base of a read can be mapped to any position of the circular genome.

As the reads are independent of each other, the expected coverage of a k-mer given ni
reads of length li follows a binomial distribution B(ni, pi) with probability

pi = li − k + 1
N

and variance
vari = ni ∗ pi ∗ (1− pi).

Since reads of different length are also independent of each other, we obtain the following
formulas for the expected coverage and standard deviation of a k-mer in the read dataset:

covexpected,pusm(k) =
m∑
i=1

ni ∗ pi

σ(k) =

√√√√ m∑
i=1

vari(k)
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3.1.2. Linear Genome

Computing the expected coverage of a k-mer in a linear genome is slightly more complicated.
Since the genome is of finite length, the expected number of reads which cover the k-mer
depends on the position of the k-mer in the genome.

A linear genome of size N has positions 0, . . . , N − 1. There are thus N − l+ 1 possibilities
to map a read of length l to the genome. There are also N − k + 1 possibilities to choose a
k-mer in the genome. In order to count the number of possibilities that a read covers a
k-mer, we introduce the following notation. Let kstart (rstart) and kend (rend) be the position
of the k-mer’s (read’s) first and last base in the genome, respectively. For the read to cover
the k-mer, it must hold that

(rstart ≤ kstart) and (rend ≥ kend)

For a read of length l, it holds that rend = rstart + l − 1. It further holds that kend =
kstart + k − 1. Thus, we can rewrite the above formula as

(rstart ≤ kstart) and (rstart ≥ kstart + k − l)

Since the genome is linear, it must further hold that 0 ≤ rstart ≤ N − l (see Figure 3.3).
This gives us

rstart ∈ [max{kstart + k − l, 0},min{kstart, N − l}]

invalid mapping
valid mapping

genome

Figure 3.3.: The first base of a read can not be mapped to any position in the linear genome.

Thus, we have min{kstart, N − l} −max{kstart + k − l, 0} possible mappings of a read with
length l that cover the k-mer. As the k-mer is equally likely to start at any of the N −k+ 1
possible positions in the genome, we obtain

P(read of length l covers k-mer) = 1
N − k + 1 ∗

N−k∑
kstart=0

min{kstart, N − l} −max{kstart + k − l, 0}
N − l + 1

It holds that

max{kstart + k − l, 0} =
{
kstart + k − l , if kstart ≥ l − k
0 , else

and

min{kstart, N − l} =
{
kstart , if kstart ≤ N − l
N − l , else

We can thus rewrite the right side of the equation depending on whether l − k ≤ N − l or
not. To simplify the notation, we define α := 1

(N−k+1)∗(N−l+1) .
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• Case 1: l − k ≤ N − l

The probability of a read of length l to cover the k-mer is

α ∗

 l−k∑
kstart=0

kstart +
N−l∑

kstart=l−k+1
(l − k) +

N−k∑
kstart=N−l+1

(N − kstart − k)


which can be rewritten as

α ∗

l−k∑
i=1

i+
N−l∑

i=l−k+1
(l − k) +

N−k∑
i=N−l+1

(N − k)−
l−k∑
i=1

(i+N − l)

 .

This can be further transformed to

α ∗

l−k∑
i=1

i+
N−l∑

i=l−k+1
(l − k) +

l−k∑
i=1

(N − k)−
l−k∑
i=1

(N − l)−
l−k∑
i=1

i

 .

By applying the Gaussian sum formula
∑n
i=1 i = n2+n

2 as well as the sum formula∑b
i=a c = (b− a+ 1) ∗ c, we can further simplify this expression to

α ∗ (l − k) ∗ (N − k)

• Case 2: l − k > N − l

The probability of a read of length l covering the k-mer is

α ∗

 N−l∑
kstart=0

kstart +
l−k∑

kstart=N−l+1
(N − l) +

N−k∑
kstart=l−k+1

(N − kstart − k)


which can be rewritten as

α ∗

N−l∑
i=1

i+
l−k∑

i=N−l+1
(N − l) +

N−k∑
i=l−k+1

(N − k)−
N−l∑
i=1

(i− l + k)

 .

This can be further transformed to

α ∗

N−l∑
i=1

i+
l−k∑

i=N−l+1
(N − l) +

N−k∑
i=l−k+1

(N − k)−
N−l∑
i=1

(k − l)−
N−l∑
i=1

i

 .

By applying the Gaussian sum formula
∑n
i=1 i = n2+n

2 as well as the sum formula∑b
i=a c = (b− a+ 1) ∗ c, we can further simplify this expression to

α ∗ (l − k) ∗ (N − k)

As we obtain the same formula for both cases, this gives us

P(read of length l covers k-mer) = 1
(N − k + 1)(N − l + 1) ∗ (l − k) ∗ (N − l).

As the reads are independent of each other, the expected coverage of a k-mer given ni
reads of length li follows a binomial distribution B(ni, pi) with probability

pi = 1
(N − k + 1)(N − li + 1) ∗ (li − k) ∗ (N − li)
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3. Coverage Bias Unit

and variance
vari = ni ∗ pi ∗ (1− pi).

Since reads of different length are also independent of each other, we obtain the following
formulas for the expected coverage and standard deviation of a k-mer in the read dataset:

covexpected,pusm(k) =
m∑
i=1

ni ∗ pi

σ(k) =

√√√√ m∑
i=1

vari(k)

3.2. The observed Coverage of a k-mer
There are three ways to count covobserved(k-mer):

1. The number of reads whose mappings to the genome cover the k-mer.

2. The number of exact matches of the k-mer in the read dataset.

3. The number of approximate matches of the k-mer in the read dataset, taking into
account potential errors by using the a statistical error model, that is, the error
profile.

We implemented variants 1 and 2 (for details, see Section 7.2). Each variant has its
advantages and disadvantages. Variant 1 requires a reference genome. Thus, we can not
use this variant for de novo sequencing datasets. Moreover, the quality of variant 1 depends
on the quality of the read mapping tool used for mapping the reads to the genome. An
advantage of variant 1 is that, given a perfect mapping of the reads to the genome, it is
the most accurate way to count the coverage of a k-mer in the read dataset.

While variant 2 is fast to compute, the counts obtained by this variant ignore occurrences
of sequences that are highly similar to the k-mer in question. Since reads contain errors,
some potential matches of the k-mer are thus not counted. Variant 2 works best if the
reads have a very low error rate.

Variant 3 relies on an accurate error profile. As the inexact matches have also to be counted,
this method has a higher computational cost than variant 2. The advantage of variant 3 is
that it does take into account errors in reads without requiring a reference genome.

3.3. Estimating the Coverage Bias
Let covgenome(k-mer) be the number of occurrences of a given k-mer in the genome. Let
covexpected,pusm(k-mer) be the expected coverage of the k-mer in the PUSM. Since the
PUSM assumes that the k-mer occurs only once in the genome, we multiply the expected
coverage from the PUSM by covgenome(k-mer) to obtain a new expected value

covexpected(k-mer) = covexpected,pusm(k-mer) ∗ covgenome(k-mer).

Let covobserved(k-mer) be the observed coverage of the k-mer in the read dataset. We define
the bias of a k-mer as

bias(k-mer) = covobserved(k-mer)
covexpected(k-mer) .

For example, if we count 20 occurrences of the k-mer in the read dataset while we would
only expect 10 occurrences, the bias of the k-mer is 2 as it occurs twice as often.

28



3.3. Estimating the Coverage Bias

It is known that the main factor leading to coverage bias is the G/C-content gc(k-mer) of
a k-mer. It is defined as

gc(k-mer) := Number of G or C bases in the k-mer
Total number of bases in the k-mer

We assume throughout this thesis that the coverage bias factor only depends on the
G/C-content of a specific k-mer, that is

bias(k-mer) := bias(gc(k-mer)).

Using a similar approach as in the EDAR paper by Zhao et al. [ZPB+10], we obtain these
coverage bias factors by calculating the median coverage bias over all k-mers of a given
length and G/C-content (see Algorithm 3.1).

In read error correction, we want k to be large enough to ensure that a k-mer is likely to
appear only once in the genome. We follow the suggestion by Kelley et al. [KSS10] for
choosing the minimum value for k:

kmin ≈
log(200 ∗N)

log(4) , where N is the estimated genome size.

We further ensure that kmin is an odd number, because in this case the reverse-complement
of a k-mer can not be the same as the k-mer itself. This is also beneficial for read error
correction as it simplifies counting the number of occurrences of the k-mer. As kmin is the
size of most k-mers we expect to use during error correction, we use kmin for learning the
coverage bias factors.

This way, we obtain median coverage bias factors bias(gc) for gc = i ∗ 1
kmin

, i = 0, . . . , kmin.
In case we do not encounter any kmin-mer with G/C-content j∗kmin for a j ∈ {0, 1, . . . , kmin},
we interpolate its value by using the remaining inferred coverage bias factors.

Algorithm 3.1: medianCoverageBias
Input: A number kmin
Output: Median coverage bias factors based on GC-content

1 allBiases ← vector of size kmin + 1 of vectors holding double values
2 gcStep ← 1

kmin

3 for each k-mer of size kmin do
4 if covobserved(k-mer) > 0 and covgenome(k-mer) > 0 then
5 covexpected(k-mer)← covexpected,pusm(k-mer) ∗ covgenome(k-mer)
6 gc ← GC-content of the k-mer
7 bias ← covobserved(k-mer)

covexpected(k-mer)
8 allBiases[gc].add(bias)

9 for i = 0, . . . kmin do
10 gc ← i ∗ gcStep
11 bias(gc) ← computeMedian(allBiases[gc])

3.3.1. Run-dependent Coverage Bias

Given a genome re-sequencing dataset, we can determine covgenome(k-mer) by counting
the k-mer in the genome. A genome re-sequencing dataset is a dataset where a known
reference genome has been sequenced again.
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3. Coverage Bias Unit

While we exactly know covgenome(k-mer) in a genome re-sequencing dataset, we have
to guess this value in case the genome is not known a-priori. Remember that we need
covgenome(k-mer) in order to compute covexpected(k-mer). Since we have chosen k :=
kmin such that the k-mer is likely to occur exactly once in the genome, we can assume
covgenome(k-mer) = 1. This gives us

covexpected = covexpected, pusm(k-mer) ∗ covgenome(k-mer) = covexpected, pusm(k-mer).

Since we do not know the reference genome in a de novo sequencing dataset, we can not
exactly determine whether covgenome(k-mer) > 0 or not, this is, whether the k-mer is
correct or not. Unfortunately, erroneous k-mers decrease the estimated median coverage
bias values as their observed coverage is very low. To minimize this effect, we change line 4
in Algorithm 3.1 to only consider k-mers with an observed coverage covobserved(k-mer) ≥
0.2 ∗ covexpected, pusm(k-mer). As a consequence, we can not detect a median coverage bias
factor lower than 0.2 by this approach.

Since the coverage bias factors influence the k-mer classification (a k-mer can either be
UNTRUSTED, TRUSTED or REPETITIVE, as discussed in Chapter 4) and thus also the error
correction, we need to update the k-mer classification and error correction after re-inferring
the coverage bias, accordingly.

3.3.2. Answering Coverage Bias Queries

If we want to estimate the coverage bias for a k-mer with a different value of k than used
in the estimation, we might have a different gc value for its GC-content. Thus, we use
linear interpolation to estimate the coverage bias factor for a GC-content gc. Let gcmin
be the largest GC-content ≤ gc for which we know bias(gcmin). Let gcmax be the smallest
GC-content ≥ gc for which we know bias(gcmax). We then define bias(gc) as

bias(gc) := bias(gcmin) + bias(gcmax)− bias(gcmin)
gcmax − gcmin

∗ (gc− gcmin)
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4. K-mer Classification Unit

Own Contributions

• Classify k-mers based on their expected count under the Perfect Uniform Se-
quencing Model and their bias-corrected observed count in the read dataset.

• Classify k-mers based on their bias-corrected Z-Scores, by either applying a
statistical test or training a machine learning classifier.

In this chapter, we want to develop a method for classifying a k-mer as being either
erroneous (UNTRUSTED), unique in the genome (TRUSTED), or occurring more than once in
the genome (REPETITIVE). The purpose of this classification is to only correct untrusted
k-mers. A k-mer classified as REPETITIVE indicates that the value k needs to be increased
in order to avoid mis-corrections.

Given a reference genome, we can simply count the number of occurrences covgenome(k-mer)
of a given k-mer. Then, the k-mer type is

type(k-mer) =


UNTRUSTED , if covgenome(k-mer) = 0
TRUSTED , if covgenome(k-mer) = 1
REPETITIVE , if covgenome(k-mer) > 1

 .

In de novo sequencing, the reference genome is unknown. Thus we need to adapt a different
approach to classify a k-mer. Using the Coverage Bias Unit (Chapter 3), we obtain a
bias-corrected observed count for every k-mer in the read dataset:

covbias-corrected(k-mer) = 1
bias(k-mer) ∗ covobserved(k-mer)

By the Perfect Uniform Sequencing Model (Section 3.1), we further obtain the expected
coverage covexpected, pusm(k-mer) and standard deviation σ of a k-mer in an ideal setting,
assuming that the k-mer is unique in the genome.

We develop two approaches that use covbias-corrected(k-mer) and covexpected,pusm(k-mer) to
estimate the k-mer type for each k-mer. The first approach compares the bias-corrected,
observed coverage with the expected coverage. The second approach also takes the standard
deviation σ into account, using the Z-Score.
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4. K-mer Classification Unit

4.1. Naïve Classification
For easier reading, we define µ := covexpected, pusm(k-mer) and x := covbias-corrected(k-mer).
In the naïve approach, we deploy the same idea for estimating covgenome(k-mer) as in
Section 3.3.1. This yields the following rule for classifying a k-mer (see Figure 4.1):

type(k-mer) =


UNTRUSTED , if x < 0.5 ∗ µ
TRUSTED , if 0.5 ∗ µ ≤ x ≤ 1.5 ∗ µ
REPETITIVE , if x > 1.5 ∗ µ


The idea behind this rule is:

If covgenome(k-mer) = 0, we would expect covbias-corrected(k-mer) = 0. If covgenome(k-mer) =
2, we would expect covbias-corrected(k-mer) = 2µ. The value µ

2 lies exactly between 0 and µ
and the value 3µ

2 lies exactly between µ and 2µ.

UNTRUSTED TRUSTED REPETITIVE

Figure 4.1.: Naïve classification of a k-mer, using only the expected count µ =
covexpected, pusm(k-mer) and the bias-corrected observed count of a k-mer.

4.2. Z-Score based Classification
The Z-Score (also called standard score) represents the distance of a random variable X
from its expected value µ = E(X) in units of its standard deviation σ. It is defined as:

Z = X − µ
σ

The Z-Score is mainly used for standardizing random variables that follow a normal
distribution. For a rationale for assuming a normal distribution, see below.

4.2.1. The Z-Score of a k-mer

We compute the Z-score of a k-mer by using covbias-corrected(k-mer) as well as its expected
coverage covexpected, pusm(k-mer) and standard deviation σ under the Perfect Uniform
Sequencing Model (PUSM) from Section 3.1. Recall that, the PUSM assumes that the
k-mer occurs only once in the genome. As the PUSM relies on binomial distribution to
compute the expected coverage of a k-mer, this motivates our use of Z-Scores.

We define the (bias-corrected) Z-score of a k-mer as

Z(k-mer) = covbias-corrected(k-mer)− covexpected,pusm(k-mer)
σ

.

We develop two different variants for classifying a k-mer using its Z-score. Variant 1 uses a
statistical test to classify a k-mer. Variant 2 trains a machine learning classifier.
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4.2. Z-Score based Classification

4.2.2. Variant 1: Statistical Testing

We conduct a hypothesis test with

H0 : covgenome(k-mer) = 1

H1 : covgenome(k-mer) 6= 1

We classify a k-mer as TRUSTED, if and only if, H0 is accepted. If the hypothesis H0 is true,
it holds that covexpected(k-mer) = covexpected, pusm(k-mer). As the PUSM uses a binomial
distribution which can be approximated by a normal distribution, 95.4% of the values are
expected to lie within ±2σ around the mean of the distribution (see Figure 4.2). If the
coverage bias factor used for inferring the bias-corrected observed count was perfect, we
would be able to correctly classify more than 95% of the trusted k-mers.

To classify a k-mer as being either UNTRUSTED, TRUSTED, or REPETITIVE, we thus apply
the following rule:

type(k-mer) =


UNTRUSTED, if Z(k-mer) < −2
TRUSTED, if − 2 ≤ Z(k-mer) ≤ 2
REPETITIVE, if Z(k-mer) > 2



Figure 4.2.: Z-Score of a standard normal distribution. 95.4% of the data points lie
within ±2σ around the mean and thus have a Z-score −2 ≤ Z ≤ 2.
Image taken from htps://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Standard_deviation_diagram.svg/

2000px-Standard_deviation_diagram.svg.png, axis labels manually added.

4.2.3. Variant 2: Machine Learning

Using the Python script for automatic classifier selection from Section 7.1, we calculate
a machine learning based k-mer classification. For this chapter, it suffices to know that
the Python script automatically chooses among different machine learning classifiers and
selects the classifier which performs best in terms of average F-Score (see Section 2.4.1).
We train the classifiers in the script by using a genome re-sequencing dataset (this is a
dataset where the reference genome is known and thus also covgenome(k-mer)).
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4. K-mer Classification Unit

We use the following features for classification:

• Z-score of the k-mer

• GC-content of the k-mer

• Size of the k-mer

• Observed count covobserved(k-mer)

• Bias-corrected observed covbias-corrected(k-mer)

• Expected count covexpected,pusm(k-mer)
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5. Error Profile Unit

Own contributions

• Infer a technology-specific error profile from genome re-sequencing data or from
a set of corrected reads.

• For a presumably erroneous position in a read, compute two rankings of specific
errors that can occur at (or directly after, in case of deleted bases) this position:

– One ranking for the error being an insertion of one base, a substitution of
an A, a substitution of a C, a substitution of a G, or a substitution of a T.

– One ranking for the error being a deletion of an A, a deletion of a C, a
deletion of a G, a deletion of a T, or a deletion of multiple bases.

• Devise three variants for inferring the error profile, which differ by taking into
account a different parts of the context of a specific error.

The purpose of computing a technology-specific error profile is to rank the possible errors
that can occur at a position i in a read by their likelihood of occurrence. This way, we
can use these rankings during error correction, and choose among multiple correction
candidates.

For computing this ranking, we assume that the position i in the read is erroneous. A
position can be erroneous either because the base at this position is an inserted base, a
substitution of an A, a substitution of a C, a substitution of a G, or a substitution of a T.
A position can also be erroneous due to a deletion error (a deletion of an A, a deletion of a
C, a deletion of a G, a deletion of a T, or a deletion of multiple bases) occurring on the
right of the base at position i. This is, there may be missing bases between position i and
position i+ 1 in the read (see Figure 5.1).

Since an erroneous position i can be caused by an erroneous base as well as by one or
more missing bases, or by both, we compute two rankings for the position: One ranking
concerning the base at position i (base-errors) and one ranking concerning an artificial
“gap” between positions i and i+ 1 in the read (gap-errors).
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5. Error Profile Unit

i+1i

gap after position i
base at position i

Figure 5.1.: A deletion error may have occurred between the positions i and i+ 1 in the
read. As a deletion results in missing bases, they are not present in the read.
Thus, we associate them with an artificial “gap” on the right of the base at
position i.

In order to be able to compute these rankings, we infer the technology-specific error
profile by counting the frequency of specific errors in a pre-corrected training dataset. For
obtaining this pre-corrected dataset, we can either use a genome re-sequencing dataset (see
Section 7.3) or a previous correction run (see Chapter 6). Each specific error has a context
(see Figure 5.2).

The context of an error consists of the position i in a read where it occurred, the base at
position i, the quality score (from the sequencing machine) of the base at position i, the
read length, and various motifs. A motif is a short (≈ 3 to 6 bases) sequence of bases
surrounding the erroneous position in the read.

Figure 5.2.: An insertion error at position i = 8 and its context. For easier presentation,
only one of the motifs surrounding the erroneous position is shown.

We devise three approaches for inferring the error profile, taking various aspects of the error
context (which may increase or decrease the likelihood of a specific error) into account:

• Context-Free Error Profile: Only consider the base occurring at the erroneous
position. Compute an overall error rate as well as the relative frequencies of specific
error types in the training dataset.

• Sequence-Specific Error Profile: Only consider the motifs, this is, the bases
surrounding an erroneous position in a read.

• Full-Context-Specific Error Profile: Consider the entire context of an erroneous
position.
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5.1. Context-Free Error Profile

5.1. Context-Free Error Profile
Using the relative frequencies of specific error types in the training dataset, we estimate
overall error probabilities. We only take the current base of an erroneous position into
account, ignoring the rest of the error context.

Inferring the Context-Free Error Profile

We estimate the probability of a specific error type by computing its relative frequency in
the training dataset:

P(error type) ≈ number of errors of this error type in the training data
total number of bases in the training data

Regarding substitution errors, we infer a substitution rate matrix by computing the relative
frequencies of the substitutions A→C, A→G, A→T, A→N, C→A, C→G, C→T, C→N,
G→A, G→C, G→T, G→N, T→A, T→C, T→G, and T→N in the training data. For
example,

P(A → C) ≈ number of A → C substitution errors in the training data
total number of bases in the training data

We additionally store overall base-related and overall deletion-related error rates. These
error rates can be used to infer the probability of a base being correct and the probability
of an artificial gap to contain no deleted bases.

base-error rate := number of insertion and substitution errors in the training data
total number of bases in the training data

deletion-error rate := number of deletion (of one or more bases) errors in the training data
total number of bases in the training data

Computing error-specific Rankings

The context-free error profile computes the error-specific rankings in the following way:
Given a (presumably erroneous) position i in a read and the read itself, we rank the specific
error types by their frequency of occurrence in the training data.

If, for example, the base in the read at position i is a C, we compute the base-error-ranking by
sorting the estimated probabilities P(insertion),P(substitution A→C),P(substitution G→C),
and P(substitution T→C). We compute the gap-error ranking by sorting the estimated prob-
abilities P(deletion of an A), P(deletion of a C), P(deletion of a G), P(deletion of an T),
and P(deletion of multiple bases).

5.2. Sequence-Specific Error Profile
In the sequence-specific error profile, we want to detect motifs that influence the likelihood
of a specific error type at a presumably erroneous position i in a read. For example, it is
known that a substitution error is more likely to occur after a preceding GGC motif in an
Illumina read [SID+15]. This is, directly to the left of the erroneous position, we have the
bases GGC in the read.

For detecting those motifs influencing the likelihood of a specific error type, we compute
Z-Scores for all motifs surrounding a specific error type in the training dataset. We say
that a motif surrounds an error type, if and only if, there exists an error in the training
dataset of the given type that is surrounded by this motif.
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5. Error Profile Unit

motif

position
 of error

Figure 5.3.: A motif is a characteristic, short (≈ 3 to 6 bases) subsequence in a read which
surrounds an erroneous position.

A motif with a Z-Score of 0 for a specific error type indicates that the motif does not
influence the likelihood of this error type to occur. A negative Z-Score indicates that the
error type is unlikely to occur within the motif. Similarly, a positive Z-Score indicates that
the error type is likely to occur within the motif. Thus, given multiple motifs surrounding a
presumably erroneous position, the most relevant motif is the one with the highest absolute
Z-Score.

Inferring the Sequence-Specific Error Profile

I used the approach from Shin and Park [SP16] to detect surrounding bases of position i
that increase or decrease the likelihood of an error to occur. Shin and Park only consider
motifs wi−j ...wi...wi+j where the error occurs at position i, that is, exactly in the middle
of the motif. We discard this constraint and allow the error to occur at any position within
the motif. This allows us to also detect relevant preceding or following bases that lead to
an increased or decreased likelihood of the error to occur. By using Z-Scores, we can detect
the smallest motifs that explain biases towards specific error types.

The Z-Score of a motif w1w2 . . . wm is defined as in [SP16]:

Z(w1w2 . . . wm) = N(w1w2 . . . wm) ∗ E(w1w2 . . . wm)√
var(w1w2 . . . wm)

where N(w1w2 . . . wm) denotes how often the motif w1w2 . . . wm surrounds a specific error
type in the read dataset and the expected count of the motif is

E(w1w2 . . . wm) = N(w1w2 . . . wm−1) ∗N(w2w3 . . . wm)
N(w2w3 . . . wm−1) .

For easier reading, we define left := w1w2 . . . wm−1, inner := w2w3 . . . wm−1, and right :=
w2w3 . . . wm. Shin and Park approximate var(w1w2 . . . wm) by

var(w1w2 . . . wm) ≈ E(w1w2 . . . wm) ∗ (N(inner)−N(left)) ∗ (N(inner)−N(right))
(N(inner))2 .

A detailed derivation of the above formulas can be found in the paper by Schbath et
al. [SPdT95].

It has to be emphasized that N(·) from the above formulas does not always refer to the
observed coverage covobserved of a motif in the read dataset. Instead, we have to distinguish
between three cases. Note that this case distinction is not required in the original approach
by Shin and Park as they only consider Case 1.
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5.3. Full-Context-Specific Error Profile

Let [E] be an error type. [E] can be an insertion of a base, one of the 16 substitution
types (A→C, A→G, A→T, A→N, C→A, C→G, C→T, C→N, G→A, G→C, G→T, G→N,
T→A, T→C, T→G, or T→N), a deletion of an A, a deletion of a C, a deletion of a G, a
deletion of a T, or a deletion of multiple bases. Let w1w2 . . . wm be a motif surrounding
the error type [E]. If [E] occurs at position p in the motif, we write [E]wp instead of wp.

• Case 1: The error occurs at position 2 ≤ p ≤ m− 1.

In order to compute N(w1w2 . . . wm), we have to count how often we encounter
w1 . . . wp−1[E]wpwp+1 . . . wm in the read dataset. This means that for each occurrence
of the error [E] at a base wp, we have to check whether it is surrounded by a
prefix w1 . . . wp−1 and a suffix wp+1 . . . wm. The argument is analogous for N(left),
N(inner), and N(right).

• Case 2: The error occurs at position p = 1.

We compute N(left) as in case 1. However, since we have the situation that the
motif contains no bases to the left of the error, i.e., [E]w1w2 . . . wm, it holds that
N(inner) = covobserved(inner) and N(right) = covobserved(right).

• Case 2: The error occurs at position p = m.

We compute N(right) as in case 1. However, since we have the situation that the
motif contains no bases to the right of the error, i.e., w1 . . . wm−1[E]wm , it holds that
N(left) = covobserved(left) and N(inner) = covobserved(inner).

Compute the error-specific Rankings

Given a (presumably erroneous) position i in a read and the read itself, we rank the specific
error types by the Z-scores of their most relevant motifs, this is, the motifs with the highest
absolute Z-scores for the error types.

For example, given the read ACGGTAGCGTAGGCATTAG and the position i = 8 (this
is base G, marked in bold), we compute the most relevant motif for an insertion error by
comparing the Z-scores of all motifs surrounding this base in the read. We consider motifs
of sizes 3 up to 6. For example, the motifs of size 3 surrounding the base at position 8
of the read are CGG, CGT, and GTA. In total, we have to compare 3 + 4 + 5 + 6 = 18
Z-scores for this position in the read and this error type.

All in all, we compute the base-error-ranking in this example by sorting the Z-Scores
Z(insertion), Z(substitution A→G), Z(substitution C→G), and Z(substitution T→G) for
the respective most relevant motifs surrounding the G base at position 8 in the read.

Analogously, we compute the gap-error ranking by sorting the Z-Scores Z(deletion of an A),
Z(deletion of a C), Z(deletion of a G), Z(deletion of an T), and Z(deletion of multiple
bases) for the respective most relevant motifs surrounding the G base at position 8 in the
read.

5.3. Full-Context-Specific Error Profile
In the full-context-specific error profile, we consider the entire context of an erroneous
position. This is, the position i in a read where the error occurred, the base at position i,
the quality score of the base at position i, the read length, and various motifs surrounding
the erroneous position in the read.

Unfortunately, the exact configuration (error type, position, quality score, read length,
motifs) occurs very rarely in the training dataset (probably only once). Thus, we cannot
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estimate its distribution by counting frequencies. Instead, using the Python script for
automatic classifier selection from Section 7.1, we infer a machine learning based error
profile. For this chapter, it suffices to know that the Python script automatically chooses
among different machine learning classifiers and selects the classifier which performs best
in terms of average F-Score (see Section 2.4.1).

We train classifiers, one for base-errors (this is, an insertion or a substitution) and one
for gap-errors (this is, deletions of one or more bases). We use the error context as our
features. To keep the feature vector at a reasonable size, we only take the most relevant
motif Z-Score (this is, the Z-Score with highest absolute value) for each specific error type
into account.

In order to compute the base-error and the gap-error ranking for a presumably erroneous
position i in a read, we sort the class probabilities obtained by the respective classifiers.

Classifier for Base-Errors

We use the following features:

• the erroneous position i

• base at the erroneous position (A, C, G, T, or an uncalled base N)

• quality score of the erroneous position

• length of the read

• motif Z-scores with highest absolute value for each base-error type: Z(insertion),
Z(substitution of an A), Z(substitution of a C), Z(substitution of a G), and Z(substitution
of a T).

We use the following classes:

• insertion

• substitution of an A

• substitution of a C

• substitution of a G

• substitution of a T

Classifier for Gap-Errors (Deletions)

We use the following features:

• the erroneous position i

• base at the erroneous position (A, C, G, T, or an uncalled base N)

• quality score of the erroneous position

• length of the read

• motif Z-scores with highest absolute value for each base-error type: Z(deletion of
an A), Z(deletion of an C), Z(deletion of a G), Z(deletion of a T), and Z(deletion of
multiple bases).

We use the following classes:

• deletion of an A

• deletion of a C
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• deletion of a G

• deletion of a T

• deletion of multiple bases

We obtain the specific motif Z-Scores (which are needed for extracting the feature vector)
by the sequence-specific error profile.
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Own contributions

• Devise a novel error correction approach which is based on k-mers with locally
adaptive sizes k. Correct substitutions, insertions, and single base deletions.

• Present an idea for correcting deletions of multiple bases, using only k-mer counts.

• Adapt to run-specific error profile characteristics by re-inferring the error profile
after a first error correction run. Then, correct the reads again, discarding the
previous corrections and using the updated error profile.

Our error correction procedure consists of the following steps:

1. Load pre-determined error profiles (see Chapter 5) for each sequencing technology
used in the given dataset.

2. Correct the reads using these error profiles. Our current approach does only correct
substitutions, insertions, and single base deletions.

3. Update/Retrain the error profiles with the read corrections. This way, we can
adapt the error profile to account for the special error characteristics of the specific
sequencing run at hand.

4. Discard all corrections, start again with the uncorrected reads.

5. Correct the reads again, this time using the updated error profiles.

We can recount the k-mers after an initial error correction step for obtaining improved
k-mer classification results in later error correction steps.

Figure 6 (repeated from Chapter 1) shows how our components interact with each other.

43



6. Error Correction Unit

Figure 6.1.: Structure of the system. By encapsulating the technology-specific influences
(e.g. error profile and coverage bias) into separate modules, the error correction
and k-mer classification algorithms can remain technology-agnostic.

6.1. Correcting a Read
Our variable-length k-mer based method consists of three steps:

1. Cover the read with k-mers (locally adapted choice of k). For each of these k-mers,
use the smallest size k such that the k-mer is classified as TRUSTED or UNTRUSTED (as
in Chapter 4).

read

2. Add overlapping k-mers in order to also detect previously unidentified deletion errors.

read

Figure 6.2.: Redundant covering of the read with k-mers of variable size.

3. Fix UNTRUSTED k-mers by transforming them into TRUSTED k-mers. Use the error
profile to select correction candidates with a higher likelihood in the error profile.

In Step 1, we want k to be large enough to ensure that a k-mer is likely to appear only
once in the genome.

As in Chapter 3, We follow the suggestion by Kelley et al. [KSS10] for choosing the
minimum value for k:

kmin ≈
log(200 ∗N)

log(4) , where N is the estimated genome size.

We further ensure that kmin is an odd number, because in this case the reverse-complement
of a k-mer can not be the same as the k-mer itself. This simplifies counting the number of
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occurrences of the k-mer in the read dataset. If one of the k-mers in Step 1 gets classified
as REPETITIVE by the K-mer Classification Unit 4, we extend the k-mer. We extend the
k-mer by iteratively adding the two bases to the right of the k-mer in the read, until the
resulting k′-mer gets classified as TRUSTED or UNTRUSTED. We can do this for all but the
rightmost k-mer in the read.

A deletion can remain unidentified after Step 1, if it occurs between two (possibly extended)
k-mers. In order to also detect previously unidentified deletion errors, we add additional
(possibly extended) overlapping k-mers to our previous covering of the read in Step 2.

In Step 3, we aim to transform each of the UNTRUSTED (possibly extended) k-mers into
TRUSTED ones, allowing for only one error per k-mer to occur. Using the Error Profile
Unit 5, we obtain a ranking of error type probabilities for each position in the k-mer. We
only use this ranking for deciding which error type to try first when correcting a k-mer.

6.2. Approach for Resolving Deletions of Multiple Bases
In literature, the two main approaches for resolving deletions of multiple bases consist in
either ignoring them and only resolving single base deletions (i.e., a deletion of m bases
can only be resolved by iteratively applying the error correction on the entire dataset m
times) or building a multiple sequence alignment of reads which are believed to originate
from the same genomic region as the erroneous read. Unfortunately, both approaches have
a high computational cost. Thus, we do not follow any of these approaches. Instead, we
introduce the following approach.

In a first step, we only detect deletions of multiple bases without trying to correct them.
In these pre-corrected reads, we only mark the deletion of multiple bases by inserting a
single “_” character in the sequence. In a next step, we use a dedicated algorithm that
intends to resolve these multiple deletions, that is, determine their length and recover the
deleted bases. If this algorithm fails to resolve a deletion of multiple bases in a read, it
breaks up the read into smaller parts.

Given a pre-corrected read with a deletion of multiple bases marked by the character “_”,
we resolve the deletion of multiple bases by iteratively extending k-mers from both sides of
it. We extend a k-mer by adding a base to the k-mer, thus obtaining a k + 1-mer.

For each of the extended k-mers that is classified as TRUSTED or REPETITIVE, we continue
extending them until the middle k-mer region (spanning the position of the deletion of
multiple bases, see Figure 6.3) is TRUSTED, too. Resolving a deletion of multiple bases
is successful if all the left, middle and right k-mer regions are TRUSTED. If we can only
partially resolve a deletion of multiple bases, we break the read at the position of the
deletion of multiple bases. However, we keep the bases we extended within the left and
right region, in case they are classified as TRUSTED k-mers.
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ACGTAAGTAACTG_ACCTTGAACT
GTAACTGA?

AACCTGAA?
Figure 6.3.: Resolving a deletion of multiple bases in a pre-corrected read. We try to

extend both the left and the right k-mer region until the middle k-mer region
is classified as TRUSTED, as well. If this is not possible, we split the read at the
position of the deletion of multiple bases, but keep possibly added bases as
long as their corresponding k-mer regions are classified as TRUSTED.

The advantage of using this approach is that it is solely based on k-mers and requires no
compute-intensive multiple sequence alignment step. Also, instead of simply trying all
possible DNA sequences that could have been deleted from the read, we limit our search
and hence accelerate it by only continuing k-mer extension if the previous extension already
was successful.

Unfortunately, this approach was not successful in preliminary experiments. The inserted
corrections were too long and did not correspond to the deleted bases. It remains further
work to evaluate and improve this approach.
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Our framework is implemented in C++ 14 and Python 2.7. For parallelizing crucial
steps in the framework, such as extracting errors and correcting reads, we implemented
a templated Producer-Consumer pattern which uses std::thread. The framework uses
the cereal [GV17] library for serialization. For calling Python code from inside the
C++ code, we use the Python/C API (https://docs.python.org/2/c-api/). We use the
samtools [LHW+09] toolkit as well as the SeqAn [DWRR08] framework for reading and
modifying files in the FASTA, FASTQ, and SAM format. For plotting the median coverage
bias factors, we use the gnuplot-iostream interface by Stahlke et al. [SMM+17], which
unfortunately adds a dependency to the boost C++ libraries.

As by the 30.03.2017, our framework consists of approximately 6,000 lines of code. However,
this number will frequently change in the future as we consider our current implementation
to be only a prototype and a proof-of-concept.

7.1. Classifier Selection
In order to choose between various machine learning classification methods, we implemented
a Python script that performs the following steps:

1. Take a labeled dataset as input.

2. Split it into 2/3 training and 1/3 testing data, taking into account class imbalances.

3. Train and evaluate the following classifiers: Naïve Bayes, Logistic Regression, Decision
Tree, Random Forest, AdaBoost (with DecisionTree base classifier) (see Section 2.4).
Due to its high computational cost required for training, the AdaBoost classifier is
disabled by default.

4. Decide for the classifier that achieved the highest average F-score (see Section 2.4.1).

This script is used by the machine learning variants of the K-mer Classification Unit
(Chapter 4) and the Error Profile Unit (Chapter 5).

We train and evaluate the classifiers using the scikit-learn [PVG+11] framework.

In our opinion, machine learning approaches constitute only a last resort, similar to using
a meta-heuristic. It would be desirable to develop a proper mathematical model instead, if
possible. However, real world problems are often too complex and consist of many dependent
features. In our case, as we aim to provide an easy-to-extend technology-independent
framework, we can not safely assume to which extent the features are correlated or not.
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7.2. Counting a k-mer

We implemented two variants for determining covobserved(k-mer):

1. The number of reads whose mappings to the genome cover the k-mer.

2. The number of exact matches of the k-mer in the read dataset.

While variant 1 is only used by the one variant of the Coverage Bias Unit (Chapter 3),
variant 2 is used by all modules within our framework.

7.2.1. Observed k-mer Coverage by Read Mapping

If the reference genome is known, we can determine covobserved(k-mer) of a k-mer by
mapping all reads to the reference genome. IWe use the BWA-MEM alignment tool by
Li [Li13] for mapping the reads. We discard the unmapped reads as well as reads that
map to multiple regions in the genome. Each of the mappings we keep induces an interval
[i.start, i.stop].

We extend the functionality of the IntervalTree class by Garrison [Gar17]. We add a
method findCovering(start,stop) that returns all intervals covering a given interval
[start, stop] (see Figure 7.1).

stopstart

i.start i.stop

Figure 7.1.: An interval [i.start, i.stop] covers the interval [start, stop], if and only if i.start ≤
start and i.stop ≥ stop.

In an preprocessing step, we iterate over all reads and add the aforementioned intervals to
the interval tree. Since we can not use this definition of covobserved(k-mer) in the context
of de novo error correction, we can assume that we are interested in the coverage of a
k-mer originating from the reference genome (instead of a k-mer originating from a
read). However, if the k-mer would originate from a read, we could first map the read to
the reference genome and then deduce its position within the genome.

Algorithm 7.1 shows how to compute covobserved(k-mer) after the preprocessing has been
done.

Algorithm 7.1: Observed Coverage by mapping
Input: An interval [start, stop] representing a k-mer in the reference genome
Output: covobserved(k-mer) by mapping

1 cov ← 0
2 for each interval i = [i.start, i.stop] covering [start, stop] do
3 cov ← cov + 1
4 return cov
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7.2.2. Observed k-mer Coverage by Exact Matches

For counting the number of occurrences of a given k-mer in the read dataset, we need to
count both the k-mer itself as well as its reverse-complement. This is because we do not
know the orientation of the reads before assembly or mapping. A read can originate from
either the leading strand or the lagging strand (which is the reverse-complement of the
leading strand) of the genome.

Recall that the reverse-complement of a DNA sequence s = s1s2 . . . sn ∈ {A,C,G,T}n is
defined as ŝ := c(sn) . . . c(s2)c(s1) with c(A) := T, c(C) := G, c(G) := C, and c(T) := A.
If the k-mer also contains uncalled bases, marked by the letter “N”, we say c(N) := N .

We use the FMIndex implementation by Gog et al. [GBMP14] for counting the num-
ber of occurrences of a string in the reads file. Algorithm 7.2 shows how to compute
covobserved(k-mer) using its definition by exact matches. This approach under-estimates
the coverage of a k-mer as some occurrences of the k-mer may be masked by errors.

Algorithm 7.2: Observed Coverage by exact matches
Input: A k-mer
Output: covobserved(k-mer) by exact matches

1 cov ← FMIndex.countString(k-mer)
2 cov ← cov + FMIndex.countString(reverseComplement(k-mer))
3 return cov

7.3. Detecting Errors in a Genome Re-Sequencing Dataset

In order to infer the error profile for a genome re-sequencing dataset (see Chapter 5), we
need to extract the “true” errors within the reads.

We use the BWA-MEM alignment tool [Li13] for mapping the reads to the reference genome.
As in Section 7.2.1, we ignore unmapped reads and reads which map to multiple genomic
regions. Then, we use the samtools [LHW+09] toolkit to sort the BAM file returned by
BWA-MEM and convert it into a SAM file. The SAM format is a compressed version of the
BAM format. Given a BAM or SAM record (see below) and the reference genome, we
provide a C++ function that parses the record and extracts the errors.

7.3.1. BAM/SAM Format

An record in the BAM or SAM format (http://samtools.github.io/hts-specs/SAMv1.pdf)
consists of:

• The name of the read

• The read sequence

• The quality scores of the read

• The position of the first aligned base in the read

• A boolean flag denoting whether the read is unmapped or not

• A boolean flag denoting whether the read is reverse-complemented or not

• Several other flags (which are irrelevant to us)

• A CIGAR string (see below)
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7.3.2. CIGAR String

A CIGAR string consists of multiple entries. Each entry consists of a number followed by
a CIGAR operation. A CIGAR operation can be one of:

• M: Alignment match (sequence match or mismatch, may contain substitution errors)

• I: Insertion

• D: Deletion

• S: Soft Clipping (unaligned bases which are present in the read sequence).

• H: Hard Clipping (unaligned bases which have been cropped from read sequence). In
BWA-MEM, hard clipped bases are used for indicating chimeric reads. Since chimeric
reads map to multiple genomic regions by definition, this does not occur in the
mappings we keep.

• P: Padding: Silent deletion from the reference sequence. This does not occur in
mappings obtained by BWA-MEM.

For example, if a read gets aligned the following way;
Position
in genome: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Genome: C C A T A C T G A A C T G A C T A
Read: A C T A G A A T G G C

The resulting CIGAR string is 3M1I3M1D4M.

7.4. How to use the Framework
As we consider our current implementation to be still a prototype and only a proof-of-
concept, we do not recommend using it in its current state.

In order to use our framework, the user only needs to know the classes Dataset and
ComponentSetup.

The Dataset class stores the file paths to the reads file. If the reads originate from
a genome-resequencing experiment, the user can also specify the path to the SAM file
containing the read alignments as well as the path to the reference genome.

The ComponentSetup class acts as an interface between the user and the framework. For
example, the user can call the framework as follows:

Algorithm 7.3: Example usage of our framework
1 Dataset ds(readsFilePath)
2 ComponentSetup cs(ds, CoverageBiasType::MEDIAN_BIAS_READS_ONLY,

KmerClassificationType::CLASSIFICATION_NAIVE,
ErrorProfileType::OVERALL_STATS_ONLY,
ErrorCorrectionType::KMER_BASED)

3 cs.learnCoverageBias()
4 cs.loadErrorProfile(errorProfilePath)
5 cs.correctReads()

As our implementation is still under active development, this may change in the future.
We aim to provide a complete user manual as well as a graphical user interface in later
releases of our framework.
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8. Experimental Results and Analysis

In this chapter, we test our framework modules on both empirical and simulated data from
Illumina and PacBio sequencers. We perform all experiments on a Thinkpad T540p laptop
with an Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz and 16 Gigabyte DDR3 RAM.

8.1. Experimental Setup
8.1.1. Empirical Datasets

We use Escherichia coli K-12 MG1655 reads from Illumina and PacBio. The bacterium
Escherichia coli (see Figure 8.1) has a circular genome (https://www.ncbi.nlm.nih.gov/
nuccore/556503834). For Illumina, we use datasets with the accession numbers SRR396536
and SRR396537 from the NCBI database (https://www.ncbi.nlm.nih.gov/). These are
two different runs from the same sequencing machine. For PacBio, we use the dataset with
the accession number SRR1284073. In order to reduce the computational cost, we perform
our experiments on a random sample of 10% of the PacBio reads.

Figure 8.1.: Escherichia coli. Image taken from https://upload.wikimedia.org/
wikipedia/commons/f/f8/Coli3.jpg.
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8.1.2. Simulated Datasets

We simulate Illumina reads using the pIrs (Profile-based Illumina pair-end reads simula-
tor [HYS+12]) tool. We use the SimLoRD (Simulation of Long Read Data [SKR16]) tool to
simulate PacBio reads. In empirical datasets, a biological sample that has been sequenced
may have diverged from the original reference sample due to mutational changes. In
simulated datasets however, we can be sure that the reads originate from a given reference
genome.

We call the simulators using the following commands:
./pirs simulate -x 70 reference.fasta
simlord –read-reference reference.fasta -n 10000 myreads

We simulate reads for the Escherichia coli K-12 MG1655 genome as well as for the Ebola
virus sequence (https://www.ncbi.nlm.nih.gov/nuccore/1050758566?report=fasta). The
Ebola virus has a linear genome.

Figure 8.2.: The Ebola virus. Image taken from https://upload.wikimedia.org/
wikipedia/commons/e/e6/Ebola_virus_virion.jpg.

8.2. Coverage Bias Unit
We compare our three variants for computing the median coverage bias factors, as introduced
in Chapter 3.

Variant 1
(reads only)

Variant 2
(alignment)

Variant 3
(reference)

covobserved(k-mer) exact matches alignment exact matches
use reference genome? no yes yes

For Escherichia coli, we use a minimum k-mer size kmin = 15. For Ebola, we use a minimum
k-mer size kmin = 11.

Figures 8.3, 8.4, and 8.5 show the resulting median coverage bias factors for the SRR396536,
SRR396537 and SRR1284073 dataset, respectively. As the results are similar for the other
datasets, we omit them in this Section. They can be found in Appendix A.

Our resulting coverage bias curves fit the shapes discussed in literature [CLY+13]. While
the Illumina datasets express low coverage for high G/C contents, the coverage in the
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8.2. Coverage Bias Unit

PacBio datasets shows no influence by G/C-content. The simulated datasets express similar
coverage biases as the empirical datasets.

Figures 8.3 and 8.4 demonstrate that different runs of the same sequencer express different
coverage biases. In the SR396536 dataset, the effect of G/C-content on coverage is higher
than in the SR396537 dataset. This motivates the use of run-dependent coverage biases for
error correction.

Our experiments show that all our three variants lead to similar results. The median
coverage bias factors inferred by variant 2 (aligning the reads to a reference genome) are
slightly higher than the median coverage bias factors inferred by our other variants. This
is expected behavior as inexact matches of a k-mer are also considered by this variant.

In Figure 8.5, the median bias factors inferred by variant 1 (not using a reference genome)
are higher than the median bias factors inferred by variant 3 (using exact matches in a
reference genome). This behavior results from discarding coverage bias values lower than
0.2 ∗ covexpected, pusm(k-mer) in this variant. As all median coverage bias values inferred
for the SRR1284073 dataset are lower than 0.5, we conclude that the reads do not cover
the whole reference genome (probably due to our artificial down-sampling of the dataset).
This causes the Perfect Uniform Sequencing Model to estimate an expected coverage that
is too high, leading to correction-factors much smaller than 1.

All in all, our experiments for the Coverage Bias Unit show that we do not need to take
into account inexact matches as we already obtain satisfying results by using variant 1.

Figure 8.3.: Estimation of Median Coverage Bias for SRR396536, using kmin = 15.
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Figure 8.4.: Estimation of Median Coverage Bias for SRR396537, using kmin = 15.

Figure 8.5.: Estimation of Median Coverage Bias for SRR1284073, using kmin = 15.
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8.3. K-mer Classification Unit
We omit the K-Nearest-Neighbor and the AdaBoost classifier in our experimental results
since preliminary experiments have shown that despite higher computational costs for
training these classifiers, our overall conclusion does not change. We compare our naïve and
statistical approaches, as well as our machine learning approach for classifying a k-mer as
either REPETITIVE, TRUSTED, or UNTRUSTED (see Chapter 4). As our experimental results
for the datasets express a similar behavior, we only include the results for the SRR396537
dataset in this Section (see Table 8.1). The results for the other datasets can be found in
Appendix B. Due to time constraints, we can not compare our k-mer classification methods
with other state-of-the-art approaches as they are not available as stand-alone modules.

Our results show that our methods perform especially well in distinguishing UNTRUSTED k-
mers from the other classes. Our statistical method (using the Z-score of a k-mer) performs
worse than our naïve method (comparing covbias-corrected(k-mer) and covexpected(k-mer)).
When using our Python script for automatically choosing a classifier 7.1, the Random
Forest classifier always performs best in our experiments. A good performance of Random
Forest classifiers on machine learning problems has also be observed by Fernández-Delgado
et al. [FDCBA14].

As the Random Forest classifier performs better in distinguishing REPETITIVE k-mers from
TRUSTED k-mers than our naïve method, we suspect that taking other factors, such as the
size of the k-mer, also into account slightly improves k-mer classification results. However,
the increase in average F-Score by doing so is only minimal. Thus, we can also apply the
naïve classification method which does not require machine learning at all.

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.89 0.75 0.94 0.86
Statistical 0.82 0.62 0.93 0.79
Naive Bayes 0.86 0.74 0.91 0.84
Decision Tree 0.93 0.78 0.94 0.88
Random Forest 0.93 0.78 0.94 0.89

Logistic Regression 0.94 0.70 0.93 0.86

Table 8.1.: F-Scores for SRR396537

8.4. Error Profile Unit
We computed the context-free error profile, the sequence-specific error profile, and the
full-context-specific error profile (see Chapter 5) for all datasets. The context-free error
profile only computes overall error probabilities based on their frequency of occurrence.
The sequence-specific error profile identifies sequence motifs (surrounding a position in a
read) that influence the likelihood of an error type to occur. The full-context-specific error
profile uses machine learning to estimate error probabilities based on the current base in
the read, surrounding motif, quality score, position in the read, and read length.

8.4.1. Context-Free Error Profile

The context-free error profiles follow well-known overall error probabilities for Illumina
and PacBio datasets. This is, many substitution errors in the Illumina datasets and many
insertion errors in the PacBio datasets. The simulated datasets show similar overall error
probabilities as the empirical datasets. Our full experimental results for the context-free
error profile can be found in Appendix C.1.
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Error Type Count log(P(type))
MULTIDEL 292 -13.6911
DEL_OF_A 892 -12.5744
DEL_OF_C 557 -13.0453
DEL_OF_G 512 -13.1296
DEL_OF_T 959 -12.502
INSERTION 2870 -11.4058

A→C 214176 -7.09333
A→G 222468 -7.05534
A→T 64696 -8.29042
A→N 619264 -6.03159
C→A 91428 -7.94457
C→G 116277 -7.70415
C→T 163862 -7.3611
C→N 693737 -5.91803
G→A 91428 -7.30208
G→C 115251 -7.71301
G→T 163862 -7.93652
G→N 693737 -6.0302
T→A 64446 -8.2943
T→C 217570 -7.0776
T→G 213103 -7.09835
T→N 640459 -5.99794

Table 8.2.: Context-Free Error Profile for the
Illumina dataset SRR396536

Error Type Count log(P(type))
MULTIDEL 61453 -5.86783
DEL_OF_A 58493 -5.91719
DEL_OF_C 90054 -5.48569
DEL_OF_G 88847 -5.49918
DEL_OF_T 61282 -5.87061
INSERTION 1180635 -2.91229

A→C 334768 -4.17266
A→G 320906 -4.21495
A→T 325744 -4.19999
A→N 147622 -4.99144
C→A 361245 -4.09654
C→G 356193 -4.11063
C→T 343356 -4.14733
C→N 151344 -4.96654
G→A 361245 -4.18113
G→C 369493 -4.07397
G→T 343356 -4.13609
G→N 151344 -4.96635
T→A 327012 -4.1961
T→C 324445 -4.20398
T→G 326394 -4.19799
T→N 148789 -4.98357

Table 8.3.: Context-Free Error Profile for the
PacBio dataset SRR1284073

8.4.2. Sequence-Specific Error Profile

When listing the motifs with the highest and lowest Z-scores, we omit motifs containing
an uncalled ’N’ base as they naturally have a very high Z-score since each ’N’ in a read is
identified as a substitution error. Our full experimental results for the sequence-specific
error profile can be found in Appendix C.2.

Our experimental results show that interestingly, in different runs of the same sequencer,
nearly identical motifs express a strong influence on error probability (as can be seen in
Tables 8.4 and 8.5).

However, since the PacBio dataset SRR1284073 (see Table 8.6) expresses similar error-prone
motifs as the Illumina datasets SRR396536 and SRR396537, we conclude that sequence-
specific error are linked more to the underlying reference genome than to the sequencing
technology which has been used. This conclusion is further supported y the fact that we
obtain different relevant motifs for the simulated reads originating from the Ebola genome
(see Table 8.7).
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Z-Score Motif Error Type
268.119 GGG SUB_FROM_A
266.19 GGG SUB_FROM_T
165.627 CTG SUB_FROM_G
141.773 CTG SUB_FROM_A
131.915 GGC SUB_FROM_A
129.91 GGC SUB_FROM_T
117.812 CAG SUB_FROM_G
115.038 CAG SUB_FROM_T
102.898 CTG SUB_FROM_C
91.4345 GGA SUB_FROM_A
79.6875 CAG SUB_FROM_C
78.2799 TTT SUB_FROM_G
77.8018 TTT SUB_FROM_C
73.8515 GGGG SUB_FROM_A
72.015 GGGG SUB_FROM_T
68.691 GGCGGG SUB_FROM_A
66.5363 GGCGGG SUB_FROM_T
65.6276 GGG SUB_FROM_G
65.5733 GTT SUB_FROM_A
65.3116 ACC SUB_FROM_G

Table 8.4.: The 20 highest Z-scores for
SRR396536

Z-Score Motif Error Type
261.364 GGG SUB_FROM_T
259.359 GGG SUB_FROM_A
195.73 CTG SUB_FROM_G
175.425 CTG SUB_FROM_A
152.701 CAG SUB_FROM_T
140.123 CAG SUB_FROM_G
135.101 CTG SUB_FROM_C
122.23 GGC SUB_FROM_A
120.089 GGC SUB_FROM_T
119.964 CAG SUB_FROM_C
88.5459 ACC SUB_FROM_T
84.6021 ACC SUB_FROM_G
81.6422 GGA SUB_FROM_A
80.2634 GTT SUB_FROM_A
74.4338 GGT SUB_FROM_C
74.0543 TTT SUB_FROM_G
73.8033 TTT SUB_FROM_C
72.8299 ATC SUB_FROM_A
72.3074 GTA SUB_FROM_T
69.6961 GGCGGG SUB_FROM_A

Table 8.5.: The 20 highest Z-scores for
SRR396537

Z-Score Motif Error Type
100.715 CTG SUB_FROM_C
94.9593 TTT INSERTION
90.5478 CTG SUB_FROM_G
85.8336 CTG SUB_FROM_G
85.092 CTG SUB_FROM_G
84.1992 CTG SUB_FROM_C
83.8466 CTG SUB_FROM_A
80.8449 CTG SUB_FROM_A
80.148 CTG SUB_FROM_T
79.0162 CAG SUB_FROM_C
78.5114 CAG SUB_FROM_G
78.3624 CAG SUB_FROM_G
75.8677 CAG SUB_FROM_T
75.1843 CTG SUB_FROM_T
75.0326 CAG SUB_FROM_C
72.1783 CAG SUB_FROM_G
71.0943 CAG SUB_FROM_A
70.5656 CTG SUB_FROM_C
69.5391 CAG SUB_FROM_T
66.3146 CAG SUB_FROM_C

Table 8.6.: The 20 highest Z-scores for
SRR1284073

Z-Score Motif Error Type
4.88954 TGACG SUB_FROM_A
4.76725 ACTTCC SUB_FROM_A
4.60939 AGATGT SUB_FROM_A
4.34847 ATAACG SUB_FROM_A
4.0 TCATTA SUB_FROM_T

3.98949 CGTTC SUB_FROM_G
3.97199 TCTTG SUB_FROM_A
3.95368 CGACG SUB_FROM_G
3.8243 CGTACG SUB_FROM_G
3.78517 AAGACG SUB_FROM_C
3.74166 CTTGAG SUB_FROM_A
3.71059 TCGC SUB_FROM_T
3.68951 CTAC SUB_FROM_A
3.67945 GGATA SUB_FROM_T
3.61401 CGATAG SUB_FROM_G
3.61401 CGATAA SUB_FROM_A
3.60555 CGTGT SUB_FROM_T
3.60555 CCTTTC SUB_FROM_A
3.60555 AATCAC SUB_FROM_A
3.56126 ACATCG SUB_FROM_G

Table 8.7.: The 20 highest Z-scores for ebola
illumina simulated
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8.4.3. Full-Context-Specific Error Profile

We omit the K-Nearest-Neighbor and AdaBoost classifiers in our experimental results since
preliminary experiments have shown that despite higher computational costs for training
these classifiers, our overall conclusion does not change.

Since precision and F-Score and ill-defined if no data point belongs to a class, we set them
to zero in these cases. Our full experimental results for the full-context-specific error profile
can be found in Appendix C.3.

As shown in in Tables 8.8 and 8.9, using a Random Forest classifier resulted in higher
average F-Scores than using a Naïve Bayes classifier, a Logistic Regression classifier, or a
Decision tree in most cases. The low F-Score for insertions in the Illumina datasets was
caused by a lack of insertion errors in the dataset. As can be seen in Table 8.10, we obtain
a better F-Score for insertions if there is more training data.

Unfortunately, our experimental results for the full-context-specific error profile show that
the inference method requires further improvements. It is likely that there is no one-fits-all
solution for inferring the full-context-specific error profile of an arbitrary technology.

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.02 0.04 0.04 0.01
F-Score

SUB_FROM_A 0.74 0.75 0.76 0.73
F-Score

SUB_FROM_C 0.77 0.79 0.79 0.61
F-Score

SUB_FROM_G 0.52 0.77 0.77 0.43
F-Score

SUB_FROM_T 0.64 0.74 0.75 0.64
Average F-Score 0.54 0.62 0.62 0.48

Table 8.8.: Base-Error Classifiers for the Illumina dataset SRR396537

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.65 0.58 0.64 0.66
F-Score

DEL_OF_C 0.5 0.46 0.55 0.52
F-Score

DEL_OF_G 0.25 0.42 0.48 0.46
F-Score

DEL_OF_T 0.59 0.57 0.66 0.62
F-Score

MULTIDEL 0.12 0.38 0.47 0.34
Average F-Score 0.42 0.48 0.56 0.52

Table 8.9.: Gap-Error Classifiers for the Illumina dataset SRR396537
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Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.37 0.44 0.39 0.35
F-Score

SUB_FROM_A 0.11 0.24 0.23 0.18
F-Score

SUB_FROM_C 0.3 0.24 0.23 0.25
F-Score

SUB_FROM_G 0.11 0.24 0.22 0.17
F-Score

SUB_FROM_T 0.12 0.23 0.2 0.13
Average F-Score 0.2 0.28 0.25 0.22

Table 8.10.: Base-Error Classifiers for the PacBio dataset SRR1284073

8.5. Error Correction Unit
Unfortunately, calling the machine learning classifiers is too time-consuming for practical
use in our current implementation. This is due to the performance loss caused by calling
Python code from within C++ code using the Python/C API (https://docs.python.org/
2/c-api/). Thus, we only perform experiments using our naïve k-mer classification method
(see Chapter 4). As the sequence-specific error profile is only meant to be used as a part
of the full-context-specific error profile, we only use the context-free error profile (see
Chapter 5) in our experiments. To still show the effect of using the full-context-specific
error profile on error correction performance, we additionally include experimental results
for one small simulated Illumina dataset, using the full-context-specific error profile.

We use the context-free error profile obtained by extracting errors from the underlying
genome re-sequencing dataset (see Section 7.3). This might be considered as cheating since
this information is not given in a real de novo sequencing dataset. However, since the
overall error rates are not expected to differ much between different runs of a sequencer,
we expect the effect of doing this to be minimal. Since we already call the error correction
with a run-specific error profile, we omit the second step of our error correction method
which consists of re-inferring the error profile and re-correcting using the updated error
profile. It remains further work to perform more elaborate tests of the Error Correction
Unit.

We use the coverage bias values as obtained by the read dataset only (see Chapter 3).

As our results in this section will show that our error correction approach does not compete
well with current state-of-the-art sequencing error correction methods, we additionally
conduct error correction experiments with perfect k-mer classifications obtained by counting
the number of occurrences of a k-mer in the reference genome. This allows us to identify
whether the source of our bad error correction performance lies in a bad k-mer classification
algorithm or a bad error correction algorithm.

As in the paper by Alic et al. [ARDB16], we use the specificity (SP) and sensitivity (SE)
metrics for evaluation. The metrics use the following values:

• TP (true positives): errors that have been corrected

• FP (false positives): correct bases/gaps that have been mis-corrected

• TN (true negatives): correct bases/gaps that have remained unaltered

• FN (false negatives): errors that have not been corrected
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8. Experimental Results and Analysis

SE := TP

TP + FN
and SP := TN

TN + FP

The sensitivity measures the percentage of true positives that are correctly identified and
the specificity measures the percentage of false negatives that are correctly identified.

In addition to these widely-used evaluation metrics, we also compute F-Scores for all error
types present in the dataset.

For Escherichia coli, we use a minimum k-mer size kmin = 15. For Ebola, we use a minimum
k-mer size kmin = 11.

8.5.1. Results and Discussion

We only show experimental results for the simulated Illumina dataset of the Ebola viral
genome (see Tables 8.11, 8.12, and 8.13). The other experimental results can be found in
Appendix D.

Our experimental results express a high specificity (≈ 0.99 in Illumina datasets, ≈ 0.94
in PacBio datasets), but a low sensitivity (≈ 0.2 in Illumina datasets, ≈ 0.02 in PacBio
datasets). We conclude that the main disadvantage of our error correction method lies in
ignoring too many errors. This is likely due to our restriction of only allowing for a single
error to occur within a k-mer. The worse results for PacBio datasets are likely due to an
increased error rate in PacBio data and the fact that our current error correction method
does not correct deletions of multiple bases.

Our experimental results further show that by using the full-context-specific error profile,
our error correction results show just a minor improvement. This is likely due to the way
we use the error profile in our error correction approach.

Total Substitutions Insertions Deletions
True Positives 865 864 1 0
False Positives 3586 3103 340 143
True Negatives 1875850 3770376 942594 3733024
False Negatives 2691 2683 0 8

Sensitivity 0.243251 0.243586 1 0
Specificity 0.998092 0.999178 0.999639 0.999962
F-Score 0.216061 0.229971 0.00584795 0

Table 8.11.: Error correction statistics for ebola illumina simulated, using context-free error
profile and naïve k-mer classification

Total Substitutions Insertions Deletions
True Positives 902 901 1 0
False Positives 3734 2567 637 530
True Negatives 1875062 3768792 942198 3731456
False Negatives 2654 2646 0 8

Sensitivity 0.253656 0.254017 1 0
Specificity 0.998013 0.999319 0.999324 0.999858
F-Score 0.220215 0.256878 0.00312989 0

Table 8.12.: Error correction statistics for ebola illumina simulated, using full-context-
specific error profile and naïve k-mer classification
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Total Substitutions Insertions Deletions
True Positives 873 872 1 0
False Positives 2757 2642 91 24
True Negatives 1877277 3773240 943310 3735868
False Negatives 2683 2675 0 8

Sensitivity 0.245501 0.245842 1 0
Specificity 0.998534 0.9993 0.999904 0.999994
F-Score 0.242972 0.246991 0.0215054 0

Table 8.13.: Error correction statistics for ebola illumina simulated, using context-free error
profile and perfect k-mer classification

8.5.2. Comparison with other Error Correctors

Alic et al. [ARDB16] show that on datasets similar than SRR396536 and SRR396537
from Illumina, the error correction algorithms Coral [SS11], Hybrid SHREC [Sal10],
Fiona [SWH+14], and MuffinEC [ATMB16] show sensitivity and specificity values close
to 1. Unfortunately, while the specificity of our error correction method is close to 1, too,
the sensitivity of our method lies around 0.1 in both datasets. Thus, our error correc-
tion approach can not compete with the current state-of-the-art approaches for Illumina
datasets.

As Alic et al. [ARDB16] also perform experiments on the SRR1284073 dataset from PacBio,
we can directly compare the total sensitivity and specificity of our method with the values
Alic et al. obtain using other methods:

Sensitivity Specificity
Our approach 0.0205 0.9415
Our approach

(using perfect k-mer classification) 0.0270 0.9513
Hybrid SHREC 0.0004 0.99

Fiona 0.001 0.99
MuffinEC 0.08 0.99

Again, this comparison shows that our error correction method does not compete well with
state-of-the-art error correction approaches.

However, it has to be noted that Fiona, HSHREC, and Coral are suffix-tree-based approaches
that compute a partial multiple sequence alignment of the reads. As our approach is solely
based on k-mers, this might be an unfair comparison. More experiments are needed for
future releases of our framework.
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We developed and evaluated a prototype of a modular, open-source, multi-purpose se-
quencing error correction framework. We devised methods for estimating coverage biases,
classifying k-mers, and automatically inferring technology-specific error profiles. For giving
an example of how these components can interact with each other, we further implemented
an example error correction approach which is based on variable k-mer sizes.

For estimating coverage biases, we devised a statistical model which estimates the expected
coverage of a k-mer under an idealized sequencing setting. This model takes the estimated
genome size as well as the read length distribution, and computes estimated k-mer counts in
the read dataset for both circular and linear genomes. Then, it computes median coverage
biases by comparing these expected coverages with the actually observed coverages of
the k-mers in the read dataset. Our experimental results have shown that we can infer
useful run-dependent coverage biases directly from the dataset, without using additional
information and by only taking into account exact matches of a k-mer in the dataset.

We used the median coverage bias factors to improve k-mer classification. We devised
multiple variants for classifying a k-mer. Each of them takes the bias-corrected observed
coverage into account. Each k-mer gets classified as being either REPETITIVE, TRUSTED,
or UNTRUSTED. We tried to improve our classification results by using various machine
learning classification methods. Our experimental results have shown that by using a
Random Forest classifier, we can slightly improve classification results compared to naïve
classification. However, our current implementation is too slow due to the performance
loss caused by the Python/C API.

As part of our framework, we implemented inference of a context-free error profile which
estimates overall error probabilities by counting errors in a genome re-sequencing dataset
or a previous correction run. Additionally, our framework infers a sequence-specific error
profile which identifies common sequence motifs influencing the probability of specific error
types to occur. For taking arbitrary motifs into account, we extended the approach by
Shin and Park [SP16]. Moreover, our framework also provides full-context-specific error
profiles which take into account not only overall error probabilities, but also quality scores,
surrounding motifs and the position of an error in a read. Since the full-context-specific
error profile consists of too many (possibly correlated) features, we used machine learning
instead of a full mathematical model. Again, our continuous use of the Python/C API for
each classification slows down the framework.

63



9. Conclusion and Future Work

To show how our framework modules can interact with each other, we developed a sequencing
error correction algorithm which is based on k-mers of varying size. Our error correction
algorithm corrects substitutions, insertions, and single base deletions by covering a read with
TRUSTED or UNTRUSTED k-mers. Then, it transforms the UNTRUSTED k-mers into TRUSTED
ones, using the error profile for identifying the most likely error types and allowing one error
per k-mer. Unfortunately, our experimental results have shown that our error correction
algorithm does not compete well with current state-of-the-art sequencing error correction
approaches.
All in all, we did a very first step towards a comprehensive modular open source error
correction framework. However, continuous ongoing development is needed before this goal
will be fully reached.

Future work
It remains further work to improve the methods we devised in this thesis and to extend the
functionality of our framework. We devised an error correction approach which is based on
k-mers. Since our experiments have shown that our sequencing error correction approach
provides unsatisfying results, we will need to improve our error correction algorithm. For
example, similar to the approach of Pal and Aluru [PA14], we could also take counts of
highly similar k-mers into account when classifying a k-mer. If a k-mer would be classified
as TRUSTED but other k-mers within a Hamming distance of 1 would, too, classify all these
k-mers as NINJA instead. A NINJA classification means that an occurrence of the k-mer in
a read still has a high chance of being erroneous, despite its count being TRUSTED.
It also remains future work to include other current approaches and to devise error correction
approaches using multiple sequence alignments. More extensive comparisons of the single
modules from our framework with the standard algorithms used in other error correction
tools are needed.
In its current form, our k-mer classification approach assumes that the reads originate from
a single haploid genome. It remains future work to also support non-haploid genomes and
datasets originating from meta-genome studies.
To the best of our knowledge, there is no error correction tool available that fully supports
so-called hybrid read correction by using read data from multiple runs of distinct sequencing
technologies1. In order to fully support hybrid correction within our framework, we will
need to adapt our k-mer classification unit to work with multiple coverage bias units and
combine the read length distributions from different sequencing runs before computing the
expected count of a k-mer.
The main factors slowing down our implementation are a non-optimized way of counting
k-mers in the read dataset and the extensive use of the Python/C API whenever we want
to call a machine learning method. This needs to be changed in future releases. After
improving our implementation and supporting non-haploid genomes, scalability of our
approach can be tested by correcting reads from NA12878, a human genome sequence that
is widely-used for benchmarking.
For increased usability, it remains future work to automatically detect the used sequencing
technology from the read names and make parameter suggestions for the user. We could
also provide a graphical user interface and show a warning if a run-specific error profile
differs a lot from the expected error profile for the used sequencing technology.
According to Eric Rivals [Riv], it might make sense to apply our error profile learning
methods to ChIP-Seq and RIBO-Seq data.

1There are only tools like Jabba [MHD+16] and LoRDEC [SR14] which aim to correct PacBio SMRT
reads with the help of Illumina reads.
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Appendix

A. Coverage Bias Unit Experiments

Figure A.1.: Estimation of Median Coverage Bias for SRR396536, using kmin = 15.

71



9. Appendix

Figure A.2.: Estimation of Median Coverage Bias for SRR396537, using kmin = 15.

Figure A.3.: Estimation of Median Coverage Bias for the simulated E.coli Illumina dataset,
using kmin = 15.
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A. Coverage Bias Unit Experiments

Figure A.4.: Estimation of Median Coverage Bias for the simulated Ebola Illumina dataset,
using kmin = 11.

Figure A.5.: Estimation of Median Coverage Bias for SRR1284073, using kmin = 15.
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9. Appendix

Figure A.6.: Estimation of Median Coverage Bias for the simulated E.coli PacBio dataset,
using kmin = 15.

Figure A.7.: Estimation of Median Coverage Bias for the simulated Ebola PacBio dataset,
using kmin = 11.
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B. K-mer Classification Unit Experiments

B. K-mer Classification Unit Experiments

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naive 0.86 0.71 0.92 0.83
Statistical 0.80 0.59 0.92 0.77
Naive Bayes 0.89 0.57 0.90 0.79
Decision Tree 0.93 0.77 0.93 0.87
Random Forest 0.93 0.77 0.93 0.88

Logistic Regression 0.94 0.64 0.91 0.83

Table B.1.: F-Scores for SRR396536

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.89 0.75 0.94 0.86
Statistical 0.82 0.62 0.93 0.79
Naïve Bayes 0.86 0.74 0.91 0.84
Decision Tree 0.93 0.78 0.94 0.88
Random Forest 0.93 0.78 0.94 0.89

Logistic Regression 0.94 0.70 0.93 0.86

Table B.2.: F-Scores for SRR396537

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.94 0.75 0.88 0.86
Statistical 0.89 0.72 0.88 0.83
Naïve Bayes 0.93 0.75 0.88 0.86
Decision Tree 0.93 0.75 0.88 0.86
Random Forest 0.94 0.76 0.88 0.86

Logistic Regression 0.94 0.65 0.87 0.82

Table B.3.: F-Scores for ecoli_illumina_simulated

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.82 0.77 0.83 0.81
Statistical 0.74 0.74 0.83 0.77
Naïve Bayes 0.75 0.75 0.86 0.79
Decision Tree 0.80 0.78 0.83 0.80
Random Forest 0.81 0.78 0.83 0.81

Logistic Regression 0.80 0.76 0.85 0.80

Table B.4.: F-Scores for ebola_illumina_simulated
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9. Appendix

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.87 0.42 0.92 0.74
Statistical 0.87 0.42 0.91 0.73
Naïve Bayes 0.85 0.25 0.92 0.67
Decision Tree 0.92 0.65 0.93 0.84
Random Forest 0.92 0.65 0.93 0.84

Logistic Regression 0.92 0.44 0.94 0.77

Table B.5.: F-Scores for SRR1284073

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.86 0.68 0.97 0.84
Statistical 0.86 0.68 0.97 0.84
Naïve Bayes 0.87 0.36 0.93 0.72
Decision Tree 0.94 0.82 0.97 0.91
Random Forest 0.94 0.82 0.97 0.91

Logistic Regression 0.94 0.75 0.96 0.89

Table B.6.: F-Scores for ecoli_pacbio_simulated

Method
F-Score

REPETITIVE
F-Score
TRUSTED

F-Score
UNTRUSTED Average F-Score

Naïve 0.72 0.71 0.99 0.81
Statistical 0.52 0.05 0.98 0.52
Naïve Bayes 0.71 0.87 1.00 0.86
Decision Tree 0.73 0.85 0.99 0.86
Random Forest 0.77 0.87 1.00 0.88

Logistic Regression 0.70 0.75 0.99 0.81

Table B.7.: F-Scores for ebola_pacbio_simulated

C. Error Profile Unit Experiments

We omit the K-Nearest-Neighbor and the AdaBoost classifier in our experimental results
since preliminary experiments have shown that despite higher computational costs for
training these classifiers, our overall conclusion does not change.

When printing the motifs with the highest and lowest Z-scores, we omit motifs containing
an uncalled ’N’ base as they naturally have a very high Z-score since each ’N’ in a read is
identified as a substitution error.

Since precision and F-Score and ill-defined if no data point belongs to a class, we set it to
zero in these cases.
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C. Error Profile Unit Experiments

C.1. Context-Free Error Profile
Error Type Count log(P(type))
MULTIDEL 292 -13.6911
DEL_OF_A 892 -12.5744
DEL_OF_C 557 -13.0453
DEL_OF_G 512 -13.1296
DEL_OF_T 959 -12.502
INSERTION 2870 -11.4058

A→C 214176 -7.09333
A→G 222468 -7.05534
A→T 64696 -8.29042
A→N 619264 -6.03159
C→A 91428 -7.94457
C→G 116277 -7.70415
C→T 163862 -7.3611
C→N 693737 -5.91803
G→A 91428 -7.30208
G→C 115251 -7.71301
G→T 163862 -7.93652
G→N 693737 -6.0302
T→A 64446 -8.2943
T→C 217570 -7.0776
T→G 213103 -7.09835
T→N 640459 -5.99794

Table C.8.: SRR396536

Error Type Count log(P(type))
MULTIDEL 300 -13.7584
DEL_OF_A 826 -12.7455
DEL_OF_C 537 -13.1761
DEL_OF_G 591 -13.0803
DEL_OF_T 938 -12.6184
INSERTION 2822 -11.5169

A→C 219755 -7.16187
A→G 219777 -7.16177
A→T 68584 -8.32633
A→N 1046689 -5.601
C→A 107870 -7.87346
C→G 125573 -7.7215
C→T 124583 -7.72941
C→N 1162449 -5.4961
G→A 107870 -7.66233
G→C 128908 -7.69529
G→T 124583 -7.85686
G→N 1162449 -5.56697
T→A 69202 -8.31736
T→C 219109 -7.16482
T→G 217648 -7.17151
T→N 1081249 -5.56851

Table C.9.: SRR396537

Error Type Count log(P(type))
MULTIDEL 97 -14.6879
DEL_OF_A 600 -12.8657
DEL_OF_C 628 -12.8201
DEL_OF_G 609 -12.8508
DEL_OF_T 673 -12.7509
INSERTION 1201 -12.1717

A→C 100619 -7.74351
A→G 68188 -8.13258
A→T 53386 -8.3773
A→N 13707 -9.73694
C→A 68278 -8.13126
C→G 37443 -8.73203
C→T 45486 -8.53744
C→N 13325 -9.76521
G→A 68278 -8.45895
G→C 43562 -8.58066
G→T 45486 -7.48166
G→N 13325 -9.74404
T→A 39752 -8.67219
T→C 61850 -8.23014
T→G 122000 -7.55083
T→N 13508 -9.75157

Table C.10.: ecoli illumina simulated

Error Type Count log(P(type))
MULTIDEL 0 -inf
DEL_OF_A 3 -12.6634
DEL_OF_C 1 -13.762
DEL_OF_G 2 -13.0689
DEL_OF_T 2 -13.0689
INSERTION 1 -13.762

A→C 530 -7.48913
A→G 368 -7.85392
A→T 270 -8.16358
A→N 78 -9.4053
C→A 246 -8.25667
C→G 139 -8.82753
C→T 164 -8.66214
C→N 67 -9.55731
G→A 246 -8.63804
G→C 132 -8.8792
G→T 164 -7.80876
G→N 67 -10.3947
T→A 147 -8.77157
T→C 255 -8.22074
T→G 507 -7.53349
T→N 62 -9.63487

Table C.11.: ebola illumina simulated
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Error Type Count log(P(type))
MULTIDEL 61453 -5.86783
DEL_OF_A 58493 -5.91719
DEL_OF_C 90054 -5.48569
DEL_OF_G 88847 -5.49918
DEL_OF_T 61282 -5.87061
INSERTION 1180635 -2.91229

A→C 334768 -4.17266
A→G 320906 -4.21495
A→T 325744 -4.19999
A→N 147622 -4.99144
C→A 361245 -4.09654
C→G 356193 -4.11063
C→T 343356 -4.14733
C→N 151344 -4.96654
G→A 361245 -4.18113
G→C 369493 -4.07397
G→T 343356 -4.13609
G→N 151344 -4.96635
T→A 327012 -4.1961
T→C 324445 -4.20398
T→G 326394 -4.19799
T→N 148789 -4.98357

Table C.12.: SRR1284073

Error Type Count log(P(type))
MULTIDEL 37008 -7.52088
DEL_OF_A 121971 -6.32823
DEL_OF_C 129546 -6.26798
DEL_OF_G 128971 -6.27243
DEL_OF_T 121677 -6.33065
INSERTION 3009034 -3.12264

A→C 665973 -4.63077
A→G 658330 -4.64231
A→T 631828 -4.6834
A→N 275909 -5.51195
C→A 662875 -4.63543
C→G 705176 -4.57357
C→T 657736 -4.64321
C→N 284423 -5.48155
G→A 662875 -4.66107
G→C 717390 -4.5564
G→T 657736 -4.63353
G→N 284423 -5.48447
T→A 649437 -4.65591
T→C 640881 -4.66917
T→G 659847 -4.64001
T→N 271712 -5.52727

Table C.13.: ecoli pacbio simulated

Error Type Count log(P(type))
MULTIDEL 37748 -7.50761
DEL_OF_A 143650 -6.17116
DEL_OF_C 104903 -6.48551
DEL_OF_G 104313 -6.49115
DEL_OF_T 143575 -6.17169
INSERTION 3012199 -3.12812

A→C 737730 -4.53497
A→G 661628 -4.64384
A→T 861822 -4.37949
A→N 378494 -5.20234
C→A 707634 -4.57662
C→G 448182 -5.03334
C→T 590170 -4.75813
C→N 245966 -5.63335
G→A 707634 -4.67606
G→C 436294 -5.06023
G→T 590170 -4.84877
G→N 245966 -5.70525
T→A 861528 -4.37984
T→C 592295 -4.75454
T→G 545051 -4.83766
T→N 333185 -5.32985

Table C.14.: ebola pacbio simulated
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C. Error Profile Unit Experiments

C.2. Sequence-Specific Error Profile

Z-Score Motif Error Type
268.119 GGG SUB_FROM_A
266.19 GGG SUB_FROM_T
165.627 CTG SUB_FROM_G
141.773 CTG SUB_FROM_A
131.915 GGC SUB_FROM_A
129.91 GGC SUB_FROM_T
117.812 CAG SUB_FROM_G
115.038 CAG SUB_FROM_T
102.898 CTG SUB_FROM_C
91.4345 GGA SUB_FROM_A
79.6875 CAG SUB_FROM_C
78.2799 TTT SUB_FROM_G
77.8018 TTT SUB_FROM_C
73.8515 GGGG SUB_FROM_A
72.015 GGGG SUB_FROM_T
68.691 GGCGGG SUB_FROM_A
66.5363 GGCGGG SUB_FROM_T
65.6276 GGG SUB_FROM_G
65.5733 GTT SUB_FROM_A
65.3116 ACC SUB_FROM_G

Table C.15.: The 20 highest Z-scores for
SRR396536

Z-Score Motif Error Type
-124.703 TGG SUB_FROM_A
-124.051 TGG SUB_FROM_T
-87.549 TGC SUB_FROM_A
-86.443 TGC SUB_FROM_T
-85.4619 TTG SUB_FROM_C
-84.1717 CTA SUB_FROM_A
-78.9295 TAG SUB_FROM_T
-73.4905 CTA SUB_FROM_T
-67.829 AAT SUB_FROM_A
-65.7881 TAG SUB_FROM_C
-63.8715 CAA SUB_FROM_G
-62.7838 AGG SUB_FROM_T
-62.3403 AGG SUB_FROM_A
-60.1977 CTA SUB_FROM_G
-60.1559 CGA SUB_FROM_T
-59.6404 TAG SUB_FROM_A
-59.4657 TGA SUB_FROM_A
-58.2913 TGT SUB_FROM_A
-56.9548 CGG SUB_FROM_A
-55.4038 CGG SUB_FROM_T

Table C.16.: The 20 lowest Z-scores for
SRR396536

Z-Score Motif Error Type
261.364 GGG SUB_FROM_T
259.359 GGG SUB_FROM_A
195.73 CTG SUB_FROM_G
175.425 CTG SUB_FROM_A
152.701 CAG SUB_FROM_T
140.123 CAG SUB_FROM_G
135.101 CTG SUB_FROM_C
122.23 GGC SUB_FROM_A
120.089 GGC SUB_FROM_T
119.964 CAG SUB_FROM_C
88.5459 ACC SUB_FROM_T
84.6021 ACC SUB_FROM_G
81.6422 GGA SUB_FROM_A
80.2634 GTT SUB_FROM_A
74.4338 GGT SUB_FROM_C
74.0543 TTT SUB_FROM_G
73.8033 TTT SUB_FROM_C
72.8299 ATC SUB_FROM_A
72.3074 GTA SUB_FROM_T
69.6961 GGCGGG SUB_FROM_A

Table C.17.: The 20 highest Z-scores for
SRR396537

Z-Score Motif Error Type
-118.654 TGG SUB_FROM_T
-117.598 TGG SUB_FROM_A
-104.103 TTG SUB_FROM_C
-103.058 CTA SUB_FROM_A
-99.7532 TAG SUB_FROM_T
-90.6144 CTA SUB_FROM_T
-85.6052 TAG SUB_FROM_A
-83.6985 TAG SUB_FROM_C
-80.1133 TGC SUB_FROM_A
-79.2389 TGC SUB_FROM_T
-76.3415 AAT SUB_FROM_A
-75.6735 CAA SUB_FROM_G
-74.9665 CTA SUB_FROM_G
-72.9099 TGT SUB_FROM_A
-69.0232 CTC SUB_FROM_G
-68.2281 TTG SUB_FROM_A
-67.9784 GGCC SUB_FROM_C
-67.6827 CTC SUB_FROM_A
-66.2892 GGCC SUB_FROM_G
-65.8541 TCG SUB_FROM_C

Table C.18.: The 20 lowest Z-scores for
SRR396537
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Z-Score Motif Error Type
48.7967 CCG SUB_FROM_T
44.0529 ATG SUB_FROM_G
42.7733 AAG SUB_FROM_G
41.7931 CGG SUB_FROM_A
40.6459 CCG SUB_FROM_A
37.703 CGG SUB_FROM_T
31.8024 CAG SUB_FROM_A
25.3793 GTG SUB_FROM_G
25.2881 CAG SUB_FROM_T
23.4332 CTG SUB_FROM_T
22.5813 GAG SUB_FROM_G
21.5309 ATG SUB_FROM_C
21.2494 TAG SUB_FROM_G
21.2272 ACA SUB_FROM_G
20.6903 TTG SUB_FROM_G
20.2057 AAC SUB_FROM_G
20.0898 CTG SUB_FROM_A
19.2762 AAG SUB_FROM_C
18.8335 CAC SUB_FROM_C
16.7921 CTC SUB_FROM_C

Table C.19.: The 20 highest Z-scores for ecoli
illumina simulated

Z-Score Motif Error Type
-24.1054 TCG SUB_FROM_T
-23.4401 ATA SUB_FROM_G
-23.1838 GGAC SUB_FROM_G
-21.1792 CGA SUB_FROM_A
-20.6087 AAA SUB_FROM_G
-20.0608 CTC SUB_FROM_T
-20.0137 CCA SUB_FROM_T
-19.5167 TGG SUB_FROM_A
-19.0324 CAA SUB_FROM_A
-18.9817 CCA SUB_FROM_A
-18.9714 CAC SUB_FROM_T
-18.4096 TCG SUB_FROM_A
-18.043 TGG SUB_FROM_T
-17.4642 ACC SUB_FROM_G
-17.4345 CAAA SUB_FROM_G
-17.1975 GGCA SUB_FROM_G
-16.8798 ATC SUB_FROM_G
-16.4031 CAC SUB_FROM_G
-16.1393 GCG SUB_FROM_T
-15.9863 CAC SUB_FROM_A

Table C.20.: The 20 lowest Z-scores for ecoli
illumina simulated

Z-Score Motif Error Type
4.88954 TGACG SUB_FROM_A
4.76725 ACTTCC SUB_FROM_A
4.60939 AGATGT SUB_FROM_A
4.34847 ATAACG SUB_FROM_A
4.0 TCATTA SUB_FROM_T

3.98949 CGTTC SUB_FROM_G
3.97199 TCTTG SUB_FROM_A
3.95368 CGACG SUB_FROM_G
3.8243 CGTACG SUB_FROM_G
3.78517 AAGACG SUB_FROM_C
3.74166 CTTGAG SUB_FROM_A
3.71059 TCGC SUB_FROM_T
3.68951 CTAC SUB_FROM_A
3.67945 GGATA SUB_FROM_T
3.61401 CGATAG SUB_FROM_G
3.61401 CGATAA SUB_FROM_A
3.60555 CGTGT SUB_FROM_T
3.60555 CCTTTC SUB_FROM_A
3.60555 AATCAC SUB_FROM_A
3.56126 ACATCG SUB_FROM_G

Table C.21.: The 20 highest Z-scores for ebola
illumina simulated

Z-Score Motif Error Type
-3.60083 ACGC SUB_FROM_A
-3.03974 TGGAA SUB_FROM_T
-2.96702 GGA SUB_FROM_C
-2.95014 ACGTT SUB_FROM_T
-2.89035 TCGG SUB_FROM_A
-2.88194 TTGG SUB_FROM_C
-2.82843 CGCTGA SUB_FROM_A
-2.82843 GGTGAA SUB_FROM_A
-2.82843 TATTGG SUB_FROM_G
-2.72352 ATCCA SUB_FROM_T
-2.72253 AGCTG SUB_FROM_A
-2.70017 CCG SUB_FROM_T
-2.6968 TGCTAA SUB_FROM_A
-2.68742 AAATT SUB_FROM_C
-2.64575 GGGCTT SUB_FROM_A
-2.64575 TCCGGC SUB_FROM_A
-2.64575 TGTAGC SUB_FROM_A
-2.64575 ATACAT SUB_FROM_G
-2.64575 TGACTA SUB_FROM_G
-2.64575 GTGGC SUB_FROM_T

Table C.22.: The 20 lowest Z-scores for ebola
illumina simulated
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Z-Score Motif Error Type
100.715 CTG SUB_FROM_C
94.9593 TTT INSERTION
90.5478 CTG SUB_FROM_G
85.8336 CTG SUB_FROM_G
85.092 CTG SUB_FROM_G
84.1992 CTG SUB_FROM_C
83.8466 CTG SUB_FROM_A
80.8449 CTG SUB_FROM_A
80.148 CTG SUB_FROM_T
79.0162 CAG SUB_FROM_C
78.5114 CAG SUB_FROM_G
78.3624 CAG SUB_FROM_G
75.8677 CAG SUB_FROM_T
75.1843 CTG SUB_FROM_T
75.0326 CAG SUB_FROM_C
72.1783 CAG SUB_FROM_G
71.0943 CAG SUB_FROM_A
70.5656 CTG SUB_FROM_C
69.5391 CAG SUB_FROM_T
66.3146 CAG SUB_FROM_C

Table C.23.: The 20 highest Z-scores for
SRR1284073

Z-Score Motif Error Type
-78.402 AAA INSERTION
-52.6709 TTG SUB_FROM_G
-52.5762 TTG SUB_FROM_C
-51.5559 CCC INSERTION
-51.5072 TGC INSERTION
-48.2423 TTG SUB_FROM_T
-46.4335 TAG SUB_FROM_C
-44.9597 CAT INSERTION
-44.8185 TAG SUB_FROM_G
-44.6733 TTG SUB_FROM_G
-43.801 CTA SUB_FROM_G
-43.5637 TTG SUB_FROM_C
-43.2604 TTG SUB_FROM_A
-43.0627 TAG SUB_FROM_T
-43.0538 CTA SUB_FROM_A
-42.4221 TAG SUB_FROM_G
-42.4021 CTA SUB_FROM_C
-41.8836 CTA SUB_FROM_T
-41.7728 CTA SUB_FROM_C
-41.6571 TAG SUB_FROM_C

Table C.24.: The 20 lowest Z-scores for
SRR1284073

Z-Score Motif Error Type
128.772 CTG SUB_FROM_G
124.859 CAG SUB_FROM_G
116.032 CTG SUB_FROM_G
112.005 CAG SUB_FROM_G
101.282 CAG SUB_FROM_A
100.696 CTG SUB_FROM_C
100.265 CTG SUB_FROM_G
99.8871 CTG SUB_FROM_T
96.9638 CTG SUB_FROM_A
96.2567 CAG SUB_FROM_T
95.886 CAG SUB_FROM_C
95.2675 CAG SUB_FROM_G
93.0508 CTG SUB_FROM_A
91.7736 CTG SUB_FROM_C
88.0609 CTG SUB_FROM_A
87.2608 CTG SUB_FROM_T
86.1968 CAG SUB_FROM_A
84.7839 CAG SUB_FROM_T
82.4405 CAG SUB_FROM_T
79.6529 CAG SUB_FROM_C

Table C.25.: The 20 highest Z-scores for ecoli
pacbio simulated

Z-Score Motif Error Type
-124.423 CCC INSERTION
-122.74 GGG INSERTION
-75.6867 AAA INSERTION
-75.4499 TTT INSERTION
-60.6689 TTG SUB_FROM_G
-59.8876 TAG SUB_FROM_A
-59.8748 CTA SUB_FROM_A
-59.5421 CTA SUB_FROM_G
-58.0337 TAG SUB_FROM_G
-57.4163 TTG SUB_FROM_G
-55.8463 TAG SUB_FROM_G
-54.9923 CTA SUB_FROM_A
-54.9782 CAA SUB_FROM_G
-54.74 TAG SUB_FROM_T
-54.0227 TAG SUB_FROM_T
-53.2812 CAA SUB_FROM_T
-52.4482 TTG SUB_FROM_A
-51.2628 CAA SUB_FROM_A
-50.6428 CTA SUB_FROM_C
-50.5877 CTA SUB_FROM_T

Table C.26.: The 20 lowest Z-scores for ecoli
pacbio simulated
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Z-Score Motif Error Type
91.1103 CAA INSERTION
87.3485 TTG INSERTION
84.0828 TTG SUB_FROM_A
70.6093 TTT INSERTION
70.5553 TAA SUB_FROM_A
66.5267 GTT SUB_FROM_C
65.5597 ATT INSERTION
61.223 GTC SUB_FROM_C
59.3146 TTG SUB_FROM_A
57.6055 TGT SUB_FROM_T
56.7442 AAA INSERTION
55.5016 CCA INSERTION
55.231 AAT SUB_FROM_T
53.6438 GTA SUB_FROM_C
52.959 TCA SUB_FROM_A
52.3411 CTT INSERTION
52.097 GGG INSERTION
50.219 GAT SUB_FROM_C
49.6681 CCC INSERTION
49.0244 TGG SUB_FROM_A

Table C.27.: The 20 highest Z-scores for ebola
pacbio simulated

Z-Score Motif Error Type
-128.335 TTT INSERTION
-101.978 AAA INSERTION
-83.9685 GGG INSERTION
-76.6816 CCC INSERTION
-66.447 ATG SUB_FROM_A
-60.1482 CTG INSERTION
-59.2879 AAA SUB_FROM_T
-56.2268 CTA SUB_FROM_A
-56.0337 TCA INSERTION
-51.6865 ATG SUB_FROM_G
-51.1787 CAG INSERTION
-49.6691 TGA INSERTION
-49.6457 CAT SUB_FROM_T
-47.0453 TTT SUB_FROM_A
-46.7477 CTA SUB_FROM_C
-46.7088 ATG SUB_FROM_C
-45.7461 CTA SUB_FROM_C
-44.7176 CTA SUB_FROM_G
-44.649 CTA SUB_FROM_T
-42.977 CAAA SUB_FROM_A

Table C.28.: The 20 lowest Z-scores for ebola
pacbio simulated

C.3. Full-Context-Specific Error Profile
Naïve Bayes DecisionTree RandomForest LogisticRegression

F-Score
INSERTION 0.0 0.03 0.03 0.01

F-Score
SUB_FROM_A 0.65 0.69 0.7 0.65

F-Score
SUB_FROM_C 0.67 0.71 0.72 0.51

F-Score
SUB_FROM_G 0.54 0.72 0.72 0.36

F-Score
SUB_FROM_T 0.54 0.68 0.69 0.56
Average F-Score 0.48 0.57 0.57 0.42

Table C.29.: Base-Error Classifiers for SRR396536

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.7 0.63 0.7 0.73
F-Score

DEL_OF_C 0.22 0.48 0.56 0.54
F-Score

DEL_OF_G 0.46 0.42 0.42 0.45
F-Score

DEL_OF_T 0.67 0.65 0.68 0.69
F-Score

MULTIDEL 0.33 0.35 0.38 0.35
Average F-Score 0.47 0.51 0.55 0.55

Table C.30.: Gap-Error Classifiers for SRR396536

82



C. Error Profile Unit Experiments

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.02 0.04 0.04 0.01
F-Score

SUB_FROM_A 0.74 0.75 0.76 0.73
F-Score

SUB_FROM_C 0.77 0.79 0.79 0.61
F-Score

SUB_FROM_G 0.52 0.77 0.77 0.43
F-Score

SUB_FROM_T 0.64 0.74 0.75 0.64
Average F-Score 0.54 0.62 0.62 0.48

Table C.31.: Base-Error Classifiers for SRR396537

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.65 0.58 0.64 0.66
F-Score

DEL_OF_C 0.5 0.46 0.55 0.52
F-Score

DEL_OF_G 0.25 0.42 0.48 0.46
F-Score

DEL_OF_T 0.59 0.57 0.66 0.62
F-Score

MULTIDEL 0.12 0.38 0.47 0.34
Average F-Score 0.42 0.48 0.56 0.52

Table C.32.: Gap-Error Classifiers for SRR396537

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.02 0.06 0.06 0.03
F-Score

SUB_FROM_A 0.29 0.38 0.4 0.35
F-Score

SUB_FROM_C 0.17 0.31 0.32 0.23
F-Score

SUB_FROM_G 0.43 0.44 0.48 0.35
F-Score

SUB_FROM_T 0.44 0.41 0.44 0.33
Average F-Score 0.27 0.32 0.34 0.26

Table C.33.: Base-Error Classifiers for ecoli illumina simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.58 0.5 0.55 0.55
F-Score

DEL_OF_C 0.46 0.53 0.57 0.59
F-Score

DEL_OF_G 0.43 0.52 0.58 0.57
F-Score

DEL_OF_T 0.58 0.52 0.55 0.59
F-Score

MULTIDEL 0.42 0.21 0.14 0.35
Average F-Score 0.49 0.46 0.48 0.53

Table C.34.: Gap-Error Classifiers for ecoli illumina simulated
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Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0 0 0 0
F-Score

SUB_FROM_A 0.61 0.54 0.65 0.60
F-Score

SUB_FROM_C 0.44 0.44 0.55 0.53
F-Score

SUB_FROM_G 0.42 0.51 0.58 0.56
F-Score

SUB_FROM_T 0.53 0.50 0.57 0.56
Average F-Score 0.50 0.40 0.59 0.45

Table C.35.: Base-Error Classifiers for ebola illumina simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.5 1 1 1
F-Score

DEL_OF_C 0 0 0 0
F-Score

DEL_OF_G 0 0 0 0
F-Score

DEL_OF_T 0 1 1 1
F-Score

MULTIDEL 0 0 0 0
Average F-Score 0.17 0.50 0.50 0.50

Table C.36.: Gap-Error Classifiers for ebola illumina simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.37 0.44 0.39 0.35
F-Score

SUB_FROM_A 0.11 0.24 0.23 0.18
F-Score

SUB_FROM_C 0.3 0.24 0.23 0.25
F-Score

SUB_FROM_G 0.11 0.24 0.22 0.17
F-Score

SUB_FROM_T 0.12 0.23 0.2 0.13
Average F-Score 0.2 0.28 0.25 0.22

Table C.37.: Base-Error Classifiers for SRR1284073

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.19 0.22 0.27 0.29
F-Score

DEL_OF_C 0.43 0.32 0.38 0.32
F-Score

DEL_OF_G 0.34 0.33 0.38 0.31
F-Score

DEL_OF_T 0.28 0.23 0.26 0.3
F-Score

MULTIDEL 0.14 0.19 0.16 0.14
Average F-Score 0.27 0.26 0.29 0.27

Table C.38.: Gap-Error Classifiers for SRR1284073
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Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.41 0.52 0.51 0.42
F-Score

SUB_FROM_A 0.04 0.27 0.26 0.17
F-Score

SUB_FROM_C 0.24 0.28 0.26 0.17
F-Score

SUB_FROM_G 0.19 0.28 0.26 0.21
F-Score

SUB_FROM_T 0.02 0.27 0.24 0.17
Average F-Score 0.18 0.32 0.31 0.23

Table C.39.: Base-Error Classifiers for ecoli pacbio simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.32 0.29 0.33 0.33
F-Score

DEL_OF_C 0.23 0.31 0.34 0.22
F-Score

DEL_OF_G 0.11 0.3 0.33 0.2
F-Score

DEL_OF_T 0.41 0.29 0.3 0.36
F-Score

MULTIDEL 0.08 0.1 0.07 0.15
Average F-Score 0.23 0.26 0.27 0.25

Table C.40.: Gap-Error Classifiers for ecoli pacbio simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

INSERTION 0.43 0.48 0.52 0.43
F-Score

SUB_FROM_A 0.31 0.29 0.3 0.27
F-Score

SUB_FROM_C 0.02 0.23 0.21 0.13
F-Score

SUB_FROM_G 0.0 0.21 0.19 0.09
F-Score

SUB_FROM_T 0.18 0.26 0.24 0.22
Average F-Score 0.19 0.29 0.29 0.23

Table C.41.: Base-Error Classifiers for ebola pacbio simulated

Naïve Bayes DecisionTree RandomForest LogisticRegression
F-Score

DEL_OF_A 0.4 0.47 0.53 0.4
F-Score

DEL_OF_C 0.16 0.41 0.46 0.26
F-Score

DEL_OF_G 0.21 0.41 0.45 0.28
F-Score

DEL_OF_T 0.49 0.49 0.54 0.47
F-Score

MULTIDEL 0.07 0.14 0.1 0.14
Average F-Score 0.26 0.38 0.42 0.31

Table C.42.: Gap-Error Classifiers for ebola pacbio simulated
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D. Error Correction Unit Experiments
Total Substitutions Insertions Deletions

True Positives 465144 464977 162 5
False Positives 2227238 1670405 360492 196341
True Negatives 494019850 994410064 248602516 981669336
False Negatives 3853283 3847381 2705 3197

Sensitivity 0.107711 0.107824 0.0565051 0.00156152
Specificity 0.995512 0.998323 0.998552 0.9998
F-Score 0.132693 0.144229 0.000891283 5.01133e-05

Table D.43.: Error correction statistics for SRR396536

Total Substitutions Insertions Deletions
True Positives 522856 522727 127 2
False Positives 1516101 1353927 135277 26897
True Negatives 495336635 997034568 249258642 984311972
False Negatives 3795571 3789631 2740 3200

Sensitivity 0.121076 0.121216 0.0442972 0.00062461
Specificity 0.996949 0.998644 0.999458 0.999973
F-Score 0.164488 0.168921 0.00183697 0.000132886

Table D.44.: Error correction statistics for SRR396536, using perfect k-mer classification

Total Substitutions Insertions Deletions
True Positives 499545 499372 168 5
False Positives 2196005 1667271 319575 209159
True Negatives 528806492 1064327108 266081777 1050898860
False Negatives 5519008 5513276 2615 3117

Sensitivity 0.0830008 0.0830536 0.0603665 0.00160154
Specificity 0.995864 0.998436 0.9988 0.999801
F-Score 0.114652 0.122106 0.00104178 4.71063e-05

Table D.45.: Error correction statistics for SRR396537

Total Substitutions Insertions Deletions
True Positives 530810 530681 126 3
False Positives 1756163 1509832 203432 42899
True Negatives 529576483 1065850332 266462583 1052455600
False Negatives 5487743 5481967 2657 3119

Sensitivity 0.0881956 0.0882608 0.0452749 0.000960922
Specificity 0.996695 0.998585 0.999237 0.999959
F-Score 0.127821 0.131794 0.00122128 0.000130367

Table D.46.: Error correction statistics for SRR396537, using perfect k-mer classification

Total Substitutions Insertions Deletions
True Positives 181325 180974 348 3
False Positives 755481 690495 46740 18246
True Negatives 459411318 923400900 230850225 914244372
False Negatives 697134 693677 853 2604

Sensitivity 0.206413 0.20691 0.289759 0.00115075
Specificity 0.998358 0.999253 0.999798 0.99998
F-Score 0.199778 0.207287 0.0144132 0.000287687

Table D.47.: Error correction statistics for ecoli illumina simulated
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Total Substitutions Insertions Deletions
True Positives 181799 181454 342 3
False Positives 717795 665267 38358 14170
True Negatives 459479013 923536736 230884184 914379316
False Negatives 696660 693197 859 2604

Sensitivity 0.206952 0.207459 0.284763 0.00115075
Specificity 0.99844 0.99928 0.999834 0.999985
F-Score 0.204492 0.210825 0.0171424 0.000357569

Table D.48.: Error correction statistics for ecoli illumina simulated, using perfect k-mer
classification

Total Substitutions Insertions Deletions
True Positives 865 864 1 0
False Positives 3586 3103 340 143
True Negatives 1875850 3770376 942594 3733024
False Negatives 2691 2683 0 8

Sensitivity 0.243251 0.243586 1 0
Specificity 0.998092 0.999178 0.999639 0.999962
F-Score 0.216061 0.229971 0.00584795 0

Table D.49.: Error correction statistics for ebola illumina simulated, using context-free
error profile and naïve k-mer classification

Total Substitutions Insertions Deletions
True Positives 902 901 1 0
False Positives 3734 2567 637 530
True Negatives 1875062 3768792 942198 3731456
False Negatives 2654 2646 0 8

Sensitivity 0.253656 0.254017 1 0
Specificity 0.998013 0.999319 0.999324 0.999858
F-Score 0.220215 0.256878 0.00312989 0

Table D.50.: Error correction statistics for ebola illumina simulated, using full-context-
specific error profile and naïve k-mer classification

Total Substitutions Insertions Deletions
True Positives 873 872 1 0
False Positives 2757 2642 91 24
True Negatives 1877277 3773240 943310 3735868
False Negatives 2683 2675 0 8

Sensitivity 0.245501 0.245842 1 0
Specificity 0.998534 0.9993 0.999904 0.999994
F-Score 0.242972 0.246991 0.0215054 0

Table D.51.: Error correction statistics for ebola illumina simulated, using context-free
error profile and perfect k-mer classification

Total Substitutions Insertions Deletions
True Positives 127583 7086 120477 20
False Positives 1394934 98829 1289184 6921
True Negatives 22460530 44925324 11231331 44916796
False Negatives 6081047 4660780 1060158 360109

Sensitivity 0.0205493 0.00151804 0.102044 5.55357e-05
Specificity 0.941526 0.997805 0.897034 0.999846
F-Score 0.0330049 0.00296872 0.0930218 0.000108971

Table D.52.: Error correction statistics for SRR1284073
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Total Substitutions Insertions Deletions
True Positives 167727 20706 147002 19
False Positives 1165636 286929 875916 2791
True Negatives 22789140 45582488 11395622 45574072
False Negatives 6040903 4647160 1033633 360110

Sensitivity 0.0270151 0.00443586 0.124511 5.27589e-05
Specificity 0.95134 0.993745 0.928622 0.999939
F-Score 0.0444782 0.00832318 0.133423 0.000104701

Table D.53.: Error correction statistics for SRR1284073, using perfect k-mer classification

Total Substitutions Insertions Deletions
True Positives 645519 37854 607569 96
False Positives 2954637 689694 2247343 17600
True Negatives 104007330 208031576 52007894 207997744
False Negatives 11978034 9037492 2401465 539077

Sensitivity 0.0511361 0.00417108 0.201915 0.00017805
Specificity 0.972377 0.996696 0.958578 0.999915
F-Score 0.0795772 0.00772303 0.207222 0.000344785

Table D.54.: Error correction statistics for ecoli pacbio simulated

Total Substitutions Insertions Deletions
True Positives 733242 35979 697131 132
False Positives 2801704 614137 2178640 8927
True Negatives 104244137 208505124 52126281 208471424
False Negatives 11890311 9039367 2311903 539041

Sensitivity 0.0580852 0.00396448 0.231679 0.000244819
Specificity 0.973827 0.997063 0.959881 0.999957
F-Score 0.0907562 0.00739893 0.236926 0.000481548

Table D.55.: Error correction statistics for ecoli pacbio simulated, using perfect k-mer
classification

Total Substitutions Insertions Deletions
True Positives 928921 37978 890766 177
False Positives 2906379 604621 2293238 8520
True Negatives 105425107 210867044 52716761 210833384
False Negatives 11426023 8770578 2121433 534012

Sensitivity 0.0751862 0.00431149 0.29572 0.000331343
Specificity 0.973171 0.997141 0.958312 0.99996
F-Score 0.114751 0.00803669 0.28752 0.000652071

Table D.56.: Error correction statistics for ebola pacbio simulated

Total Substitutions Insertions Deletions
True Positives 965268 39464 925593 211
False Positives 2894705 576638 2307199 10868
True Negatives 105524063 211065072 52766268 211031180
False Negatives 11389676 8769092 2086606 533978

Sensitivity 0.0781281 0.00448019 0.307281 0.000394991
Specificity 0.973301 0.997275 0.958107 0.999949
F-Score 0.119059 0.00837463 0.296427 0.000773931

Table D.57.: Error correction statistics for ebola pacbio simulated, using perfect k-mer
classification
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