
Investigating the relationship between tree
distance and model distance

Master’s Thesis of

Xinyi Zhang

at the Department of Informatics

Institute of Theoretical Informatics

Reviewer: Prof. Dr. Alexandros Stamatakis

Second reviewer: Prof. Dr. Hartmut Prautzsch

Advisor: M.Sc. Ben Bettisworth

01. September 2021 – 28. February 2022



Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe



I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Xinyi Zhang)





Abstract

AHorizontal Gene Transfer (HGT) is the transfer of genetic information (i.e genes) between

two unrelated species by means other than heredity (i.e. child parent inheritance). When

investigating the evolutionary history of a species the presence of HGT events may lead to

an incongruent gene tree and species tree, complicating phylogentic analysis. Therefore

detecting HGT events is crucial in order to obtain a correct phylogenetic tree. An attempt

to detect HGT events has been done in this work. We started by analyzing patristic tree

distances and model-based evolutionary distances and we have not found any relation

to HGT events. However, when we apply a convolutional method to the model-based

evolutionary distances, we observe a distinct relationship between the data and a HGT

event. In particular when there is a linear relationship between evolutionary distances

and the position of convolution windows there may be HGT event happening. Using

this observation we attempt to classify the convolution window distances with some

machine learning methods. Nevertheless, the classification process is more challenging

than anticipated. We present here our result and the difficulties we encountered.

i





Zusammenfassung

Ein horizontaler Gentransfer (HGT) bezeichnet die Übertragung genetischer Informationen

(d.h. Gene) zwischen zwei nicht verwandten Arten, die auf andere Weise als durch Verer-

bung geschieht. Bei der Untersuchung der Evolutionsgeschichte kann das Vorhandensein

von HGTs zu inkongruenten phylogenetischen Bäumen führen. Daher ist der Nachweis

eines HGT entscheidend, um einen korrekten phylogenetischer Baum zu erhalten. In dieser

Arbeit wurde ein Versuch unternommen, HGT-Ereignisse zu erkennen. Wir begannen

mit der Analyse von patristischen Baumdistanzen und modellbasierten evolutionären

Distanzen und haben keine Beziehung zu HGT-Ereignissen festgestellt. Wenn wir jedoch

die Convolution-Window-Methode auf die modellbasierten evolutionären Distanzen an-

wenden, können wir eine gewisse Beziehung zum HGT beobachten. Insbesondere kann es

zu HGTs kommen, wenn lineare Abhängigkeit zwischen den evolutionären Distanzen und

der Positionen der Convolution-Windows besteht. Anhand dieser Beobachtung versuchen

wir, die Convolution-Window-Distanzen mit einigen Methoden des maschinellen Lernens

zu klassifizieren. Dennoch ist der Klassifizierungsprozess anspruchsvoller als erwartet.

Hier stellen wir unser Ergebnis sowie die aufgetretenen Probleme vor.

iii





Contents

Abstract i

Zusammenfassung iii

1 Motivation and Contribution 1

2 Introduction 3
2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Gene Trees and Species Trees . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Horizontal Gene Transfer . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.4 Tree Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.5 Model-based Evolutionary Distances . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Comparing Tree and Model-based Evolutionary Distances 9
3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Distance Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Distance calculation tools . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Visualization tools . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Naive Convolution Window Approach 15
4.1 Introduction to Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Application and Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Classification of convolution window Distances 21
5.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Datastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Machine Learning Methods Used . . . . . . . . . . . . . . . . . . . . . . 24

5.4.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4.2 Gaussian Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 26

5.4.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



Contents

5.4.5 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . 28

5.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.1 ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5.2 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.3 Decision Boundary Plots . . . . . . . . . . . . . . . . . . . . . . . 29

5.5.4 Result Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5.5 Linear Regression Plot . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Results 33
6.1 Tree and Model-Based Evolutionary Distances . . . . . . . . . . . . . . . 33

6.2 convolution window Distances and Linear Regression Plots . . . . . . . . 36

6.3 Classification of convolution window Distances . . . . . . . . . . . . . . 43

6.3.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.2 Gaussian Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 Support Vector Machine Classifier . . . . . . . . . . . . . . . . . 46

6.3.4 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.5 Extreme Gradient Boosting Classifier . . . . . . . . . . . . . . . . 48

7 Conclusion and Future Work 49

Bibliography 51

vi



List of Figures

2.1 Simple illustration of gene tree and species tree: On the top left is a

simple gene tree with three genes. On the top right is the corresponding

species tree with three species: human, cat, and fish. On the bottom is the

combination of the trees, the dark blue lines represent the species tree and

the grey lines are the gene tree with some duplication, specialization, and

gene loss events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Influence of HGT in the tree inference process: Dark blue lines represent

the species tree, grey lines represent the gene tree. On the left is the true

evolutionary history. As we can see, a HGT event will yield the incorrectly

inferred tree on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Workflow for comparing Tree and Model-based Evolutionary Distances . 10

3.2 Example of how the phylogenetic trees are shown . . . . . . . . . . . . . 13

3.3 Example of a two dimensional histogram used to compare the patristic

tree distances and model-base evolutionary distances . . . . . . . . . . . 13

4.1 Example of the convolution window approach visualization using the JC69

model: on the top are the names of the compared sequences, on the x-axis

is the distance computed for every window position, and on the y-axis is

the start and end position of the window . . . . . . . . . . . . . . . . . . 16

4.2 Example of linear regression on convolution window data: on the top are

the names of the compared sequences, on the x-axis is the normalized

distance and on the y-axis is the starting position of the nucleotide . . . 18

4.3 Comparison between the JC69 model and GTR model distances: The two

graphs show the convolution window distance between the same pair of

sequences. On the left is the distance calculated using GTR, on the right

the distance calculated using the JC69 model. In both case the window

size is 500. Because of numerical stability we choose a window of 500, a

window of size 300 would cause possible numerical instability during the

calculation involving GTR model. On avarage 1 out of 3 from the GTR

distance calculation gives results with such fluctuation. . . . . . . . . . . 19

5.1 Workflow for the Classification of convolution window Distances . . . . 22

5.2 Class Diagram for data organization . . . . . . . . . . . . . . . . . . . . . 24

5.3 Illustration of how Gaussian Naive Bayes work . . . . . . . . . . . . . . . 27

5.4 Example of ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Example of Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Illustration of how Gaussian Naive Bayes work . . . . . . . . . . . . . . . 30

vii



List of Figures

6.1 From the comparison plot in 6.1a we can see that there is no large difference

between patristic tree distance and model-based evolutionary distance.

This result fits to our theory, since we are comparing single gene trees

with their respective sequences and it should not have any discordance. . 34

6.2 In the comparison plot 6.2a we observe some discordance between the

patristic tree distance and model based evolutionary distance. We could

not find any explanation for the discordance. . . . . . . . . . . . . . . . . 34

6.3 There are two values of 20 in the comparison plot 6.3a, from analysis of

the method used in calculating model-based evolutionary distance this

extreme value is caused by numerical problems. For example, when a

logarithm of extremely small number is encountered the output is set

manually by the distance calculation library we used. In this case it is

set to 20. While setting a concrete number for the distance when the

computation is undefined is valid in some contexts, four our purposes it

was seriously biasing results, so we had to discard results such as these. . 35

6.4 Two gene trees that are used to generate sequences used in the following

convolution window calculation and respective linear regression. The

HGT event happens to node 1_0_0. . . . . . . . . . . . . . . . . . . . . . 37

6.5 Distance between sequence 1_0_0 and 2_0_0: From Figure 6.4 we can

see that the node 1_0_0 is the object of a HGT event. In the convolution

window distance we can see a peak at position between 450 and 500.

However, the squared error is relatively low and the distances show trend

to increase with the increase of convolution window start position. . . . 37

6.6 Distance between sequence 1_0_0 and 3_0_0: From Figure 6.4 we can see

that the node 1_0_0 is object of a HGT event. The distance between two

sequences has the trend to increase with the movement of convolution

window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Distance between sequence 1_0_0 and 4_0_0: From Figure 6.4 we can see

that the node 1_0_0 is the object of a HGT event. The plot has two small

peaks, but in general the distance shows the trend to decrease with the

convolution window movement and the squared error value is relatively low. 38

6.8 Distance between sequence 1_0_0 and 5_0_0: From Figure 6.4 we can see

that the node 1_0_0 is the object of a HGT event. The plot shows a general

trend of decreasing, the squared error which indicates the deviation of the

points is relatively low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.9 Distance between sequence 2_0_0 and 3_0_0: From Figure 6.4 only 1_0_0

is object of HGT event. In this plot there is no HGT event happening. We

can see a relative high squared error, before it was lower than 0.025, in

this plot it is about 0.046. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.10 Distance between sequence 2_0_0 and 4_0_0: From Figure 6.4 only 1_0_0

is object of HGT event. This plot does not have a clear trend of increasing

or decreasing. Therefore the slope is relatively low with 0.0004 while

other plots have a slope of 0.001. The squared error is also high due to the

disagreement between data points and the linear regression line. . . . . . 40

viii



List of Figures

6.11 Distance between sequence 2_0_0 and 5_0_0: From Figure 6.4 only 1_0_0

is the object of HGT event, and so we would expect to see no relationship.

In Figure 6.10, this plot has a non linear relation between distance and

convolution window position. It also has a high squared error (0.06) and a

low slope value (0.00001). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.12 Distance between sequence 3_0_0 and 4_0_0: From Figure 6.4 only 1_0_0

is the object of HGT event. Also this plot has a non linear relation between

the distance and convolution window position. It also has a high squared

error of 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.13 Distance between sequence 3_0_0 and 5_0_0: From Figure 6.4 only 1_0_0

is the object of HGT event. Also this plot has a non linear relation between

distance and convolution window position. It also has a high squared error

of 0.042. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.14 Distance between sequence 4_0_0 and 5_0_0: From Figure 6.4 only 1_0_0

is the object of HGT event. Also this plot has a non linear relation between

distance and convolution window position. It also has a high squared error

of 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.15 Result Distribution that contains all the data and their class . . . . . . . . 43

6.16 Logistic Regression Plots: The three plots show the result from the Logistic

Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.17 GaussianNaive Bayes Plots: The three plots show results from the Gaussian

Naive Bayes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.18 Support Vector Machine Classifier Plots: The three plots show results from

the Support Vector Machine (SVM) Classifier. . . . . . . . . . . . . . . . . 46

6.19 Random Forest Classifier Plots: The three plots show results from the

Random Forest Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.20 Extreme Gradient Boosting Classifier Plots: The three plots show results

from the Extreme Gradient Boosting Classifier. . . . . . . . . . . . . . . . 48

ix





List of Tables

5.1 Advantages and Disadvantages of Machine Learning Methods Used in HUGS 25

xi





1 Motivation and Contribution

The phylogenetic tree concept is used to illustrate the evolutionary relationships among

different species. It is also known as the tree of life or simply called phylogeny. The first

evolutionary tree was sketched by Charles Darwin in 1837 in his seminar work "On the

Origin of Species. It was the first sketch of the tree of life and has ever since remained one

of the central ideas of evolutionary biology. Today, the concept of a phylogenetic tree is

widely used in studies on the evolution of species, including mapping the changes in the

species’ feature, which mught include DNA solutions, to analyze the historical path of

evolution [1]. Additionally, this useful research tool also plays an important role when it

comes to classification of metagenomics, especially for viruses and bacteria.

For historical and computational reasons, evolutionary relationships between species are

usually assumed to be tree-like. This is to say, the tree does not contain any reticulations,

or places where the two species merge again.

However, when phylogenetic trees are inferred from complete genome sequences, some

discordance between the inferred phylogenetic tree and the actual true evolutionary his-

tory of the species can be observed. Apart from errors during the inference process, such

discordance can also be caused by events such as Horizontal Gene Transfer (HGT) and

Incomplete Lineage Sorting (ILS) [2]. Both, ILS and HGT events affect the evolutionary

history of genes. For example the gene from other organisms can be passed to host or-

ganisms via HGT. The transferred gene has a different evolution history from the host.

The Difference will cause confusion when we analyze the evolutionary history of the host

organism leading to a incorrect phylogenetic tree.[3]

The goal of this thesis is to identify this process and detect incorrect trees by recognizing

events such as HGT and ILS. Because the evolutionary history of genes and the evolu-

tionary history of species are different in these cases, we check if the distance computed

between taxa of a tree are in the line with the distance computed from the alignments

only. The distance computed using the phylogenetic tree is denoted as tree distance or

patristic distance.The model-based evolutionary distance represents then the distance

between alignments. By comparing the two distances we may notice some anomalies

which might represent evidence of the presence of ILS and HGT events. However, in our

work we only simulate HGT events because ILS simulation is more complicated than HGT

simulation. Furthermore ILS may also bring further complication to the simulated samples

and sometimes it is very difficult to identify the impact of ILS events.

In this thesis, we develop HUGS(Horizontal event detection Using Generalized Statis-

tics). HUGS is a tool that takes gene trees and per-gene alignments as inputs and infers

1



1 Motivation and Contribution

a prediction about the presence of HGT events. For the prediction algorithm, we deploy

current state-of-the-art machine learning methods to attain better results. This tool will be

expected to serve as guide to detect HGT events that can compromise the phylogenetic tree.

The next chapter (Chapter 2 introduces the background information and required

definitions. Chapter 3 covers the comparison between tree distances and model-based

evolutionary distances. It is followed by a naive sliding window approach (Chapter 4). Here

the sliding window is applied to model-based evolutionary distances in order to obtain

results with higher resolution. These results are then used for classification (Chapter 5).

We attempt to classify the biological dataset into two groups. One group contains datasets

where we observe one or more HGT events in the gene trees and the other comprises

datasets is the opposite group where we do not observe any HGT events. Results are

then presented in Chapter 6. Finally, we discuss the results and provide a brief outlook in

Chapter 7.

2



2 Introduction

The patristic distance, this is to say the node distance which incorporates branch lengths,

are derived directly from the phylogenetic tree, provided the tree has meaningful branch

lengths. A model distance is calculated from from the comparison of 2 gene sequences. In

the case that the model and the tree are correct, there should be a correlation between

these two distances. In this thesis we will investigate these correlations and cases when

this expected correlation is violated.

The remainder of this chapter is organized into two parts. In the first part (Section 2.1)

we present the necessary background information and introduce the required definitions.

In the second part (Section 2.2) we will discuss related work.

2.1 Theoretical background

In this section, a basic theoretical foundation is provided. Wewill first differentiate between

gene trees and the species tree. This is followed by an introduction to Horizontal Gene

Transfers and hybridization events and their consequences for phylogenetic inference.

Finally, we will introduce tree distances and model-based evolutionary distances and how

to calculate them.

2.1.1 Gene Trees and Species Trees

Both species trees and gene trees are specialized phylogenetic trees. Species trees describe

the evolutionary relationships between species and the gene trees describe the evolutionary

relationships for single genes. The species tree reflects the evolutionary history of a group

of species. Each branch in a species tree represents an evolutionary step that relates the

ancestor species and its offspring. On the other hand, a gene tree reflects the evolutionary

history of a particular gene. The gene tree reflects the process of evolution at a local level.

Events such as gene duplication, gene loss and gen transfer can influence the course of a

gene’s history making the evolutionary history represented by gene trees different from

the species history. In fact, gene duplication is one of the most important mechanism of

evolution [4]. Gene copies generated by duplication events are passed to the offspring

creating numerous possibilities for the tree [5]. The relation between species tree and gene

tree can be seen in Figure 2.1. In general, the history of a single gene is different from the

history of the species and should not be treated as the species history. There are attempts

that try to build a species tree from a set of gene trees and vice versa [6][7]. However,

these methods always have very strict prerequisites that are in some cases difficult to

achieve [7].

3



2 Introduction

Figure 2.1: Simple illustration of gene tree and species tree: On the top left is a simple

gene tree with three genes. On the top right is the corresponding species tree

with three species: human, cat, and fish. On the bottom is the combination of

the trees, the dark blue lines represent the species tree and the grey lines are

the gene tree with some duplication, specialization, and gene loss events.

2.1.2 Horizontal Gene Transfer

Horizontal Gene Transfer (HGT) or Lateral Gene Transfer (here referred to as HGT) is the

event that is used in this thesis to explain and simulate discordance between trees. Themain

source of HGT is the exchange of genetic material between different organisms of either

the same or different species. Although HGT is more common in bacteria (e.g., transfer

from one bacterial species to another), it can also have other more complex organisms

as recipients, such as fungi, plants, and animals [8]. HGT is also important regarding

human health as it affects the development, emergence and recurrence of diseases such as

cancer, genetic-, metabolic-, and neurodegenerative disorders [9]. HGT often influence

the inference of phylogenetic trees [10] as shown in Figure 2.2.

2.1.3 Hybridization

Apart from HGT, hybridization is another major cause of incongruence among gene and

species trees. Both HGT and hybridization occurs in the nature, hybridization is a com-

bination of two lineages that lead to a new species. When we include a node that was

generated by hybridization event it do not follow the assumption of evolution from a

common ancestor. In fact, some of its genes may not share any evolution history with

other nodes of the phylogenetic tree.

4



2.1 Theoretical background

Figure 2.2: Influence of HGT in the tree inference process: Dark blue lines represent

the species tree, grey lines represent the gene tree. On the left is the true

evolutionary history. As we can see, a HGT event will yield the incorrectly

inferred tree on the left.

2.1.4 Tree Distances

In this thesis, the tree or patristic distance is a pairwise distance defined as the length

of the shortest path between pairs of taxa. The species trees and the gene trees which

we use in this thesis have branch lengths that can be used to calculate tree or patristic

distances. However, we are only interested in gene trees since species trees are in general,

not observable. A species tree shows the evolutionary history of a set of species but we

cannot use it to analyze the evolution history of genes and therefore we cannot use it for

detecting HGT events that happened in gene level. Apart from the branch length we can

also use the number of inner nodes to calculate a node distance, which is straightforward.

The node distance may be sufficient for our needs because this thesis is focused on the

structure of the tree rather than its other value.

2.1.5 Model-based Evolutionary Distances

The distance between sequences is normally used to compute distance matrices that are

then used for inferring phylogenetic trees using method such as Maximum Likelihood

(ML). It is defined as the mean expected number of substitutions per site. In our case, we

only calculate the distance between two sequences. The simplest distance measure is to

count the number of different sites and this distance is also referred to as the p-distance.

However, this method usually underestimates the true number of substitutions. Even sites

that remain invariant can be the result of multiple substitutions [11]. Time-continuous

Markov Chain models can be used to address this issue. In these models, sites are assumed

to evolve independently from each other and substitutions at each site are described by a

Markov Chain. Each change of state of the Markov chain only depends on the current

state, therefore each substitution depends only on the current state of the site. Besides the

use of Markov Chain, other restrictions, such as setting relative substitution rates between

nucleotides, may be added leading to different models. The distances that we obtain by

using these models are then called model-based evolutionary distances. In this thesis we

mainly use two models, the simplest one, JC69 (Jukes-Cantor 1969) and the most complex

one in common use, GTR (General Time Reversible) .

5



2 Introduction

2.1.5.1 JC69 (Jukes and Cantor 1969)

The JC69 model [12] is a very simple model with equal base frequencies 𝜋 = ( 1
4
, 1
4
, 1
4
, 1
4
)

and equal mutation rates _ for all nucleotide. Using 𝑞𝑖 𝑗 to indicate the substitution rate

from nucleotide 𝑖 to nucleotide 𝑗 , with 𝑖, 𝑗 = 𝑇,𝐶,𝐴 or 𝐺 the instantaneous substitution

rate matrix is the following:

𝑄 𝐽𝐶69 = 𝑞𝑖 𝑗 =


−3_ _ _ _

_ −3_ _ _

_ _ −3_ _

_ _ _ −3_

 (2.1)

The JC69 model distance is given by

𝑑 𝐽𝐶69 = −3
4

(𝑙𝑛(1 − 4

3

𝑝), (2.2)

where 𝑝 is the aforementioned p-distance. Note that if 𝑝 >= 3

4
the JC69 distance is not

defined, as 1 − 4

3
𝑝 is negative in this case, and the logarithm of a negative number is not

defined. This means that sufficiently different gene sequences may lead to errors in JC69

distance calculations.

2.1.5.2 GTR (Tavaré 1986)

The Generalised Time-Reversible (GTR) model of Tavaré 1986 [13] is a more complex

model that uses variable base frequencies 𝜋 = (𝜋𝑇 , 𝜋𝐶, 𝜋𝐴, 𝜋𝐺 ). Additionally, the mutation

rates are also different for each nucleotide transition pair and are denoted by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒

and 𝑓 . Its substitution matrix is the following:

𝑄𝐺𝑇𝑅 = 𝑞𝑖 𝑗 =


∗ 𝑎𝜋𝐶 𝑏𝜋𝐴 𝑐𝜋𝐺

𝑎𝜋𝑇 ∗ 𝑑𝜋𝐴 𝑒𝜋𝐺
𝑏𝜋𝑇 𝑑𝜋𝐶 ∗ 𝑓 𝜋𝐺
𝑐𝜋𝑇 𝑒𝜋𝐶 𝑓 𝜋𝐴 ∗

 (2.3)

Where * is whatever value such that each row should sum to 0. As GTR is more general

model with more free parameters, it is suggested to estimate the GTR distance using the

Maximum Likelihood method. However it is possible solve the problem analytically by

diagonalizing 𝑄𝐺𝑇𝑅 : one eigenvalue of 𝑄𝐺𝑇𝑅 is 0, so the characteristic equation is a cubic

equation which is solvable [11].

2.2 Related Work

In this section related works such as previous studies on HGT events are presented. In

particular we will describe how HGT are detected in these works. Today the methods

that identify HGT are divided into two groups, one sequence-composition related and the

other one phylogenetic tree related [14].

6



2.2 Related Work

The sequence-composition methods, or sometimes referred as parametric methods,

search for sections of genome that are significantly different from the average genome

regions. In particular, Guanine-Cytosine content and condon usage can be used as param-

eters [15]. Guanine-Cytosine content, or simply GC-content, is the percentage of Guanine

(G) and Cytosine (C) in a DNA molecule. GC-content can be given for a section of the

genome or for the entire genome. Condon usage refers to the difference of occurrence of

synonymous condons in coding DNA. The major disadvantage of this method is that it

relies too much on compositional pattern, this will lead to problem when the compared

sequence share similar composition. Furthermore, the length of the transferred gene may

be too short to reveal the differences between compared sequence [16].

The phylogenetic methods compare the different evolution history of involved genes

and identify conflicting phylogenetic trees. Phylogenetic methods can be further divided

into implicit methods and explicit methods. Explicit methods try to explicitly reconstruct

and compare gene trees with their species tree [17]. On the other hand implicit methods

compare evolutionary distances or sequence similarity [18]. In general implicit methods

are simpler than explicit methods because they do not require tree inference. Explicit meth-

ods, on the other hand, can give more details for HGT events, such as when it happened.

However, the conflicting evolution history can be the result of events other than HGT

event. Phylogenetic methods also requires tree inference or Multiple Sequence Alignment

which are relatively expensive[14]. Apart from the use of traditional phylogenetic tree,

phylogenetic network can also be used in detecting HGT events [19]. Phylogenetic network

is a modification of phylogenetic trees, where reticulation points are added. Reticulation

points are points where two branches comes together to form a new species.

Parametric method and phylogenetic method can also be combined in order to get better

results [20]. More related to our work, there are also previous attempt to detect HGT events

using evolutionary distances such as DLIGHT [21]. Furthermore, there are approaches

that uses machine learning methods, in particular deep residual neural network, to detect

HGT events which gives good results [22].

7





3 Comparing Tree and Model-based
Evolutionary Distances

In this chapter, we will describe in detail how we compared the patristic tree distance and

model-based evolutionary distance. This is our first attempt in order to investigate the

effect of HGT event on the tree structure. The patristic tree distance is calculated from the

gene trees while the model-based evolutionary distance is calculated from the per-gene

sequence alignments. We intend to find some connections that connect HGT events to the

relation between the patristic tree distance and the model-based evolutionary distance.

When there is a conflict between the distances, there may also be a HGT event taking place.

In Section 3.1 we describe the process of comparing patristic tree distance and model-

based evolutionary distance. The following section (Section 3.2) covers the data simulation

and the tools used during the simulation process. Section 3.3 describes how the patristic

tree distance and the model-based evolutionary distance are calculated. Finally Section 3.4

describes how we represent the simulated data and the calculated distances.

3.1 Workflow

The section is divided into two parts. The first covers data simulation. We simulate the

species tree and the gene trees using the software tool Simphy [23] and corresponding

sequences using the simulator INDELible [24]. The second part describes the software

that calculates and displays the distances on the simulated data. The main program, which

is our contribution, is written in Python, while the simulation tools are implemented in C

and C++.

Figure 3.1 shows the detailed workflow. There are five main modules:

1. Generate gene tree and species tree using Simphy

2. Generate sequences from the simulated tree via INDELible

3. Calculate patristic distances on the simulated gene trees

4. Calculate GTR or JC69 distances on the simulated sequences

5. Display the calculated distances as tables and diagrams

We start by separately simulating the tree and subsequently the sequence data. The

simulators are invoked via the command line tool of the Python program, as sub-processes.

9



3 Comparing Tree and Model-based Evolutionary Distances

Figure 3.1: Workflow for comparing Tree and Model-based Evolutionary Distances

The simulated species tree and gene trees are in standard Newick tree format. The

corresponding simulated sequences are in the standard PHYLIP format. These data are then

used to calculate the patristic tree distances and the model-based evolutionary distances,

respectively. The calculated distances are then displayed in the display module as tables

or graphs. The display module also saves the calculated distance matrices and graphs in

local files.

3.2 Data Simulation

Generating a sufficient amount of data is an important aspect of our work as a relatively

large amount of data should be used to support our theory. Further, these data should

be comparatively simple. Ideally each dataset should only have one HGT event. In this

way, the influence of other events, such as gene duplication and ILS events, is reduced to

a minimum and does not impact the results. For the sake of simplicity, we further only

consider HGT events between two genes. In our work we only simulate two genes per

species tree. Theoretically this should not affect our result, as we can also conduct the

pairwise gene comparison for multiple genes. To reduce execution times of the analyses,

we limit the length of our simulated sequences to 1000 nucleotides.

In the simulation process we first simulate one single species tree. The corresponding

two gene trees are then simulated from this species tree. In the next step, these gene

trees are used for simulating corresponding gene sequences. For the simulation of the

species tree, the parameters used are: speciation rate, population size, substitution rate,

generation time, number of taxa, and tree height. Number of taxa is set to five, population

size should be as small as possible to avoid ILS events, for other parameters we consult

the tree samples provided by the simulation tool in order to have reasonable values. The

simulation of gene trees is conducted automatically with only the desired number of genes

as input. The simulated trees are saved under the src/data/Simphy/dataset_name folder

as .TREE files in Newick tree format.

10



3.3 Distance Computation

The simulated gene trees are then used as inputs to the sequence simulator. Additional

information such as sequence length and evolutionary models must also be provided to

INDELible in order to correctly simulate gene sequences. This information is provided to

the simulator via a configuration file. It is important to notice that INDELible only uses

the gene trees to simulate the sequences, that is, it does not know their species tree. The

simulated sequences are already aligned and are saved in separate PHYLIP files, one file

per gene. The output sequences are saved in the same folder as the trees. In order to be

able to use these sequences for distance calculations, corresponding gene alignment pairs

must be concatenated into a single large PHYLIP file.

3.2.1 Simulation tools

For the simulation of trees we would like to have gene trees that are closely related to gene

sequences. Furthermore, gene trees should also be related to their respective species tree.

While the simulation of tree data can be conducted by manually generating simple trees

with some realistic branch lengths, determining realistic branch length values was more

difficult than expected. We started with widely used sequence simulators such as Seq-gen

[25] and Dawg [26]. However, they do not support the simulation of tree shapes/topologies.

Both simulators accept tree data as input, but they do not provide information on how

a realistic tree should look like. Thus, in order to simulate tree shapes we used Simphy

[23] which offers the possibility to simulate both, gene trees, and a species tree. For the

sequence simulation we decided to use INDELible [26] because it offers a better integration

with Simphy.

3.3 Distance Computation

Regarding computation of model-based evolutionary distance, the ability to deploy multi-

processing is of great importance. During the computation of model-based evolutionary

distance there is a large amount of data involved. Therefore the model-based evolutionary

distance computation must support the possibility of multi-processing. We also must

taken the possibility of future optimization into consideration. Thus, the model-based

evolutionary distance computation must be easily extendable.

On the other hand, the computation of patristic tree distances is straight forward, as

all information required is already contained in the Newick formatted tree. However,

the patristic distance is not calculated directly from the original simulated newick tree.

Instead, we load the Newick tree to construct a new datastructure that best fit the tree

behaviour, using methods that are provided in the Biopython library. The distance is then

calculated from that tree data structure. The pairwise patristic tree distances are saved in

a symmetric distance matrix for future use. The distance matrix is defined as 𝐷𝑡𝑟𝑒𝑒 = [𝑑𝑖 𝑗 ]
where 𝑖, 𝑗 ∈ {1...n}, with n being the number of taxa. We also compute the node distances,

as defined in Section 2.1, and save them in another symmetric matrix for future use. For

more details on tree distances computation please refer to Section 2.1.

11



3 Comparing Tree and Model-based Evolutionary Distances

The model-based evolutionary distances are more difficult to compute. First we have to

decide which evolutionary model to use. The first model we attempted was JC69 because

of its simplicity and because of its computational efficiency. The alternative model we

consider is the GTR model, as it is more general and might reveal details that we could

miss under simple models. We use the already implemented methods in the PyCongent

library to calculate these two model-based evolutionary distances. The calculations under

the JC69 model are very fast. The GTR model requires about 1 minute for calculating all

pairwise distance between five sequences each of length 1000. We decide to optimize the

model-based evolutionary distance calculation using multi-threading. On a test hardware

system using 4 threads will substantially reduce the computing time to under 1 minute

for the distance calculation using GTR model, we have a latency speedup of about 3.13.

Test hardware system has the following configuration: Inter(R) Core(TM) i7-4702HQ

CPU (2.20 GHz) with 4 cores, 8 GiB of system memory. The results of the model-based

evolutionary distance calculations are also saved in symmetric matrices. In addition, to

facilitate the comparison of distances the ordering of the sequences corresponds to the

ordering of the tree taxa, which are sorted alphabetically on their name. The distance

matrix is 𝐷𝑚𝑜𝑑𝑒𝑙 = [𝑑𝑠𝑖𝑠 𝑗 ] where 𝑠𝑖 = is the sequence that corresponds to taxon 𝑖 and 𝑠 𝑗 = is

the sequence that corresponds to taxon 𝑗 .

3.3.1 Distance calculation tools

The patristic tree distance calculation can be easily implemented from scratch. However,

we need a parser which should be able to read and write tree and sequence related data

formats. Biopython [27] is one of the most comprehensive python bioinformatics libraries.

It has a well structured API that is well suited for our purpose. Therefore, we use it for

all our basic data structures such as phylogenetic trees and aligned sequence data. For

calculating model-based evolutionary distances, we need to search for other libraries.

Biopython does not offer any functionality related to evolutionary models. To this end,

we employ another library called PyCogent (Python COmparative GENomic Toolkit) [28]

which implements numerous functions related to evolutionary models.

3.4 Visualization

Displaying is the last step of the workflow. After having computed the patristic tree

distances and the model-based evolutionary distances, we need to compare and visualize

them. The distance matrices can be visualized by using the tabulate module [29]. The

tabulate module is not part of the standard Python library. However, it is widely used

to display tables. An additional row and an additional column are added to specify the

headers, which contain names of tree nodes or names of the sequences. For our data

analysis, we decided to use a two dimensional histogram, where one column reflects one

distance between pairs of taxa (for the patristic tree distance) or pair of sequences (for

model-based evolutionary distances). To distinguish between the two types of distances we

use different column colors. An example for the 2d histogram can be seen in Figure 3.3. In

addition to the visualization of distances, we can also display the simulated tree. The tree

12



3.4 Visualization

(a) Phylogenetic tree printed in command line as

ASCII-art

(b) Phylogenetic tree as .PNG picture

Figure 3.2: Example of how the phylogenetic trees are shown

Figure 3.3: Example of a two dimensional histogram used to compare the patristic tree

distances and model-base evolutionary distances

display can be done, both using the commandline as output (in form of an ASCII-art) or

we can simply generate a picture of the tree. Both methods are available in the Biopython

library, examples can be seen in 3.2.

After visualization we need to save our results. The Distance matrices are saved under

src/data/Simphy/dataset_namefolder/results/ as .TXT files. Tree pictures are saved

under src/data/Simphy/dataset_namefolder/pictures/ as .PNG files.

3.4.1 Visualization tools

The library used to display matrices is the tabulate module. Its main purpose is to display

tables. It accepts lists and arrays as input and returns a printable object as output. The

printable object can either be saved as file or printed on the screen. In order to compare

13



3 Comparing Tree and Model-based Evolutionary Distances

the matrices, histograms are used. Matplotlib is well suited for drawing different types

of diagrams. Matplotlib is a library that is mainly used for data visualization in Python

language, it can plot 2D and 3D graphs, it provides interactive tools and animation pos-

sibilities. Finally, we use the Python standard library for saving our results into local

files.

14



4 Naive Convolution Window Approach

From the direct comparison between patristic tree distance and model-based evolutionary

distance there was no evidence for HGT events. An important issue is that we only calcu-

late the patristic distance for a single gene tree and then compare it to the model-based

evolutionary distance of the respective gene sequence. It is difficult to detect HGT event

when only one gene is taken into consideration. Theoretically, an incoherence between

the two distances could be observed between distinct genes. A method that allows us to do

such analyse is the use of convolution window. When using the convolution window we

combine sequences from two gene into a single sequence, which is then used for convolu-

tion algorithm. Thewindowwill slide from a sequence to another giving different distances.

In this chapter, we will present how to deploy the convolution window approach to

better analyse the relation between gene tree patristic and the model-based evolutionary

distances. We will introduce convolution windows in Section 4.1 and outline how we use

it in HUGS 4.2. There are some challenges which we present in Section 4.4.

4.1 Introduction to Convolution

A convolution algorithm is a straight-forward algorithm where a window with fixed size

moves along the data to capture different portions of it. It is generally used for large

datasets such as genomic sequences or image processing. In fact, the convolution window

algorithm is a commonly used method for studying the properties of genome sequences.

Instead of a single value, the convolution window provides a moving value for a window

of a specific length that moves along the sequence. When the length of the window is too

wide then the accuracy of the sliding window decreases, when the length is equal to the

sequence length then the result will be the same as normal distance calculation. If the

window length is too small there may be numerical problems, for further details please

refer to Section 4.4. In our case, instead of a single model-based evolutionary distance, a

convolution window approach provides a series of consecutive model-based evolutionary

distances that change along with the window position.

4.2 Application and Discoveries

In HUGS, for an input sequence with a length 1000 nucleotides (500 per gene), we use a

window of 300 nucleotides length and a stride length of 1. We choose a window size of

300 because this is the smallest window size that we can use without causing numerical

15



4 Naive Convolution Window Approach

(a) Example of the convolution window approach

visualization where HGT is not present

(b) Example of the convolution window approach

visualization where HGT is not present

Figure 4.1: Example of the convolution window approach visualization using the JC69

model: on the top are the names of the compared sequences, on the x-axis is

the distance computed for every window position, and on the y-axis is the start

and end position of the window

errors during the calculation, for details please refer to Section 4.4. The implementation of

the convolution window relies on the original distance calculation methods, presented

previously in Section 3.3. To achieve this, we pre-process the the data. Instead of a single

sequence with a length of 1000 nucleotides, we break it into a list of sequences of length

300. This list of shorter sequences is then used for model-based evolutionary distance

calculation. The result of the distance calculation is no longer a single distance matrix, but

a list of distance matrices, each corresponding to a different convolution window position.

As before, the convolution window results are saved in .TXT files in the folder src/data/

Simphy/dataset_namefolder/results/. However, the visualization method used for the

convolution window results is different. Before, we plotted all the pairwise distances in

a single graph. For the convolution window, we use a separate graph for each pair of

sequences. In each graph, we plot the model-based evolutionary distance obtained on

the y-axis, while on the x-axis we display the positions of the convolution window. An

example such a graph is shown in Figure 4.1.

In the graphs that we generated for the convolution windows, we can observe some

patterns. If no HGT events occur, the values of the convolution window distance graphs

are likely to be uncorrelated. In particular the distances (on the y axis) are uncorrelated

with the convolution window position (on the x axis). If HGT events do occur and we

observe the distance between the transferred taxon and other taxa, we can observe a

correlation between the distance value and the window position. The distance will either

16



4.3 Linear Regression

gradually decrease with the window movement, or it will gradually increase. Figure 4.1a

provides an example for an uncorrelated plot while Figure 4.1b provides an example for a

correlated plot.

This observation indicates that the the convolution window distances can be used for

detecting HGT events. Since the convolution windows distance approach appears to be

more promising than the comparison between patristic tree distances and model-based

evolutionary distances, we decided to use the convolution window approach for further

experiments. It is important to note that the convolution window distance is the model-

based evolutionary distance calculated using convolution window algorithm. It does

not use the patristic tree distance. Therefore, using exclusively the convolution window

distance also means that we disregard patristic tree distances for further experiments.

4.3 Linear Regression

In order to assess the utility of our discovery and to further explore the observed property,

we use the Linear Regression on the convolution window distance points to obtain a line

that best fit the distance points. Linear regression is a mathematical approach for modeling

the relationship between two numerical values. In our case it finds a line that best fits

the points of the convolution window distance graph. In particular it uses least square

method to minimize the squared error between the line and the points. The squared error

is defined here as the sum of the square of distances from each point to the line. In order to

better compare different results, we normalized the data and we calculated the deviation

of the points from the line and the slope of the line itself. The normalization is done by

mapping sliding window distances, which are positive real numbers, into a range between

0 and 1. An example of the linear regression used on the convolution window data can be

seen in Figure 4.2. We compared slope and deviation on different graphs and decided that

these two calculated values can be used as parameters that well describe the convolution

window distance graph. We calculated the deviation and the slope for all convolution

window distances and saved them as two dimensional vectors. In order to calculate linear

regression on our data, we use the Sklearn library [30], which is a widely used Python

machine learning library.

4.4 Challenges

There are few challenges when computing the convolution window distance for pair of

sequences. One challenge is related to the computation time. For a sequence length of 1000

and a window size of 300, we need to compute 700 model-based distances. Therefore, we us

a multi-threaded calculation where multiple distances at distinct convolution window posi-

tions are calculated in parallel. We calculate distances only once and we save them in local

files. When data are needed, they will be simply loaded from local files. Since we will reuse

the same dataset multiple times this approach will reduce the computing time in the future.

17



4 Naive Convolution Window Approach

Figure 4.2: Example of linear regression on convolution window data: on the top are the

names of the compared sequences, on the x-axis is the normalized distance and

on the y-axis is the starting position of the nucleotide

Another major issue encountered were the numerical problems during the distance

calculation. Since we use a convolution window, the input length for the distance calcula-

tion decreases from 1000 to the size of the convolution window. This leads to numerical

problems when the size of the convolution window is too small. During the distance

calculation if the input sequence is too short and there are too many substitutions, the

p-distance (defined in Section 2.1.5) may be larger than the limit value leading to logarithm

of negative number. According to our tests a convolution window smaller than 300 will

lead to errors. This is also why we decided to adopt a window of size 300. Interestingly,

the distances calculated using the JC69 model seem to be more stable than the distances

calculated using the GTR model. In particular, in order to be correctly calculated the dis-

tance calculation using the GTR model requires a larger window size than the calculation

using JC69 model. A possible explanation for this lays in the calculation process for the

GTR model. During the calculation of GTR distance, numerical methods are used. Often

the average of observed nucleotide frequencies is used to estimate the base frequencies.

However the value may fluctuate too much when the length is too small. Furthermore,

when a base frequency is zero it will cause the logarithm of a negative number. When

both are correctly calculated, the two models do not show substantial differences in the

results. However, the GTR model requires consistently more time to be calculated, on

average 3 time slower than the JC69 model. We therefore decided to use the JC69 model

for our convolution window distance calculations. A Comparison between the distance

calculated using the two models can be seen in Figure 4.3.

18



4.4 Challenges

(a) convolution window distance calculated using

GTR model

(b) convolution window distance calculated using

JC69 model

Figure 4.3: Comparison between the JC69 model and GTRmodel distances: The two graphs

show the convolution window distance between the same pair of sequences. On

the left is the distance calculated using GTR, on the right the distance calculated

using the JC69 model. In both case the window size is 500. Because of numerical

stability we choose a window of 500, a window of size 300 would cause possible

numerical instability during the calculation involving GTR model. On avarage

1 out of 3 from the GTR distance calculation gives results with such fluctuation.

19





5 Classification of convolution window
Distances

In this chapter we will describe how we classify convolution window distances. The main

features that we use for the classification are the two resulting values from the linear

regression (see Section 4.3 for details). We choose to model this problem as a binary

classification where we decide if gene transfer occurs based on the convolution window

distances. In particular, given a set of convolution window distance between pairs of

sequences we decide if one or more pairs of sequences contains evidence of HGT events.

In the following, we will first describe the workflow of the classification process in

Section 5.1. The datasets that are used in the classification are described in Section 5.2. In

particular, we will describe how they were generated. The data structures that we used

are described in Section 5.3. Section 5.4 covers the different machine learning methods

that are used for the classification as well as their strengths and weaknesses. The different

types of data visualization are described in Section 5.5.

5.1 Workflow

The workflow is divided into six modules, each with specific functions. The specific inputs

and outputs of the modules are outlined in Figure 5.1. Here is an overview of the six

modules:

1. Generate Sequence Data: takes the manually built trees and simulates sequences

on them with the INDELible tool.

2. Calculate convolution window Distance: takes the simulated sequences and

calculates the convolution windows distances using functions from PyCongent

library.

3. Linear Regression: takes the calculated convolution window distances and cal-

culates the linear regression line together with its slope and the deviation of the

distances from the line, the deviation can also be referred as squared error.

4. Data Preparation: takes the computed slope and the deviation and builds training

and test datasets using the Pandas library [31]. Pandas is a powerful library for data

analysis in Python language. We use the library to manage data that are needed for

the classification.

21



5 Classification of convolution window Distances

Figure 5.1: Workflow for the Classification of convolution window Distances

5. Classification: is a wrapper for the classification algorithms. It can use different

machine learning models to classify the convolution window data. It uses functions

from the Sklearn library [30]. Sklearn is a powerful library that provides various

implementation of machine learning methods in python language.

6. Plot Graphs: visualizes different kinds of data using the Matplotlib library.

The first part of the workflow is very similar to the one described in Section 3.1. First,

the gene trees are built manually, by modifying previously simulated trees. Since some

of the classification methods that we used are sensitive to noise and in order to reduce

the noise, we decided to build trees by hand. These manually modified trees are then

used to simulate sequences along them. The produced simulated datasets are then used

for distance calculations. The distances are calculated using the convolution window

approach under the JC69 model. The results are then used for linear regression, where

a regression line is computed. Furthermore, the deviation (in the form of squared error)

of the convolution window distances to the line are calculated. The slope of the line and

deviation need to be available before they can be used as features for the classification

step. Thus, the slopes and deviations are saved as a list of two dimensional arrays. This

list is then split into training data and test data. The classification is done using different

machine learning models such as: Logistic Regression, Gaussian Naive Bayes, Support

Vector Machine, Random Forest, and Extreme Gradient Boosting. Finally, the results of

the classification are displayed using distinct graphical representations: result distribution,

ROC curve, confusion matrices, decision boundaries. Also, the linear regression line can

be plotted, as the regression line was calculated previously during the linear regression

step.

22



5.2 Datasets

5.2 Datasets

In contrast to the approach in Section 3.2, the gene trees that we use are not completely

synthetic. We first simulate simple trees, then, we modify these tree by changing the

branch length(s) or by moving branches/taxa. The gene trees generated in this way are

simpler than the simulated gene trees, that is, the only HGT event that is the one we

inserted by manually modifying the tree. In this way there will be less noise when we

train the models. However, there are also problems related to the manually built trees,

which we will discuss in detail in Chapter 7.

We use sequences with a total length of 1000 nucleotides (500 for each gene). The con-

volution window size is set to 300 nucleotides. Sequences are generated from 70 different

pairs of gene trees with 4 or 5 taxa per tree. In total we have 140 sequences generated

from manually built trees. Not all sets contain HGT events, some sets do not contain any

events. The sequence simulation is conducted with INDELible (see Section 3.2.1 for de-

tails). Apart from the input trees, the remaining simulation steps are identical to Section 3.2.

After computing the convolution window distances, the dataset that will be used for

the classification is built from the linear regression of the convolution window results.

For each pair of distances, we compute the convolution window followed by the linear

regression to determine the deviation of points from the regression line. The dataset is a

list of two dimensional vectors, with the first entry of the vector representing the deviation

and the second entry the slope. For the training datasets, each entry is also be marked

with a classification marking, 1 for the correlated data (where HGT occurs) and 0 for the

uncorrelated data.

5.3 Datastructures

In order to orchestrate the input and output of different types of data, we have built

two classes: the Dataset and the Dataframe class. A class-diagram of the two classes

is shown in Figure 5.2. Each Dataset entity corresponds to sequence data simulated

on a single, specific pair of gene trees. The Dataset class contains simulation related

information such as: id, sequences, seq_length, g_trees, s_tree, taxa_names and

taxa_numbers. In detail, id is the identifier of the dataset, sequences saves the sequences,

seq_length is the length of the sequences, g_trees saves the two gene trees, s_tree is the

corresponding species tree, taxa_names is the list with name of taxa and taxa_numbers is

the number of taxa. It also saves information related to distance calculations such as: model,

model_distance, sliding_window_distance_list and tree_distance. In detail, model is

the model used to calculate evolutionary distance, model_distance is an matrix that saves

the calculated model-based evolutionary distances (it is calculated as the average of sliding

window distances) and sliding_window_distance_list is a list of distance matrix. It

offers methods for distance calculation, methods to read from and write to local files, and

methods to visualize the convolution window distances. On the other hand, the Dataframe

class is used to manage information that is needed during the classification. The Dataframe

23



5 Classification of convolution window Distances

Figure 5.2: Class Diagram for data organization

class contains a list of all Dataset entities. It also contains a pd_dataframewhich is a Pandas

Dataframe that can be directly used as input for classification and that can be exported

as .CSV file. The classification marking is saved under ys. The classification marking are

needed during the training phase. This class offers methods for writing and reading .CSV

files.

5.4 Machine Learning Methods Used

For the classification process, we compared results obtained from different machine learn-

ing methods: Logistic Regression, Gaussian Naive Bayes, Support Vector Machine, Random

Forest, Extreme Gradient Boosting. Almost all models are implemented in the Sklearn

library [30]. The recently introduced Extreme Gradient Boosting model is implemented in

XGBoost [32], which is an extension of Sklearn. In the following sections, we will shortly

describe these machine learning models. A summary of the strengths and weaknesses of

each model is provided in Table 5.1.

5.4.1 Logistic Regression

Logistic Regression is a regression algorithm that can be used for binary classification. It is

one of the simplest binary classification algorithms. It is very similar to linear regression,

but instead of finding the best fitting line, it fits the logistic function. The logistic function

is a sigmoid function that maps real values to a range between 1 and 0, in the classification

problem of the output is more or equal than 0.5 then it is classified to 0, otherwise it is

24



5.4 Machine Learning Methods Used

Machine Learning

Models

Advantages Disadvantages

Logistic Regression simple to implement, fast at

classifying

only supports linear decision

boundaries, assumes linear re-

lationship between variables

Gaussian Naive

Bayes

easy training process, works

well on large amounts of data

its assumptions about the

data not always true, relative

simple decision boundary

Support Vector

Machine

can handle non-linear data

with relative simple imple-

mentation with respect to

methods such as Random For-

est and Gradient Boosting

sensitive to noise and data

overlaps

Random Forest can handle a large number of

features (immune to curse of

dimensions)

requires more time and com-

puting power during training

phase because of large num-

ber of decision trees, sensitive

to over-fitting

Extreme Gradient

Boosting

often better accuracy than

other algorithms

requires even more time and

computing power during

training phase because of the

decision tree building process,

sensitive to over-fitting

Table 5.1: Advantages and Disadvantages of Machine Learning Methods Used in HUGS

25



5 Classification of convolution window Distances

classified to 0. In our case 1 is for the data that contains an HGT event while 0 is for

data without HGT events. During the training process, the sigmoid function that best

approximate the training data is found. In the respective classification process, the data

are classified using the trained sigmoid function. The key advantage of Logistic Regression

is that it is fast and easy to implement. This is also the main reason that we chose Logistic

Regression as one of the first models to try.

5.4.2 Gaussian Naive Bayes

Gaussian Naive Bayes is a variation of the Naive Bayes classification algorithm which is

based on Bayes’ Theorem and a strong assumption that the features are independent, in

our case the features are the slope of the linear regression line and the deviation of the

datapoints from the line. Gaussian Naive Bayes makes an additional assumption that the

data involved follows a Gaussian distribution. In particular, each class follows Gaussian

distribution, in our case the two classes are: class with data that contain HGT event and

class with data that do not contain HGT events. Different from other machine learning

methods, during the training phase there are not any parameter to be fit, we calculate only

the standard deviation 𝜎 and the mean of the points within ` the two classes from the

training data. During the classification the Probability of for the new input sample 𝑥 can

be defined using the previous calculated mean and standard deviation:

𝑃 (𝑥 |𝑦) = 1√︃
2𝜋𝜎2

𝑦

𝑒𝑥𝑝 (−
(𝑥 − `𝑦)2

2𝜎2

𝑦

). (5.1)

Where 𝑦 is one of the two classes, in our case the input x is the pair of deviation and slope

value. In order to classify the data the z-score of each input points from each class are

calculated. The z-score from one class is defined to be the distance from the mean of that

class divided by the standard deviation of the class, a picture explaining the z-score can be

seen in Figure 5.3. Each point is then classified according to their z-scores, the point will

be assigned to the class to which it has the smallest z-score.

One of the main weaknesses of Gaussian Naive Bayes are the assumptions that it makes.

Real data often do not satisfy its assumptions. In our case, the independence assumption

between features is satisfied, because the slope and the deviation of points are independent.

But we cannot prove that our data follow the Gaussian distribution, on the contrary,

from the distribution plot in Section 6.3 we can see that the data pattern is not typical of

Gaussian distribution.

5.4.3 Support Vector Machines

Support Vector Machines, or shortly SVMs, are also a comparatively straight-forward

machine learning algorithm. One of the key feature of SVMs is that they work in feature

space, instead of directly on the data. SVMs analyze the points in feature space and find a

line (in two dimensions) or a hyper plane (in higher dimensions) that best splits the two (or

more) classes. The lines or hyper planes are better known as decision boundaries. Using

26



5.4 Machine Learning Methods Used

Figure 5.3: Illustration of how Gaussian Naive Bayes work

SVMs we try to maximize the margin between decision boundaries and data points in

feature space. It is important to note that the decision boundary can assume different forms,

it does not have to be a simple line. We can handle non linear data by applying a kernel

technique . In short in the kernel technique we can use different mappings to map their

inputs into high-dimensional feature spaces in order to make the data from different class

easier to be separated. These mappings are generally called kernel. Popular kernels include:

Polynomial Kernel, Gaussian Kernel, Radial Basis Function (RBF), Laplace RBF Kernel,

Sigmoid Kernel and Anove RBF Kernel. When kernel technique is applied, the shape of

decision boundary changes to match. However, here we only used a linear kernel because

other simple kernels did not improve the results substantially and more complicated

kernels are very difficult to define for our dataset. In order to define complicated kernels

we have to study carefully our data and find or build the best mapping for it.

During the training phase we try to find the best decision boundary for our data. In

order to classify a data point, we simply compute which side of the decision boundary the

point is on. In this case, the decision boundary is just a line, so the computation is simple.

5.4.4 Random Forest

Before introducing the random forest approach, we need to explain what a decision tree

is. Decision trees are a classification algorithm which works in a similar way to a flow

chart. After a series of questions, the input samples can be classified based on the answers

to these questions. In particular, a tree can be built by splitting the training data into

subsets based on an attribute value test. This process is repeated on each derived subset

in a recursive manner, each split add a new layer of nodes. The recursion is completed

when target value is reached. The key idea behind the random forest algorithm is the

wisdom of crowds. In our context it means: when a large number of relatively uncorrelated

trees operates as a committee they will outperform any of the individual member tree. A

random forest uses a large number of decision trees that are built independently. Each

individual tree initially reaches an independent classification. The result of a random

forest algorithm is then obtained by a majority vote from the trees. During the training

phase, the decision trees are built from the training samples. These trees are then used for

classification of the actual data.

27



5 Classification of convolution window Distances

5.4.5 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost [32]) is a specific modification of the gradient

boosting algorithm. The word extreme refers to the fact that it pushes the limits of

computational power. The basic intuition behind boosting is to combine weak learners to

attain improved performance. In boosting algorithm weak learners are defined as classifier

that perform slightly better than random classifier. In our case, weak learners are the

decision trees. During the training phase, decision trees are built one after another. During

this iterative process, we attempt to reduce the miss-classification rates of the trees. In

general, extreme gradient boosting performs better than the Random Forest algorithm,

since theoretically its trees are better than the ones in a Random Forest.

5.5 Visualization

For data visualization we use different types of graphs. They are constructed using the

Matplotlib library [33]. For comparing the results from the distinct machine learning

methods, we generated ROC curves, confusion matrices, and decision boundary plots.

Furthermore, other graphs such as linear regression lines and result distributions can also

be visualized. Details about these graphs are presented in the following.

5.5.1 ROC Curve

ROC curve stands for receiver operating characteristic curve and it describes the trade-off

between true positive rate (on the y axis) as well as the false positive rate (on the x axis).

An ROC curve is perhaps the most common way to analyze the performance of a specific

machine learning classifier. The true positive rate (TPR) is related to the sensitivity of the

machine learning method. It is defined as𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 . Where𝑇𝑃 stands for True Positive

and is the number of samples that are classified as positive and that are truly positive. 𝐹𝑁

stands for False Negative and is the number of samples that are classified as negative but

are positive. 𝑇𝑃 and 𝐹𝑁 together forms the set of positive sample. The false positive rate

(FPR) is related to the specificity, in particular it is equals to 1− 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦. FPR is defined

as 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 , where FP stands for False Positive and indicates the samples that are

negative but are classified as positive, TN is True Negative and indicates samples that are

classified as negative and are negative.

For a totally random classifier, the ROC curve will be a straight line with the Area Under

the Curve (AUC) being exactly 0.5. For machine learning classifiers, the AUC should be at

least 0.7 in order to be usable [34]. For analyzing the performance of an algorithm, the

bigger the AUC the better is the algorithm. In particular AUC is directly connected to the

ability of a classifier to do the correct classification, for example an AUC of 0 means that

the classifier did all the predictions wrong and an AUC of 1 means that the classifier did

all the predictions correctly. An example for the ROC curve can be seen in Figure 5.4.

28



5.5 Visualization

Figure 5.4: Example of ROC curve

5.5.2 Confusion Matrix

Confusion matrix, or error matrix, is a relatively simple and straight forward way of

visualizing the results of classification methods. It is a 2x2 matrix with four fields: True

Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). An example

for the confusion matrix can be seen in Figure 5.5. The numbers in these fields represent

the number of samples in the respective categories. Hence, a confusion matrix displays

where the main errors of the classifier are.

An ideal classifier only has TP and TN, the other fields are 0. However, this is in general

not the case. Depending on the the usage of the classifier, some may tolerate a relatively

high FP rate and some may tolerate a high FN rate. In our case, we are more interested in

FP values.

5.5.3 Decision Boundary Plots

Decision boundaries are one of the best ways to represent distinct characteristics of

different machine learning classifier. Since each machine learning method has its own

characteristic decision boundary. The decision boundary plot is created by drawing a line

(or a plane in three dimensional space) in feature space. This line divides the data points

into two classes. Depending on the type of classifier, the line can be straight or a curve. In

extreme cases, the boundary is not represented as a single line. From the decision boundary

plot, we can observe how the classifier would classify a particular dataset. Additionally,

we may also observe possible over-fitting when the boundary is too fragmented as shown

in Figure 5.6.

29



5 Classification of convolution window Distances

Figure 5.5: Example of Confusion Matrix

Figure 5.6: Illustration of how Gaussian Naive Bayes work

5.5.4 Result Distribution

A result distribution is a single graph that visualizes all the data points from the dataset

along with their true classification. By comparing the result distribution to the decision

boundary plots, we can see which points are mis-classified by each classifier and how far

they are from the decision boundaries. Hopefully this information will help us adjusting

the classifier by trying to bring the mis-classified sample to the other part of the boundary.

5.5.5 Linear Regression Plot

A linear regression plot is a visualization method that we used to display previously

calculated linear regressions line that best fit the sliding window distance. Please refer to

Section 4.2 for linear regression computations. In the plot, the data points are displayed

together with the line and the deviation (or squared error). The slope of the line is displayed

as a real number for better comparison. By checking the linear regression line for the

30



5.5 Visualization

mis-classified samples, we may be able to find an explanation for the mis-classification

and try to improve the classifier.

31





6 Results

In this chapter we will describe the result from our experiments and tests. We will start

from the distances that we obtained from comparing patristic tree distance and model-

based evolutionary distances in Section 6.1. Then we will show examples of convolution

window distances and their linear regression plots in Section 6.2. Finally we will describe

various classification in Section 6.3. Because of the large number of pairwise distances

and the limited space, we will choose the most representative data for discussions and

analysis. All sequences and tree related data, calculated values and pictures can be found

under the folder src/data/Simphy/.

6.1 Tree and Model-Based Evolutionary Distances

In this section we will present a series of sequences with their respective gene trees, in

particular we will visualize the trees and the comparison between patristic tree distance

and model-based evolutionary distance.

Figure 6.1 is an example of comparison result between patristic tree difference and

model-based evolutionary distance. On the left of the figure we have the histogram that

compare the two distances and on the right we have the corresponding gene tree. We are

comparing single gene trees with their respective sequences, therefore, it should not have

any discordance. This result fits our theory. On the other hand, Figure 6.2 does not fit our

theory, however we could not find any explanation for the discordance. Figure 6.3 shows

a numerical problem during the distance calculation. The distance values of 20 is caused

by numerical errors. When there is a logarithm of a very small number the output is set to

20. This type of results are discarded because it will cause seriously biasing results.

33



6 Results

(a) comparison between patristic tree distance and

model based evolutionary distance

(b) respective gene tree with five taxa

Figure 6.1: From the comparison plot in 6.1a we can see that there is no large difference

between patristic tree distance and model-based evolutionary distance. This

result fits to our theory, since we are comparing single gene trees with their

respective sequences and it should not have any discordance.

(a) comparison between patristic tree distance and

model based evolutionary distance

(b) respective gene tree with five taxa

Figure 6.2: In the comparison plot 6.2a we observe some discordance between the patristic

tree distance and model based evolutionary distance. We could not find any

explanation for the discordance.

34



6.1 Tree and Model-Based Evolutionary Distances

(a) comparison between patristic tree distance and

model based evolutionary distance

(b) gene tree

Figure 6.3: There are two values of 20 in the comparison plot 6.3a, from analysis of the

method used in calculating model-based evolutionary distance this extreme

value is caused by numerical problems. For example, when a logarithm of

extremely small number is encountered the output is set manually by the

distance calculation library we used. In this case it is set to 20. While setting a

concrete number for the distance when the computation is undefined is valid

in some contexts, four our purposes it was seriously biasing results, so we had

to discard results such as these.

35



6 Results

6.2 convolution window Distances and Linear Regression Plots

In this section we will present a series of convolution window distances calculated from

one pair of gene trees together with the linear regression plots obtained from them. The

two gene trees are shown in Figure 6.4. Note that in this sample the HGT event happens

to node 1_0_0. For plots that do not contain 1_0_0 the non linearity between distance

and window position is quite evident, please refer to Figures 6.9, 6.10, 6.11, 6.12, 6.13 and

6.14. However, for plots that do contain 1_0_0, the linearity is not as evident as we hoped.

Figures 6.5 and 6.7 have small peaks, while Figure 6.8 has a deviation from the line in the

beginning of the plot. Figure 6.6 follows the trend of the line as we expected.

Figure 6.5 shows the distance between sequence 1_0_0 and 2_0_0. In the convolution

window distance when can see a peak at position between 450 and 500. From our theory

we are not expecting any peaks in the sliding window distances. However, the squared

error (0.025) is relatively low and the distances show trend to increase with the increase

of window position. From our theory a low squared error and a high slope value are

characteristics of a HGT event. Figure 6.6shows the distance between sequence 1_0_0 and

3_0_0. This is a result that better fits our theory, we do not observe and strong variation.

Figure 6.7 shows the distance between sequence 1_0_0 and 4_0_0. The plot contains 1_0_0

and therefore we expect some relationship. The plot has two small peaks but in general

distances show trends of decreasing with increase of window position and has a relative

low squared error of 0.023. Figure 6.8 shows the distance between sequence 1_0_0 and

5_0_0. We expect some sort of relationship in this plot. The plot shows a general trend of

decreasing and it has a squared error of 0.018 which is small especially when there is a

small deviation from the line in the beginning of the plot. Figure 6.9 shows the distance

between sequence 2_0_0 and 3_0_0. Here we do not have any HGT event, we can see

here a relatively high squared error of 0.046, which doubles the average of previous plots.

Figure 6.10 shows the distance between sequence 2_0_0 and 4_0_0. Here we do not expect

any linear relation. We can see a clear non linearity with a very low slope (0.0004) and

a general disagreement between data and linear regression line. Figure 6.11 shows the

distance between sequence 2_0_0 and 5_0_0. It shows also a non linearity with a high

squared error of 0.06 and a low slope of 0.00001. Figure 6.12 shows the distance between

sequence 3_0_0 and 4_0_0. It show a non linear relationship with a high squared error of

0.05. Figure 6.13 shows the distance between sequence 3_0_0 and 5_0_0. The plot has a

high squared error of 0.042 and shows clear non linearity. Figure 6.14 shows the distance

between sequence 1_0_0 and 2_0_0. The plot shows non linearity and a high squared error

of 0.05.

36



6.2 convolution window Distances and Linear Regression Plots

(a) gene tree 01 (b) gene tree 02

Figure 6.4: Two gene trees that are used to generate sequences used in the following

convolution window calculation and respective linear regression. The HGT

event happens to node 1_0_0.

(a) convolution window distance between se-

quence 1_0_0 and 2_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 1_0_0 and 2_0_0

Figure 6.5: Distance between sequence 1_0_0 and 2_0_0: From Figure 6.4 we can see

that the node 1_0_0 is the object of a HGT event. In the convolution window

distance we can see a peak at position between 450 and 500. However, the

squared error is relatively low and the distances show trend to increase with

the increase of convolution window start position.

37



6 Results

(a) convolution window distance between se-

quence 1_0_0 and 3_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 1_0_0 and 3_0_0

Figure 6.6: Distance between sequence 1_0_0 and 3_0_0: From Figure 6.4 we can see that

the node 1_0_0 is object of a HGT event. The distance between two sequences

has the trend to increase with the movement of convolution window.

(a) convolution window distance between se-

quence 1_0_0 and 4_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 1_0_0 and 4_0_0

Figure 6.7: Distance between sequence 1_0_0 and 4_0_0: From Figure 6.4 we can see that

the node 1_0_0 is the object of a HGT event. The plot has two small peaks,

but in general the distance shows the trend to decrease with the convolution

window movement and the squared error value is relatively low.

38



6.2 convolution window Distances and Linear Regression Plots

(a) convolution window distance between se-

quence 1_0_0 and 5_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 1_0_0 and 5_0_0

Figure 6.8: Distance between sequence 1_0_0 and 5_0_0: From Figure 6.4 we can see that

the node 1_0_0 is the object of a HGT event. The plot shows a general trend

of decreasing, the squared error which indicates the deviation of the points is

relatively low.

(a) convolution window distance between se-

quence 2_0_0 and 3_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 2_0_0 and 3_0_0

Figure 6.9: Distance between sequence 2_0_0 and 3_0_0: From Figure 6.4 only 1_0_0 is

object of HGT event. In this plot there is no HGT event happening. We can see

a relative high squared error, before it was lower than 0.025, in this plot it is

about 0.046.

39



6 Results

(a) convolution window distance between se-

quence 2_0_0 and 4_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 2_0_0 and 4_0_0

Figure 6.10: Distance between sequence 2_0_0 and 4_0_0: From Figure 6.4 only 1_0_0 is

object of HGT event. This plot does not have a clear trend of increasing or

decreasing. Therefore the slope is relatively low with 0.0004 while other plots

have a slope of 0.001. The squared error is also high due to the disagreement

between data points and the linear regression line.

(a) convolution window distance between se-

quence 2_0_0 and 5_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 2_0_0 and 5_0_0

Figure 6.11: Distance between sequence 2_0_0 and 5_0_0: From Figure 6.4 only 1_0_0 is the

object of HGT event, and so we would expect to see no relationship. In Figure

6.10, this plot has a non linear relation between distance and convolution

window position. It also has a high squared error (0.06) and a low slope value

(0.00001).

40



6.2 convolution window Distances and Linear Regression Plots

(a) convolution window distance between se-

quence 3_0_0 and 4_0_0 using JC69model

(b) linear regression of convolution window dis-

tance between sequence 3_0_0 and 4_0_0

Figure 6.12: Distance between sequence 3_0_0 and 4_0_0: From Figure 6.4 only 1_0_0 is

the object of HGT event. Also this plot has a non linear relation between the

distance and convolution window position. It also has a high squared error of

0.05.

(a) convolution window distance between se-

quence 3_0_0 and 5_0_0 using JC69 model

(b) linear regression of convolution window dis-

tance between sequence 3_0_0 and 5_0_0

Figure 6.13: Distance between sequence 3_0_0 and 5_0_0: From Figure 6.4 only 1_0_0 is

the object of HGT event. Also this plot has a non linear relation between

distance and convolution window position. It also has a high squared error of

0.042.

41



6 Results

(a) convolution window distance between se-

quence 4_0_0 and 5_0_0 using JC69 model

(b) linear regression of convolution window dis-

tance between sequence 4_0_0 and 4_0_0

Figure 6.14: Distance between sequence 4_0_0 and 5_0_0: From Figure 6.4 only 1_0_0 is

the object of HGT event. Also this plot has a non linear relation between

distance and convolution window position. It also has a high squared error of

0.05.

42



6.3 Classification of convolution window Distances

6.3 Classification of convolution window Distances

In this last section we will describe various plots used to describe the results of machine

learning classifiers, in particular ROC curves, confusion matrices and decision boundary

plots. We have also a result distribution plot that shows the all the data points and their

classed on Figure 6.15. The data are obtained from 70 pair of gene trees with 4 o 5 taxa. We

can see that in the plot there are points that appear in the region of opposite class, we call

this data overlapping. Causes of data overlapping may be errors during data computation

or noises. In the following we will discuss the performance of these classifiers based on

the three plots.

Figure 6.15: Result Distribution that contains all the data and their class

43



6 Results

6.3.1 Logistic Regression

From Figure 6.16a we can see that Logistic regression has a linear decision boundary.

A linear decision boundary does not perform well when there is data overlapping and

because of data overlapping we have mis-classified data already during the training phase.

The confusion matrix in Figure 6.16b shows a high counter for False Positive values, it is

much high than the True Positive counter. The reason for this is also the overlapping of

data that is very difficult to handle for logistic regression. We can see from the ROC curve

in Figure 6.16b that the performance of linear regression on our dataset is not very high.

It has an Area Under Curve (AUC) of only about 0.7.

(a) Decision boundary plot of Logistic Regression

(b) Confusion matrix of Logistic Regression
(c) ROC curve with AUC value of Logistic Regres-

sion

Figure 6.16: Logistic Regression Plots: The three plots show the result from the Logistic

Regression.

44



6.3 Classification of convolution window Distances

6.3.2 Gaussian Naive Bayes

In the Figure 6.17a we can see the decision boundary of Gaussian Naive Bayes. Note that

the decision boundary for Gaussian Naive Bayes in not a straight line but a parabola.

However this type of decision boundary does not perform well with overlapped data. Also

the confusion matrix for Gaussian Naive Bayes in Figure 6.17b shows a high counter for

True Negative. The reason probably belongs to the same data overlapping problem. The

ROC curve in Figure 6.17c is slightly better, it has an AUC of about 0.75 which indicates

that it is an usable classifier for our data.

(a) Decision boundary plot of Gaussian Naive Bayes

(b) Confusion matrix of Gaussian Naive Bayes
(c) ROC curve with AUC value of Gaussian Naive

Bayes

Figure 6.17: Gaussian Naive Bayes Plots: The three plots show results from the Gaussian

Naive Bayes.

45



6 Results

6.3.3 Support Vector Machine Classifier

In Figure 6.18a we can see the decision boundary of SVM Classifier. Because it tries to

maximize the margin between decision boundaries and data points, it may be strongly

influenced by overlapping data. We think this is the reason for such poor performance

and we can see that its ROC in Figure 6.18cis even worst than a random classifier. The

True Negative counter in the confusion matrix (Figure 6.18b) is also very high.

(a) Decision boundary plot of Support Vector Machine Classifier

(b) Confusion matrix of Support Vector Machine

Classifier

(c) ROC curve with AUC value of Support Vector

Machine Classifier

Figure 6.18: Support Vector Machine Classifier Plots: The three plots show results from

the Support Vector Machine (SVM) Classifier.

46



6.3 Classification of convolution window Distances

6.3.4 Random Forest Classifier

In Figure 6.19a we can see the decision boundary of the Random Forest Classifier and it is

quite fragmented, which may be an indication of overfitting. However, because the form

of its decision boundary, Random Forest is less subjective to sample overlapping. From

the confusion matrix in Figure 6.19b we can also see a reduced False Positive counter. The

shape of the ROC curve (Figure 6.19c) is quite good comparing to previous methods and it

has an AUC of about 0.81.

(a) Decision boundary plot of Random Forest Classifier

(b) Confusion matrix of Random Forest Classifier
(c) ROC curve with AUC value of Random Forest

Classifier

Figure 6.19: Random Forest Classifier Plots: The three plots show results from the Random

Forest Classifier.

47



6 Results

6.3.5 Extreme Gradient Boosting Classifier

In figure 6.20a we can see the decision boundary of Extreme Gradient Boosting Classifier.

Like the Random Forest Classifier, this decision boundary is quite fragmented. However,

it is more reasonable than before when there is a large purple area on the bottom side of

the plot. Contrary to our expectation, the confusion matrix (Figure 6.20b) and ROC curve

(6.20c) are not better than those of Random Forest. It has a AUC of 0.80 which is lower

than the one with Random Forest.

(a) Decision boundary plot of Extreme Gradient Boosting Classifier

(b) Confusion matrix of Extreme Gradient Boost-

ing Classifier

(c) ROC curve with AUC value of Extreme Gradi-

ent Boosting Classifier

Figure 6.20: Extreme Gradient Boosting Classifier Plots: The three plots show results from

the Extreme Gradient Boosting Classifier.

48



7 Conclusion and Future Work

At beginning of this thesis we have discussed about the possibility to detect HGT events

given gene trees and respective sequences. We have reached to the conclusion that this is

possible. We have developed HUGS to automatically distinguish which pair of distances

may contain the trace of HGT. However, the problem is more complicated than what we

expected and more work and studies must be done.

We have started with the comparison between patristic tree distances and model-based

evolutionary distances. Contrary to our expectation, these first comparisons did not give

valid results. We could not find any reliable connections between the variation of dis-

tances and HGT events. Then we decided to further analyze the model-based evolutionary

distance with a convolution window approach. The results of the convolution window

approaches show some possibility of detecting HGT events. Therefore we tried to classify

the results of convolution window approach into two classes: one with HGT events and

the other one without. Logistic Regression, Gaussian Naive Bayes and Support Vector

Machine tend to behave poorly with our data because they tend to behave poorly in

presence of data overlapping. However they are relatively faster, they do require less time

during the training phase. In particular the performance of Gaussian Naive Bayes is better

among the three method, it is fast and its accuracy of 75% is also acceptable. Random

Forest Classifier has the best accuracy of 82%, however in order to reach this accuracy

we have to give up computational efficiency. The training time required for Random

Forest is the longest among the methods (15s). Extreme Gradient Boosting has also a high

accuracy but the time required during training (3s) is lower than Random Forest Classifier.

During the classification, further problems emerges and the data seems to contain noise

and overlapping classes. The reason for overlapping and noise may lay in the convolution

window distances. From analyzing the sliding window graphs we observed some similar

pattern (also the slope and squared error are very similar) both in cases with HGT event

and in cases without HGT. Thus further studies on the results of convolution window

approach is needed.

During the creation of our dataset we have built tree by hand. However, building trees

by hand substantially reduces the number of trees that can be generated, as it constitutes

a time consuming process. This hence limits the size of our datasets. Another problem of

our data generation process is that it the data are not generated from empirical data, that

is, it may differ from the gene trees and sequences that are found in nature. Because of

this, HUGS may not be able to correctly classify real gene trees. Hence, it may require

further work and training such that it can be deployed on empirical data. Even when we

could apply to the empirical data we do not know if they are truly correct, we do not have

49



7 Conclusion and Future Work

a ground truth for them.

To improve HUGS, more studies on the convolution window applied to model-based

evolutionary distances should be done. We need to know what apart from HGT events can

influence the convolution window distances, in order to detect and eliminate sources of

noise from our data. Currently we have extracted only two features from the convolution

window, an increase of number of features will reduce the difficulty in classification

problem. Furthermore, we may need other data than only the convolution window distance

for the classification. In some of our dataset it is even difficult for human to distinguish

if there is a HGT event in the plot. Further machine learning methods such as Support

Vector Machines with more complicated kernels and K-Nearest Neighbors should be tried.

Unfortunately, due to time constraints, we were unable to explore the results of more

complicated machine learning approaches, such as neural net based methods. Neural

Network often tries to find relationship between the features in a data set, in our case we

have to further study our data and possible features that can be used. Hopefully Neural

Network will help us to better understand our data.

50



Bibliography

[1] Paschalia Kapli, Ziheng Yang, and Maximilian J Telford. “Phylogenetic tree building

in the genomic age”. In: Nature Reviews Genetics 21.7 (2020), pp. 428–444. doi:

doi.org/10.1038/s41576-020-0233-0. url: https://doi.org/10.1038/s41576-

020-0233-0.

[2] Wayne P Maddison and L Lacey Knowles. “Inferring Phylogeny Despite Incomplete

Lineage Sorting”. In: Systematic Biology 55.1 (Feb. 2006), pp. 21–30. issn: 1063-

5157. doi: 10.1080/10635150500354928. eprint: https://academic.oup.com/

sysbio/article-pdf/55/1/21/26554321/10635150500354928.pdf. url: https:

//doi.org/10.1080/10635150500354928.

[3] Eliran Avni and Sagi Snir. “A new phylogenomic approach for quantifying horizontal

gene transfer trends in prokaryotes”. In: Scientific reports 10.1 (2020), pp. 1–14. doi:
10.1038/s41598-020-62446-5. url: https://doi.org/10.1038/s41598-020-

62446-5.

[4] Gergely J. Szöllősi et al. “The Inference of Gene Trees with Species Trees”. In:

Systematic Biology 64.1 (July 2014), e42–e62. issn: 1063-5157. doi: 10.1093/sysbio/

syu048. eprint: https://academic.oup.com/sysbio/article- pdf/64/1/e42/

24585192/syu048.pdf. url: https://doi.org/10.1093/sysbio/syu048.

[5] Luay Nakhleh, Derek Ruths, and Hideki Innan. “Gene Trees, Species Trees, and

Species Networks”. In: Meta-analysis and Combining Information in Genetics and
Genomics (July 2009). doi: 10.1201/9781420010626.ch17.

[6] Luay Nakhleh. “Computational approaches to species phylogeny inference and gene

tree reconciliation”. In: Trends in ecology & evolution 28.12 (2013), pp. 719–728.

[7] Krister M Swenson and Nadia El-Mabrouk. “Gene trees and species trees: irreconcil-

able differences”. In: BMC bioinformatics. Vol. 13. 19. BioMed Central. 2012, pp. 1–9.

doi: 10.1186/1471-2105-13-S19-S15. url: https://doi.org/10.1186/1471-2105-

13-S19-S15.

[8] T Ryan Gregory. “Understanding evolutionary trees”. In: Evolution: Education and
Outreach 1.2 (2008), pp. 121–137. doi: 10.1007/s12052-008-0035-x. url: https:

//doi.org/10.1007/s12052-008-0035-x.

[9] Melissa Emamalipour et al. “Horizontal gene transfer: from evolutionary flexibility

to disease progression”. In: Frontiers in Cell and Developmental Biology 8 (2020),

p. 229. doi: 10.3389/fcell.2020.00229. url: https://doi.org/10.3389/fcell.

2020.00229.

51

https://doi.org/doi.org/10.1038/s41576-020-0233-0
https://doi.org/10.1038/s41576-020-0233-0
https://doi.org/10.1038/s41576-020-0233-0
https://doi.org/10.1080/10635150500354928
https://academic.oup.com/sysbio/article-pdf/55/1/21/26554321/10635150500354928.pdf
https://academic.oup.com/sysbio/article-pdf/55/1/21/26554321/10635150500354928.pdf
https://doi.org/10.1080/10635150500354928
https://doi.org/10.1080/10635150500354928
https://doi.org/10.1038/s41598-020-62446-5
https://doi.org/10.1038/s41598-020-62446-5
https://doi.org/10.1038/s41598-020-62446-5
https://doi.org/10.1093/sysbio/syu048
https://doi.org/10.1093/sysbio/syu048
https://academic.oup.com/sysbio/article-pdf/64/1/e42/24585192/syu048.pdf
https://academic.oup.com/sysbio/article-pdf/64/1/e42/24585192/syu048.pdf
https://doi.org/10.1093/sysbio/syu048
https://doi.org/10.1201/9781420010626.ch17
https://doi.org/10.1186/1471-2105-13-S19-S15
https://doi.org/10.1186/1471-2105-13-S19-S15
https://doi.org/10.1186/1471-2105-13-S19-S15
https://doi.org/10.1007/s12052-008-0035-x
https://doi.org/10.1007/s12052-008-0035-x
https://doi.org/10.1007/s12052-008-0035-x
https://doi.org/10.3389/fcell.2020.00229
https://doi.org/10.3389/fcell.2020.00229
https://doi.org/10.3389/fcell.2020.00229


Bibliography

[10] Wayne P Maddison. “Gene trees in species trees”. In: Systematic biology 46.3 (1997),

pp. 523–536. doi: 10.1006/mpev.1996.0390. url: https://doi.org/10.1006/mpev.

1996.0390.

[11] Ziheng Yang. Molecular evolution: a statistical approach. Oxford University Press,

2014. doi: 10.1093/acprof:oso/9780199602605.001.0001. url: https://doi.org/

10.1093/acprof:oso/9780199602605.001.0001.

[12] THOMASH Jukes, Charles RCantor, HNMunro, et al. “Mammalian proteinmetabolism”.

In: (1969).

[13] Simon Tavaré et al. “Some probabilistic and statistical problems in the analysis of

DNA sequences”. In: Lectures on mathematics in the life sciences 17.2 (1986), pp. 57–
86.

[14] Matt Ravenhall et al. “Inferring horizontal gene transfer”. In: PLoS computational
biology 11.5 (2015), e1004095. doi: 10.1371/journal.pcbi.1004095. url: https:

//doi.org/10.1371/journal.pcbi.1004095.

[15] Vincent Daubin, Emmanuelle Lerat, and Guy Perrière. “The source of laterally

transferred genes in bacterial genomes”. In: Genome biology 4.9 (2003), pp. 1–12. doi:

10.1186/gb-2003-4-9-r57. url: https://doi.org/10.1186/gb-2003-4-9-r57.

[16] Gur Sevillya, Orit Adato, and Sagi Snir. “Detecting horizontal gene transfer: a

probabilistic approach”. In: BMC genomics 21.1 (2020), pp. 1–11. doi: 10.1186/

s12864-019-6395-5. url: https://doi.org/10.1186/s12864-019-6395-5.

[17] Jotun Hein. “Reconstructing evolution of sequences subject to recombination using

parsimony”. In: Mathematical Biosciences 98.2 (1990), pp. 185–200. issn: 0025-5564.
doi: https://doi.org/10.1016/0025- 5564(90)90123- G. url: https://www.

sciencedirect.com/science/article/pii/002555649090123G.

[18] GD Paul Clarke et al. “Inferring genome trees by using a filter to eliminate phylo-

genetically discordant sequences and a distance matrix based on mean normalized

BLASTP scores”. In: Journal of bacteriology 184.8 (2002), pp. 2072–2080. doi: 10.

1128/JB.184.8.2072-2080.2002. url: https://doi.org/10.1128/JB.184.8.2072-

2080.2002.

[19] Paul Bastide et al. “Phylogenetic Comparative Methods on Phylogenetic Networks

with Reticulations”. In: Systematic Biology 67.5 (June 2018), pp. 800–820. issn: 1063-

5157. doi: 10.1093/sysbio/syy033. eprint: https://academic.oup.com/sysbio/

article-pdf/67/5/800/30001686/syy033.pdf. url: https://doi.org/10.1093/

sysbio/syy033.

[20] Dapeng Xiong et al. “Towards a better detection of horizontally transferred genes by

combining unusual properties effectively”. In: (2012). doi: 10.1371/journal.pone.

0043126. url: https://doi.org/10.1371/journal.pone.0043126.

52

https://doi.org/10.1006/mpev.1996.0390
https://doi.org/10.1006/mpev.1996.0390
https://doi.org/10.1006/mpev.1996.0390
https://doi.org/10.1093/acprof:oso/9780199602605.001.0001
https://doi.org/10.1093/acprof:oso/9780199602605.001.0001
https://doi.org/10.1093/acprof:oso/9780199602605.001.0001
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1371/journal.pcbi.1004095
https://doi.org/10.1186/gb-2003-4-9-r57
https://doi.org/10.1186/gb-2003-4-9-r57
https://doi.org/10.1186/s12864-019-6395-5
https://doi.org/10.1186/s12864-019-6395-5
https://doi.org/10.1186/s12864-019-6395-5
https://doi.org/https://doi.org/10.1016/0025-5564(90)90123-G
https://www.sciencedirect.com/science/article/pii/002555649090123G
https://www.sciencedirect.com/science/article/pii/002555649090123G
https://doi.org/10.1128/JB.184.8.2072-2080.2002
https://doi.org/10.1128/JB.184.8.2072-2080.2002
https://doi.org/10.1128/JB.184.8.2072-2080.2002
https://doi.org/10.1128/JB.184.8.2072-2080.2002
https://doi.org/10.1093/sysbio/syy033
https://academic.oup.com/sysbio/article-pdf/67/5/800/30001686/syy033.pdf
https://academic.oup.com/sysbio/article-pdf/67/5/800/30001686/syy033.pdf
https://doi.org/10.1093/sysbio/syy033
https://doi.org/10.1093/sysbio/syy033
https://doi.org/10.1371/journal.pone.0043126
https://doi.org/10.1371/journal.pone.0043126
https://doi.org/10.1371/journal.pone.0043126


[21] Christophe Dessimoz, Daniel Margadant, and Gaston H. Gonnet. “DLIGHT – Lateral

Gene Transfer Detection Using Pairwise Evolutionary Distances in a Statistical

Framework”. In: Research in Computational Molecular Biology. Ed. by Martin Vingron

and Limsoon Wong. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 315–

330. isbn: 978-3-540-78839-3. doi: 10.1007/978-3-540-78839-3_27. url: https:

//doi.org/10.1007/978-3-540-78839-3_27.

[22] Chen Li, Jiaxing Chen, and Shuai Cheng Li. “Deep learning for HGT insertion sites

recognition”. In: BMC genomics 21.11 (2020), pp. 1–18. doi: 10.1186/s12864-020-
07296-1. url: https://doi.org/10.1186/s12864-020-07296-1.

[23] Diego Mallo, Leonardo de Oliveira Martins, and David Posada. “SimPhy: phyloge-

nomic simulation of gene, locus, and species trees”. In: Systematic biology 65.2 (2016),

pp. 334–344. doi: doi.org/10.1093/sysbio/syv082. url: https://doi.org/10.

1093/sysbio/syv082.

[24] William Fletcher and Ziheng Yang. “INDELible: A Flexible Simulator of Biological

Sequence Evolution”. In: Molecular Biology and Evolution 26.8 (May 2009), pp. 1879–

1888. issn: 0737-4038. doi: 10.1093/molbev/msp098. eprint: https://academic.oup.

com/mbe/article-pdf/26/8/1879/3033727/msp098.pdf. url: https://doi.org/

10.1093/molbev/msp098.

[25] Andrew Rambaut and Nicholas C Grass. “Seq-Gen: an application for the Monte

Carlo simulation of DNA sequence evolution along phylogenetic trees”. In: Bioin-
formatics 13.3 (1997), pp. 235–238. doi: 10.1093/bioinformatics/13.3.235. url:
https://doi.org/10.1093/bioinformatics/13.3.235.

[26] Reed A Cartwright. “DNA assembly with gaps (Dawg): simulating sequence evolu-

tion”. In: Bioinformatics 21.Suppl_3 (2005), pp. iii31–iii38. doi: 10.1093/bioinformatics/
bti1200. url: https://doi.org/10.1093/bioinformatics/bti1200.

[27] Peter JA Cock et al. “Biopython: freely available Python tools for computational

molecular biology and bioinformatics”. In: Bioinformatics 25.11 (2009), pp. 1422–
1423. doi: 10.1093/bioinformatics/btp163. url: https://doi.org/10.1093/

bioinformatics/btp163.

[28] Rob Knight et al. “PyCogent: a toolkit for making sense from sequence”. In: Genome
biology 8.8 (2007), pp. 1–16. doi: 10.1186/gb-2007-8-8-r171. url: https://doi.

org/10.1186/gb-2007-8-8-r171.

[29] Python-Tabulate Project Description Page. url: https : / / pypi . org / project /
tabulate/.

[30] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12.85 (2011), pp. 2825–2830. url: http://jmlr.org/

papers/v12/pedregosa11a.html.

[31] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020.

doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.

53

https://doi.org/10.1007/978-3-540-78839-3_27
https://doi.org/10.1007/978-3-540-78839-3_27
https://doi.org/10.1007/978-3-540-78839-3_27
https://doi.org/10.1186/s12864-020-07296-1
https://doi.org/10.1186/s12864-020-07296-1
https://doi.org/10.1186/s12864-020-07296-1
https://doi.org/doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/molbev/msp098
https://academic.oup.com/mbe/article-pdf/26/8/1879/3033727/msp098.pdf
https://academic.oup.com/mbe/article-pdf/26/8/1879/3033727/msp098.pdf
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/bioinformatics/13.3.235
https://doi.org/10.1093/bioinformatics/13.3.235
https://doi.org/10.1093/bioinformatics/bti1200
https://doi.org/10.1093/bioinformatics/bti1200
https://doi.org/10.1093/bioinformatics/bti1200
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1186/gb-2007-8-8-r171
https://doi.org/10.1186/gb-2007-8-8-r171
https://doi.org/10.1186/gb-2007-8-8-r171
https://pypi.org/project/tabulate/
https://pypi.org/project/tabulate/
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134


Bibliography

[32] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016,

pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:

//doi.acm.org/10.1145/2939672.2939785.

[33] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[34] Jayawant N. Mandrekar. “Receiver Operating Characteristic Curve in Diagnostic

Test Assessment”. In: Journal of Thoracic Oncology 5.9 (2010), pp. 1315–1316. issn:

1556-0864. doi: https://doi.org/10.1097/JTO.0b013e3181ec173d. url: https:

//www.sciencedirect.com/science/article/pii/S1556086415306043.

54

https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1097/JTO.0b013e3181ec173d
https://www.sciencedirect.com/science/article/pii/S1556086415306043
https://www.sciencedirect.com/science/article/pii/S1556086415306043

	Abstract
	Zusammenfassung
	Motivation and Contribution
	Introduction
	Theoretical background
	Gene Trees and Species Trees
	Horizontal Gene Transfer
	Hybridization
	Tree Distances
	Model-based Evolutionary Distances

	Related Work

	Comparing Tree and Model-based Evolutionary Distances
	Workflow
	Data Simulation
	Simulation tools

	Distance Computation
	Distance calculation tools

	Visualization
	Visualization tools


	Naive Convolution Window Approach
	Introduction to Convolution
	Application and Discoveries
	Linear Regression
	Challenges

	Classification of convolution window Distances
	Workflow
	Datasets
	Datastructures
	Machine Learning Methods Used
	Logistic Regression
	Gaussian Naive Bayes
	Support Vector Machines
	Random Forest
	Extreme Gradient Boosting

	Visualization
	ROC Curve
	Confusion Matrix
	Decision Boundary Plots
	Result Distribution
	Linear Regression Plot


	Results
	Tree and Model-Based Evolutionary Distances
	convolution window Distances and Linear Regression Plots
	Classification of convolution window Distances
	Logistic Regression
	Gaussian Naive Bayes
	Support Vector Machine Classifier
	Random Forest Classifier
	Extreme Gradient Boosting Classifier


	Conclusion and Future Work
	Bibliography

