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Problem:
Discrete characters cannot adequately represent MSA uncertainty 
(= errors in sequencing, assembly, alignment)

uniform error ε
user-defined or

 estimated

▪  IUPAC ambiguity code (e.g., S = C or G)
▪  filtering (remove low-quality bases/columns)
▪  sequencing with high coverage (overlap multiple reads and call a 
consensus base)

Explicitly use quantified sequence uncertainty in 
phylogenetic likelihood calculation 
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ML estimation of uniform error rate 

▪ ML estimation of alignment error rate is possible, but its accuracy varies  
significanlty across datasets and experimental settings  
▪ Accounting for sequence uncertainty improves branch length estimates on 
simulated data with moderately high error rates (> 0.5 %)
▪ On empirical RADseq data, using MSA built from raw base counts instead of 
consensus sequences yields consistently different trees
▪ Next steps:
   - Use quality scores provided by aligners (e.g., FSA[2])
   - Evaluate the proposed approach in the context of phylogenetic placement 
(RAxML-EPA)
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Tree inference on alignments with simulated error

Tree inference on empirical RADseq data: counts-based MSA vs. consensus MSA

Computing base probabilities

Available error models

Changes to the tree data structure

Idea

Traditional approaches to deal with uncertainty

Maximum Likelihood (ML) phylogenetic inference

Experimental RAxML-QS code (very basic tree search 
functionality of RAxML[1], DNA data only)
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Q = -10log10ε → ε=10-0.1Q
P(A | Si="A") = 1-εP(C | S i="A") = ε/3P(G | Si="A") = ε/3P(T | Si="A") = ε/3

S
Q phred+33

sequence

Test datasets

Designator Organism group, gene # taxa # sites Reference

SIM (simulation) 50 2,000

HIV HIV-I virus, pol 23 2,841 [5]

MTM Mammals, mtDNA 23 9,741 [6]

RADSEQ Lizards, genome-wide 74 3,142 – 1,250,860 A. Leache (unpubl.)
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▪ Relative RF distance 3-21%

▪ Difference is much more 
pronounced on shorter 
alignments (= high coverage 
threshold)

# alignment sites
~3K~1250K


