
Approximating Phylogenetic Tree
Distributions with Distance-Based Methods

Master’s Thesis of

Noah Wahl

At the Department of Informatics
Institute of Theoretical Informatics (ITI)

Reviewer: Prof. Dr. Alexandros Stamatakis
Second reviewer: Prof. Dr. Peter Sanders
Advisor: Dr. Benoit Morel

01. June 2023 – 01. December 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text. I also declare that I have read
and observed the Satzung zur Sicherung guter wissenschaftlicher Praxis am Karlsruher
Institut für Technologie.

Karlsruhe, 01. December 2023

. .
(Noah Wahl)

Abstract
Accurately reconstructing the evolutionary history of a group of organism is a complex
task. Current state-of-the-art tools produce phylogenetic tree distributions with Markov-
chain Monte-Carlo (MCMC) methods by sampling the posterior tree distribution under
a given model to reflect uncertainties in the underlying models and data. While these
distributions offer very good insight into the phylogenetic history, they are very compute-
intensive. In this thesis we present and evaluate multiple heuristics to approximate
these distributions with distance-based methods. To judge the quality of our heuristics,
we compare our distribution against a reference MCMC-based distribution with split-
and frequency-based metrics. We show that our method works well for some types of
data, but not all, compared to other tools, and that further information about the data
needs to be incorporated to make this viable in practice. Our most successful method is
characterized by the use of pair-wise distance distributions to apply likelihood-supported
perturbation to the input distances for the Neighbor Joining algorithm. Because this
ignores the interdependencies between distances, we need to add parsimony filtering
as a post-processing step to eliminate unlikely trees from our distributions, which
significantly improves the results. Finally, we also discuss the shortcomings and future
potential of our heuristics to more accurately estimate pair-wise distances and their
interdependencies, which should lead to more competitive results.

Zusammenfassung
Die genaue Rekonstruktion der Evolutionsgeschichte einer Gruppe von Organismen ist
eine komplexe Aufgabe. Die derzeit modernsten Tools erzeugen phylogenetische Baum-
verteilungen mit einem Markov-Ketten Monte-Carlo Algorithmus, der Stichproben aus
der posteriore Verteilung der Bäume unter einem gegebenen Model zieht und somit die
Unsicherheiten in den zugrunde liegenden Modellen und Daten widerspiegeln. Diese
Verteilungen bieten zwar einen sehr guten Einblick in die phylogenetische Geschichte,
sind aber gleichzeitig sehr rechenintensiv. In dieser Arbeit werden mehrere Heuristiken
vorgestellt und evaluiert, um diese Verteilungen mit distanzbasierten Methoden zu
approximieren. Um die Qualität unserer Heuristiken zu beurteilen, vergleichen wir un-
sere Verteilung mit einer Referenzverteilung mit split- und frequenzbasierten Metriken.
Wir zeigen, dass unsere Methode für gewisse Daten gut funktioniert, aber nicht für
alle, im Vergleich mit anderen Tools, und dass weitere Informationen über die Daten
einbezogen werden müssen, um um sie in der Praxis anwendbar zu machen. Unsere
Methode nutzt paarweise Distanz-Verteilungen um Likelihood-basierte Perturbatio-
nen für die Eingabe-Distanzen des Neighbor Joining Algorithmus zu erzeugen. Da
dies jedoch die Interdependenzen der Distanzen nicht berücksichtigt, benötigen wir
Parsimony-Filterung als einen Nachbereitungsschritt um unwahrscheinliche Bäume aus
unseren Verteilungen zu eliminieren, was die Ergebnisse erheblich verbessert. Schließlich
diskutieren wir auch die Mängel und das zukünftige Potenzial unserer Heuristiken.
Wir erhoffen uns dabei eine genauere Schätzung der paarweisen Abstände und ihrer
gegenseitigen Abhängigkeiten, was zu wettbewerbsfähigeren Ergebnissen führen sollte.

i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Related Work . 1
1.3. Contribution . 2
1.4. Outline . 2

2. Preliminaries 3
2.1. Phylogenetic Trees . 3
2.2. Phylogenetic Inference . 3

2.2.1. Input Data . 3
2.2.2. Parsimony . 4
2.2.3. Substitution Models . 4
2.2.4. Likelihood . 5
2.2.5. Markov-Chain Monte-Carlo Methods 6
2.2.6. Bootstrapping . 6
2.2.7. Neighbor Joining . 7

2.3. Metrics . 8
2.3.1. Difficulty . 10

2.4. Experimental Setup . 10
2.4.1. Input Data . 11
2.4.2. Tool Parameters . 11
2.4.3. Hardware and Software . 13

2.5. Data Visualization . 13

3. Methods 15
3.1. Input Perturbation . 15

3.1.1. Random Noise . 15
3.1.2. Pair-wise Distance Distributions 18
3.1.3. Comparison . 20

3.2. Randomized Neighbor Joining . 20
3.2.1. Weighted Selection . 21
3.2.2. Minimum Sampling . 22
3.2.3. Distance Re-sampling . 23
3.2.4. Comparison . 23

3.3. Parsimony Filtering . 26

4. Detailed Evaluation 29
4.1. Performance by Difficulty . 29
4.2. Individual Optimization . 30
4.3. Full Dataset Evaluation . 32
4.4. Runtime Analysis . 34

iii

Contents

5. Conclusion 37
5.1. Future Work . 37

5.1.1. Distance Distribution . 38
5.1.2. Metrics . 38
5.1.3. Parsimony Filtering . 38
5.1.4. Difficult Data . 39

Bibliography 41

A. Appendix 45
A.1. SimPhy Configuration . 45
A.2. INDELible Configuration . 46
A.3. MrBayes Configuration . 46
A.4. Simulated MSA Metrics . 48
A.5. Empirical MSA Metrics . 50
A.6. Reference Distribution . 52

iv

List of Figures

2.1. Pipeline for the experiments . 10

3.1. Metrics for the random noise strategy on the combined parameter tuning
set . 16

3.2. USRR, USRT and PCC values across the noise parameter grid for the
random noise strategy . 17

3.3. Metrics for the distance distribution strategy on the parameter tuning sets 19
3.4. Comparison of input perturbation strategies on the combined parameter

tuning set . 20
3.5. Metrics for the weighted selection strategy on the combined parameter

tuning set . 21
3.6. Metrics for the minimum sampling strategy on the combined parameter

tuning set . 22
3.7. Metrics for the distance re-sampling strategy on the parameter tuning sets 24
3.8. Comparing metrics for the distance distribution and distance re-sampling

strategies on the combined parameter tuning set 25
3.9. Metrics for the distance distribution strategy with parsimony filtering

on the combined parameter tuning set 27
3.10. Likelihoods for distance distribution strategy with parsimony filtering

on 4 different MSAs . 28

4.1. Metrics for distance distribution strategy with parsimony filtering grouped
by difficulty . 30

4.2. Comparing metrics for distance distribution strategy with parsimony fil-
tering on the combined parameter tuning set with and without individual
optimization . 31

4.3. Comparing frequency-metrics for distance distribution strategy with
parsimony filtering on the combined parameter tuning set with individual
optimization . 32

4.4. Metrics for distance distribution strategy with parsimony filtering on
the full datasets . 33

4.5. Absolute runtime comparison on the combined full dataset 34
4.6. Detailed runtimes for sequential and parallel distance distribution strat-

egy with parsimony filtering on the simulated parameter tuning sets . . 35

A.1. Reference tree metrics for simulated data 52

v

List of Tables

2.1. MSA properties for the parameter tuning set 12
2.2. Key metric values for MrBayes and IQ-TREE for the parameter tuning

datasets . 12

3.1. Key metric values for the best neighbo-rs strategies for the combined
parameter tuning dataset . 25

3.2. Key metric values for the distance distribution strategy with and without
parsimony filtering for the parameter tuning datasets 27

4.1. Key metric values for all tools on combined data grouped by difficulty . 33

A.1. Simulated DNA MSA Difficulty . 48
A.2. Simulated AA MSA Difficulty . 49
A.3. Empirical DNA MSA Metrics . 50
A.4. Empirical AA MSA Metrics . 51

vii

1. Introduction

1.1. Motivation

Phylogenetic tree inference is used to reconstruct the evolutionary relationships among
a group of organisms based on genetic, morphological, or other biological data, using
computational methods to depict their common ancestry and divergence. Because
evolutionary models are complex and there is no ground-truth available, verifying
whether the “true” tree has been found is nigh impossible. Therefore, it becomes
desirable to not only generate a single tree, but a whole set of trees or a distribution
where plausible trees are more likely. For gene tree reconciliation these distributions
are of great value because large uncertainties in the gene tree topologies are very
common. The current tools use either Bayesian inference with Markov-chain Monte-
Carlo methods or ultra-fast bootstrapping. While the former produces a statistically
meaningful posterior distribution under a given model, it has no runtime guarantees
and suffers from missing parallelism. The latter is substantially faster, but the resulting
tree sets are not strictly distributions, but only contain highly likely trees under the
inferred model. We want to use Neighbor Joining, another algorithm to construct
phylogenetic trees, as an alternative way to (efficiently) generate sets of trees that
closely approximate the distributions of Bayesian inference tools.

1.2. Related Work

While they both are very relevant to this thesis, we will mention MrBayes [Ron+12]
and IQ-TREE [Min+20] only shortly in this section. Their underlying methods and
other details will be addressed separately in Sections 2.2.5 and 2.2.6, respectively. In
the remainder of this section we will list other methods that use Neighbor Joining (NJ)
to infer phylogenetic trees.

There are several high-performance implementations of NJ available, including BioNJ
[Gas97] and RapidNJ [SMP08] which use branch-and-bound to speed up the selection of
nodes to join, as well as FastTree [PDA10] and FastME [LDG15] which use a heuristic
approach coupled with local search based on Nearest Neighbor Interchange (NNI) and
Subtree Pruning and Regrafting (SPR). Other methods try to address the uncertainty in
phylogenetic distances in other ways. Multifurcating NJ [FSS23] extends traditional NJ
by allowing polytomies in addition to dichotomies at inner nodes if there are multiple,
equally suited candidates to join. This not only incorporates uncertainties, but also
eliminates inconsistencies in the resulting trees from the order of the taxa in the input.
Finally, KDETREES [Wey+14] seeks to identify interesting outliers in phylogenetic
tree distributions, especially for gene histories.

As of writing this thesis there is no literature on approximating phylogenetic tree
distributions from MCMC methods with distance-based methods.

1

1. Introduction

1.3. Contribution
The goal of this thesis is to explore distance-based heuristics to approximate the
posterior phylogenetic tree distributions of Bayesian inference tools in less time while
outperforming the ultra-fast bootstrap method in terms of quality. While we motivate
the approximation of these distributions with their application in gene tree reconciliation,
which is an active field of research in computational biology [BS20 | MWSS23], the
methods in this thesis are developed and evaluated for general DNA and amino acid
sequences. We use the Neighbor Joining (NJ) algorithm, normally used to construct
a single tree from pair-wise distances between the sequences, as the basis of our
methods. We propose a set of representative metrics to compare sets of phylogenetic
trees and explore perturbation strategies to add variance to the trees generated by
repeated NJ execution. While we fall short of achieving results that are consistently
competitive in quality, we do propose methods that should be considered for a more
accurate approximation in the future. We analyze and discuss the current shortcomings
and point out potential solutions. The most promising avenue of application for
our method currently seems to be in generating trees for challenging datasets. The
experimental evaluation of our strategies is done in our own NJ implementation
neighbo-rs1, allowing for in-depth customization of perturbation of the input, filtering
the output and modifying other steps in the NJ algorithm. Part of neighbo-rs is a
metrics-module that offers fast computation of similarity and distance functions for
comparing phylogenetic tree sets similar to well-known Python tools, but significantly
faster through multithreading and focusing on split representations of the tree sets.

1.4. Outline
Chapter 2 establishes some key concepts relevant to this thesis. We provide information
about the input data in Section 2.2.1, as well as models in Section 2.2.3 and metrics to
assess the quality of single trees in Sections 2.2.2 and 2.2.4, and whole distributions of
trees in Section 2.3. We also quickly touch on the underlying mechanisms of the tools
we compare ourselves against in Sections 2.2.5 and 2.2.6. In the end of this chapter we
lay out our evaluation strategy, list key metrics in Section 2.4.1 for our datasets and
explain how the data will be visualized in Section 2.5.

Chapter 3 introduces our methods for inferring different trees with NJ and contains
preliminary evaluation of these strategies. In Section 3.1 we present 2 approaches to
slightly change the distances of the input and compare them on our parameter tuning
dataset. In Section 3.2 we do the same for our 3 randomized NJ strategies. Finally, in
Section 3.3 we evaluate a post-processing step using parsimony scores to improve our
results.

In Chapter 4 we analyze the results of our best method more thoroughly by comparing
solution quality within difficulty classes in Section 4.1, finding the best possible results
by individually optimizing each Multiple Sequence Alignment (MSA) of the parameter
tuning set on its own in Section 4.2, as well as comparing ourselves against the other
tools on the full dataset and analyzing the runtime in Section 4.4.

Chapter 5 concludes the thesis by summarizing our results, discussing the impact
and listing future work.

1https://github.com/noahares/neighbo-rs

2

2. Preliminaries

2.1. Phylogenetic Trees

A phylogenetic tree T describes the evolutionary history between a set of taxa, e.g.
organisms, genes, languages and other entities that follow evolutionary principles.
Each taxon is assigned to a leaf of T and edges are weighted by relative evolutionary
distances. In the context of this thesis phylogenetic trees will be unrooted and bifurcating
unless stated otherwise, because we restrain from making assumptions about ancestry
relationships as we do not have information about out-groups or other root-inducing
methods for our data. All of our algorithms and metrics are uninfluenced by whether
the tree is rooted.

To evaluate our methods, we extensively use the split representation of trees. Let
therefore 𝑇 = {𝜏1, . . . , 𝜏𝑛} be a set of taxa and T a phylogenetic tree on these taxa. A
split of T is a bi-partition (𝑇1 | 𝑇2) of 𝑇 , s.t. 𝑇1∪𝑇2 = 𝑇,𝑇1∩𝑇2 = ∅ and T (𝑇1), T (𝑇2) ⊂ T
with the latter meaning that the induced trees of 𝑇1 and 𝑇2 are subtrees of T . The set
of all such valid splits uniquely identifies the tree T .

2.2. Phylogenetic Inference

The process of reconstructing the evolutionary history for a group of organisms is called
phylogenetic inference. There exist many ways to approach this problem, all with their
strengths and weaknesses. In this section we give a short overview of the most common
scoring functions, parsimony and likelihood, before moving on to the methods that will
be compared in this thesis.

2.2.1. Input Data

The raw input for phylogenetic inference are sequences of Deoxyribonucleic Acid
(DNA) or Amino Acids (AA) (in the scope of this thesis). DNA encodes hereditary
information about the species and comes in 4 different forms: Adenine, Cytosine,
Guanine and Thymine. Sequences are encoded as strings from the alphabet Σ =

{𝐴,𝐶,𝐺,𝑇 } representing the aforementioned bases. The encoding of Ribonucleic Acid
(RNA) is closely related to DNA, substituting Thymine for Uracil (𝑈). Triplets of RNA
form so-called codons, which encode for the 20 different AAs present in all organisms.

The preprocessed input for phylogenetic inference is a Multiple Sequence Alignment
(MSA), consisting of many DNA or AA sequences with gaps (–) inserted such that they
all have the same length and some metric between the resulting sequences is minimized.
A column of an MSA is called a site.

3

2. Preliminaries

The result of phylogenetic inference is a single tree or set of trees that explain the
evolutionary ancestry between the input sequences the best. This optimization can
be done under a wide variety of optimality criteria, like Maximum Likelihood (ML)
and Maximum Parsimony (MP). Finding the optimal tree for both of these is NP-hard
[CT05 | DJS86].

2.2.2. Parsimony

The parsimony score [Fit77] is one of the simplest methods to score a phylogenetic tree.
It optimizes for the Minimum Evolution (ME) criterion by counting the number of
mutations across the tree.

It represents a quantitative measure of the evolutionary changes necessary to trans-
form an ancestral state into the observed character states in the data. In the context
of DNA sequence data, this typically involves the number of nucleotide substitutions,
insertions, and deletions required to explain the observed sequences on a given phyloge-
netic tree. With AA sequence data the number of nucleotide substitutions is replaced
by whole AA substitutions. The tree with the lowest parsimony score is considered
the most parsimonious, suggesting that it is the most likely representation of the true
evolutionary history. The runtime to score one tree is 𝑂 (𝑠𝑚) where 𝑠 is the number of
sequences and 𝑚 the length of one sequence. In practice, the hidden constant is very
small.

MP uses the parsimony score to infer phylogenetic trees. It seeks to identify the tree
that minimizes the total parsimony score across all characters and branches. To do
this, the MP method explores different tree topologies, evaluates potential character
state changes along each branch, and calculates the parsimony score for each tree. The
tree with the lowest overall parsimony score is selected as the preferred phylogenetic
hypothesis. The MP criterion is particularly valuable when dealing with limited data
where model parameters for ML (see Section 2.2.4) are hard to estimate. Because the
tree search space is vast, various algorithms, such as branch-and-bound or heuristic
search algorithms, are employed to find the optimal or near-optimal solutions efficiently.
This approach provides a valuable perspective on phylogenetic relationships, particularly
when simplicity is required.

2.2.3. Substitution Models

One big downside of the parsimony score is that it treats all substitutions the same.
However, some substitutions are much more likely to happen than others. To consider
this information in evaluating phylogenetic trees, a multitude of substitution models
have been proposed. In the scope of this thesis, we mainly focus on the Generalized
Time Reversible (GTR) model [TM86] for DNA data and the LG model [LLG08] for
AA data.

A substitution model 𝑀 for a set of traits (in our case DNA or AA characters)
Σ = {𝜎1, . . . , 𝜎𝑛} is a tuple (𝜋, 𝑅)Σ where 𝜋 is a vector containing the initial frequencies
for each 𝜎 ∈ Σ. The frequencies in 𝜋 are called equilibrium frequencies and

∑
𝜋 = 1. 𝑅 is

the substitution rate matrix and 𝑅𝑖 𝑗 contains the rate at which 𝜎𝑖 is substituted for 𝜎 𝑗 .
Evolution is modeled as a continuous time Markov-chain and therefore the rows of 𝑅 must
all sum to 0, and we assume that evolution is time-reversible, so 𝜋𝑖𝑅𝑖 𝑗 = 𝜋 𝑗𝑅 𝑗𝑖 ∀𝑖, 𝑗 ∈ [𝑛].
Additionally, 𝑅 is normalized by a factor, such that −∑𝑖∈[𝑛] 𝜋𝑖𝑅𝑖𝑖 = 1. Therefore, 𝑀 can

4

2.2. Phylogenetic Inference

be described by at most 𝑛 (𝑛−1)
2 − 1 parameters for the rates of 𝑅 and 𝑛 − 1 parameters

for 𝜋 . For both parts of the model, we can fix one parameter to be constant (1) because
of their interdependencies.

GTR uses the maximum amount of parameters, while LG has no parameters. The
parameters for GTR need to be estimated from the input DNA sequences. While this
can lead to over-parameterization and higher runtime, it is widely used in phylogenetic
analysis. For AA data, using many free parameters is computationally infeasible for
most applications, so the most commonly used models have very few or no parameters
at all. The substitution rates for the LG model come from empirical analysis of large
datasets and are fixed.

Studying the speed at which different alignment sites change has shown that modeling
among-site rate-heterogeneity is an important part of selecting a substitution model
[Yan96]. These variable rates are assumed to follow a Gamma distribution. A model
𝑀 is then expanded by a rate-vector Γ = {𝛾1, . . . , 𝛾𝑐 } of size 𝑐 (often 4) and likelihood
calculations (Section 2.2.4) are then performed with 𝑐 different rate matrices 𝛾1𝑅, . . . , 𝛾𝑐𝑅
that are weighted equally. The name of a model containing Gamma-rates is extended
by +G (e.g. GTR+G). For simplicity, we will not use Gamma-rates for inferring trees
in this thesis.

2.2.4. Likelihood

Another way of scoring trees is to compute the likelihood 𝐿(Θ|𝐷) of observing the tree
parameters Θ = (𝑇,𝑏,𝑀), given the MSA 𝐷 [Yan14]. The likelihood score considers
the topology 𝑇 of the tree, the substitution model 𝑀, as well as the branch lengths 𝑏.
Because the inner states of the tree are usually unknown, and to not have to iterate all
possible inner state combinations, conditional likelihoods are computed via Felsenstein
pruning [Fel81 | Fel73], a dynamic programming algorithm that allows summation over
all possible inner states without having to enumerate them explicitly. This can be
done for each site of the sequences individually without dependencies, which leads to
great parallelization opportunities. Because per-site likelihoods become very small,
𝑙𝑜𝑔-likelihoods are used in practice to prevent numerical problems.

Let Σ be the 4-letter DNA alphabet or the 20-letter AA alphabet, respectively. Let
𝑘 be an inner node of the tree with children 𝑖 and 𝑗 and respective branch lengths
𝑏𝑖 and 𝑏 𝑗 . Furthermore, let 𝑃 (𝑡) = 𝑒𝑥𝑝 (𝑅𝑡) be the instantaneous rate matrix of the
substitution model 𝑀 = (𝜋, 𝑅)Σ with branch length 𝑡 . The recursive formula for the
conditional likelihood for the inner state 𝑎 ∈ Σ at an inner node 𝑘 for a site 𝑐 is shown
in Equation 2.1.

𝐿𝑘𝑎 (𝑐) = (
∑︁
𝑠∈Σ

𝑃𝑎𝑠 (𝑏𝑖)𝐿𝑖𝑠 (𝑐)) (
∑︁
𝑠∈Σ

𝑃𝑎𝑠 (𝑏 𝑗)𝐿 𝑗
𝑠 (𝑐)) (2.1)

The overall likelihood of site 𝑐 can then be computed at the root 𝑟 as 𝐿(𝑐) =∑
𝑠∈Σ 𝜋𝑖𝐿

𝑟
𝑠 (𝑐). As with parsimony (see Section 2.2.2) the runtime is 𝑂 (𝑠𝑚), but the

hidden constant is much higher.
ML explores the tree space similar to MP to find a tree that maximizes the likelihood.

5

2. Preliminaries

2.2.5. Markov-Chain Monte-Carlo Methods

Phylogenetic inference often involves estimating parameters such as branch lengths,
substitution models, and tree topologies that explain the observed sequence data. These
parameters are essential for understanding the evolutionary history of the species under
study. However, estimating these parameters requires a lot of (high quality) data,
which often is not available. If the parameters are wrong, the tree inferred under
e.g. ML might not be the correct one. This is where the Markov-Chain Monte-Carlo
(MCMC) technique comes into play. Instead of producing one single tree, it generates
a distribution which potentially contains better trees even if the parameters are chosen
suboptimally. We use MrBayes [Ron+12] to generate phylogenetic tree distributions
with MCMC.

MCMC allows sampling from the posterior distribution of phylogenetic parameters.
The fundamental idea behind MCMC is to construct a Markov-chain in which each step
proposes a new set of parameter values based on the current state. These proposals are
accepted or rejected based on their posterior probabilities, with a higher probability of
acceptance for more probable parameter values. Over many iterations, MCMC explores
the posterior distribution, and the samples collected converge to a representation of
the true posterior distribution.

MrBayes employs a specific variant of MCMC known as Metropolis-Coupled Markov-
Chain Monte-Carlo (MC3). This approach enhances exploration of the parameter space
by running multiple chains in parallel, occasionally allowing them to swap states. Each
chain in MrBayes represents a phylogenetic tree and associated parameter values, and
the swapping of states helps overcome local optima and explore the parameter space
more effectively.

MrBayes allows users to specify various aspects of the phylogenetic model, including
substitution models, priors, and the number of chains to run. Users can also specify
the number of generations, burn-in period, and sampling frequency. The program
then performs MCMC iterations to estimate the posterior distribution of phylogenetic
parameters. Posterior samples are collected during the stationary phase of the MCMC
run, typically after the burn-in period.

2.2.6. Bootstrapping

In phylogenetic inference, the bootstrap analysis is often used to assess the reliability and
robustness of inferred phylogenetic trees. This process involves resampling the original
MSA with replacement to create multiple bootstrap datasets. Each bootstrap dataset
is subjected to the same phylogenetic inference procedure as the primary dataset. The
result is a collection of trees, each representing a different sample of the data. These
bootstrap trees are then used to construct a consensus tree that quantifies the level of
support for various clades within the phylogeny, allowing to draw conclusions about
the stability of the inferred tree topologies.

We use IQ-TREE [Min+20] to infer these bootstrap trees and treat them as a
representative sample of a pseudo-distribution for our analysis. IQ-TREE uses a
variation of bootstrapping which is called ultra-fast bootstrapping. This is significantly
faster than the traditional bootstrap by reusing trees and speeding up likelihood
calculations.

6

2.2. Phylogenetic Inference

2.2.7. Neighbor Joining

Algorithm 2.1: Neighbor-Joining Algorithm
Input: 𝑛 × 𝑛 Distance matrix D
Output: Phylogenetic tree T

1 T ← set of 𝑛 trees, initially one for each sequence
2 while |T| > 1 do
3 d ← Array of size |T|
4 for each 𝑖 ∈ T do
5 d[𝑖] ← ∑𝑛

𝑘=1 D[𝑖] [𝑘]
6 for each (𝑖, 𝑗) ∈ T × T do
7 𝑄 (𝑖, 𝑗) ← (|𝑇 | − 2)D[𝑖] [𝑗] − d[i] − d[j]
8 (𝑖, 𝑗) ← argmin(Q)

9 𝑡 : Tree ← mergeNodes(i, j)
10 T.removeTree(i); T.removeTree(j)
11 D.removeSequence(i); D.removeSequence(j)
12 D.addSequence(t)
13 for each 𝑖 ∈ T do
14 D.updateDistance(i, t)
15 T.addTree(t)
16 return T

Neighbor Joining (NJ) is a distance-based, greedy heuristic for the balanced ME
criterion by Saitou and Nei [SN87] to infer the shortest phylogenetic tree for 𝑛 sequences
from a pair-wise distance matrix 𝐷. Starting from a star tree with all sequences (Line
1), the NJ algorithm iteratively combines two nodes with the smallest value in the
so-called 𝑄-Matrix into a new node (Lines 8-12). An entry 𝑄 (𝑖, 𝑗) is calculated from the
respective distance in 𝐷 and the sum over all distances from the nodes 𝑖 and 𝑗 (Line
4-7). Then, the distances from all remaining nodes to this new node are computed from
the old distances and a new 𝑄-Matrix is calculated (Lines 13-14). The algorithm is
formalized in Algorithm 2.1.

Because the 𝑄-Matrix has to be recalculated in each step and the minimum has to
be found, the runtime adds up to 𝑂 (𝑛3). Some implementations like RapidNJ achieve
expected 𝑂 (𝑛2) runtime [SMP08].

Implementation Details Explicitly materializing the 𝑄-Matrix in each step of the
NJ algorithm introduces many unnecessary write-operations and also wastes space.
To circumvent this, we use a closure that takes 2 indices of the distance matrix and
computes the 𝑄-Matrix entries (Algorithm 2.1, Line 6-7) on demand from the pre-
computed row-sums vector 𝑑 (Algorithm 2.1, Line 3-5) and the distance matrix 𝐷. We
keep a list of active indices to keep track of which rows and columns in 𝐷 represent
nodes that still need to be joined and reuse 𝐷 between NJ steps. Combined with the
aforementioned representation of the 𝑄-Matrix, this allows for efficiently finding the
minimum without materializing large vectors explicitly. Thanks to Rust’s excellent
support for functional programming paradigms, we can iterate the active indices, create
a lexicographically ordered Cartesian product and find the minimum by passing the

7

2. Preliminaries

𝑄-Matrix closure to Iterator::min_by_key(). Perf 1 reports that finding the minimum
of the 𝑄-Matrix makes up 46.7% of the NJ runtime, the remainder is mostly spent
computing 𝑑 (39.6%).

To save space, the distance matrix is represented as a 1-dimensional vector for the
upper triangle matrix (𝐷 is symmetrical) with an appropriate index function. The
overhead from this slightly more complicated index function is not significant. For the
inner loops we make sure that to access entry 𝐷 [𝑖] [𝑗], 𝑖 < 𝑗 holds, simplifying the index
calculation. The newly joined node 𝑡 takes the place of 𝑚𝑖𝑛(𝑖, 𝑗) in the distance matrix
and in the collection of tree nodes (Algorithm 2.1, Line 9-15).

2.3. Metrics

Deciding whether a distribution of trees is “good” often does not have a straightforward
answer. Especially with empirical data, the ground-truth is often missing and even
with simulated data it requires those simulations to reflect real-world evolution to
be meaningful. Because of these challenges, we decided to always look at relative
comparisons. In this case, this means generating a tree distribution with a long-running
MCMC chain and compare other distributions on a wide array of metrics. Since there
is no established one-beats-all metric to compare phylogenetic tree distributions, we
consider many metrics in our evaluation with the goal of shining a light from different
angles onto the problem. Broadly speaking, these metrics fall into two categories:
split-based and likelihood metrics.

The first set of split-based metrics are dealing with the frequencies of splits. Let 𝑃,𝑄
be two phylogenetic tree distributions represented by relative frequencies of their splits,
so 𝑃 = {𝑝𝑖 | 𝑖 ∈ [𝑛]}, 𝑄 = {𝑞𝑖 | 𝑖 ∈ [𝑛]} with

∑
𝑃 = 1,

∑
𝑄 = 1. Further, let 𝑆𝑃 , 𝑆𝑄 be the

sets of splits of 𝑃 and 𝑄, respectively, so 𝑛 = |𝑆𝑃 ∪𝑆𝑄 |. All the metrics are normalized to
the range [0, 1] with a value of 0 representing identical distributions and 1 representing
completely disjoint distributions to easier visualize them against each other.

The most known distance metric we use is the Average Standard Deviation of Split
Frequencies [Lak+08] (ASDSF, Equation 2.2), which amplifies large differences in
split frequencies. The Hellinger Distance [Hel09] (Equation 2.3) and Simple Distance
(Equation 2.4) are similar in concept, but weight the mismatches in frequencies dif-
ferently. The Hellinger Distance increases the contribution of infrequent splits, while
the Simple Distance does not have any such effect. Throughout our evaluation, the
distributions rank consistently regardless of which of these three metrics are used.
Nonetheless, all three are interesting because comparing their values yields insight on
which frequency-magnitudes match the reference the best. Finally, we also use the
Pearson Correlation Coefficient [Pea94] (PCC, Equation 2.5) to measure the linear
correlation between distributions, where cov(𝑃,𝑄) is the covariance and 𝜎 refers to the
standard deviation of 𝑃 and 𝑄 respectively.

1https://perf.wiki.kernel.org/index.php/Main_Page

8

2.3. Metrics

𝐴𝑆𝐷𝑆𝐹 (𝑃,𝑄) =

√√
1∑

𝑝𝑖 ∈𝑃 𝑝
2
𝑖
+∑𝑞𝑖 ∈𝑄 𝑞2

𝑖

𝑛∑︁
𝑖=1
(𝑝𝑖 − 𝑞𝑖)2 (2.2)

𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟 (𝑃,𝑄) = 1
√

2

√√
𝑛∑︁
𝑖=1
(√𝑝𝑖 −

√
𝑞𝑖)2 (2.3)

𝑆𝑖𝑚𝑝𝑙𝑒 (𝑃,𝑄) = 1
2

𝑛∑︁
𝑖=1
| 𝑝𝑖 − 𝑞𝑖 | (2.4)

𝑃𝐶𝐶 (𝑃,𝑄) = cov(𝑃,𝑄)
𝜎𝑃𝜎𝑄

(2.5)

Another mode of analyzing splits is to look at them as sets. This is very similar to
the classic RF-Distance [RF81], but for tree distributions instead of single trees. We
look at the Unique Split Ratio (USR Equation 2.6) which is the normalized symmetric
difference of all splits occurring in the distributions. The One-sided Unique Split Ratios
(USRR and USRT Equation 2.7) help with identifying whether a distribution hits most
of the reference splits (USRR) or if it has many splits that are absent in the reference
(USRT).

𝑈𝑆𝑅(𝑃,𝑄) =
| (𝑆𝑃 ∪ 𝑆𝑄) \ (𝑆𝑃 ∩ 𝑆𝑄) |

| 𝑆𝑃 ∪ 𝑆𝑄 |
(2.6)

𝑈𝑆𝑅𝑅/𝑇 (𝑃,𝑄) =
| 𝑆𝑃 \ 𝑆𝑄 |
| 𝑆𝑃 ∪ 𝑆𝑄 |

(2.7)

Implementation Details Initially, we used existing python tools (Dendropy2, ETE
Toolkit3 and Biopython4) to compute the metrics they supported. However, because
these tools offer much more functionality than we require, they create internal represen-
tations of the trees that increase the parsing time and memory requirements significantly.
This made the evaluation a time-consuming process and limited the amount of distribu-
tions we could generate with neighbo-rs while exploring the parameter space. Therefore,
neighbo-rs now contains a sub-crate where we compute the metrics ourselves. The main
way in which we speed up calculating our results is by parsing newick trees straight
into their split representation (see Section 2.1). An unrooted tree on 𝑛 taxa can be
represented by 𝑛 − 3 bit-vectors representing the splits. These bit-vectors have length
𝑛 (one bit for each taxon) and indicate on which side of the split a taxon is placed.
To prevent ambiguity (a bit-vector being identical to its complement), the bit-vectors
are normalized such that the first bit is always set to 0 and therefore, a 0 at index 𝑖

indicates that taxon 𝑖 is on the same side of the split as taxon 0. Similarly, a 1 at index
𝑗 means that taxon 𝑗 is on the other side of the split relative to taxon 0.
2https://dendropy.org
3http://etetoolkit.org
4https://biopython.org

9

2. Preliminaries

We store the resulting splits of each distribution in a set to calculate the set-based
metrics (USR, USRR and USRT). To compute the frequency-based metrics we compute
the relative frequencies of all splits and store them in a matrix where the rows represent
the individual distributions and the columns the splits. This makes computing pair-
wise metrics very straightforward by picking the respective rows and iterating them
simultaneously to sum up the frequency-differences according to the desired metric
function.

This potentially leads to increased runtime and wasted space if the tree distributions
are vastly different from each other because many frequency values will be 0. We only
encountered problems with the weighted selection strategy (Section 3.2.1), because there
are many tree distributions to evaluate (𝑓 adds another dimension to the parameter
space) and the strategy produces many unique trees. In the future this could be
optimized by hashing the frequencies by the split they belong to.

2.3.1. Difficulty
A problem of ML heuristics is the lack of global knowledge about the shape of the
likelihoods of trees across the search space. Therefore, these heuristics may converge
on a local instead of a global maximum. To mitigate this, several independent tree
searches are performed and if they produce very topologically similar trees it is likely
that this is indeed a global maximum. Otherwise, we must assume that there are
multiple local maxima. This is called the difficulty of the MSA and was quantified by
Haag et al. [HHBS22]. The extremes of this score are 0.0 for very easy MSAs and
1.0 for hopelessly difficult MSAs. Their tool infers several ML trees, evaluates their
statistical significance and rates the difficulty of the MSA based on how many of the
inferred trees are plausible [Mor+21]. The more trees are plausible, the easier the MSA
is rated.

2.4. Experimental Setup

MSA

neighbo-rs

IQ-TREE

short MrBayes

reference MrBayes

distance

distribution

parsimony

filtering

Metrics Plots & Tables

Figure 2.1.: The pipeline for the experiments consists of the input MSA (yellow),
the tools to compare (purple), optional pre- and post-processing steps for neighbo-rs
(orange) as well as the metrics module and plotting scripts (red).

10

2.4. Experimental Setup

2.4.1. Input Data

We evaluate our methods on both, simulated and empirical data. We use SimPhy
[MOP16] to generate 100 MSAs for DNA and AA sequences. SimPhy simulates
evolution of genetic sequences along a phylogenetic tree and generates sequences based
on a set of provided parameters. For both, DNA and AA, we generate 100 MSAs
with 50 taxa and 200 sites each. We use Gamma distributions to add among-site
heterogeneity for the simulated alignments to get more realistic data. The 𝛼-parameter
of the Gamma distributions is sampled from an 𝐸𝑥𝑝 (2) distribution for the GTR+G
(DNA) and LG+G (AA) models, respectively. The detailed configuration can be found
in Appendix A.1. To generate the sequences, SimPhy uses INDELible [FY09]. Its
configuration can also be found in appendix A.2. An overview for the difficulties of the
MSAs can be found in Tables A.1 and A.2 in Appendix A.4

Our empirical data comes from TreeBASE [PDS00]. We filtered for MSAs similar in
size to our simulated data. Again, a short overview with the most important metrics
can be found in Tables A.3 and A.4 in Appendix A.5.

2.4.1.1. Parameter Tuning Set

Because evaluating all parameter combinations for the different strategies in Chapter
3 would be very compute-intense, we created a parameter tuning set consisting of 10
MSAs from each of the 4 datasets with varying difficulty (see Section 2.3.1) and size.
We use this subset of the data to identify which strategies and parameter configurations
are worth including in a more detailed evaluation in Chapter 4. The most important
metrics are listed in Tables 2.1b and 2.1a for empirical and simulated DNA data, as
well as Tables 2.1d and 2.1c for empirical and simulated AA data, sorted by difficulty.

2.4.2. Tool Parameters

We use a long reference run of MrBayes as the distribution we want to approximate. This
reference run has 4 independent chains with 550,000 generations, a sample frequency of
500 and a burn-in of 500. The tools we compare against our implementation (neighbo-rs)
are a shorter MrBayes run with 2 chains, 100,000 generations, a sample frequency of
100 and a burn-in of 100, as well as IQ-TREE with 1000 bootstrap trees including
branch lengths (iqtree2 -B 1000 -wbtl). The configuration for all MrBayes runs can
be found in Appendix A.3.

Due to implementation limitations, neighbo-rs does not support any model optimiza-
tion, neither estimating GTR parameters, nor Gamma-rates. Therefore, we compute
the GTR parameters with raxml-ng and run all tools without among-site heterogeneity.

We list the key values for the most common metrics used throughout Chapter 3 for
MrBayes and IQ-TREE in Table 2.2, because we reuse the data for these tools in the
comparison figures. We will reference them if appropriate, but their contribution to the
figures should rather be seen as visual aid when accessing the quality of the neighbo-rs
strategies.

11

2. Preliminaries

MSA Difficulty

dataset_004 0.39
dataset_006 0.39
dataset_008 0.42
dataset_009 0.47
dataset_007 0.48
dataset_005 0.49
dataset_002 0.5
dataset_010 0.51
dataset_001 0.52
dataset_003 0.54

(a) Simulated DNA. All MSAs
contain 50 taxa and 200 sites.

MSA Difficulty Taxa Sites

alignment_10148_2 0.34 73 138
alignment_15827_1 0.36 30 117
alignment_20312_4 0.43 33 133
alignment_16855_3 0.54 51 277
alignment_604_0 0.54 39 145
alignment_12828_0 0.76 49 150
alignment_26579_5 0.81 49 280
alignment_15621_0 0.83 65 278
alignment_16634_1 0.83 52 197
alignment_27596_24 0.86 65 187

(b) Empirical DNA.

MSA Difficulty

dataset_002 0.16
dataset_008 0.25
dataset_001 0.26
dataset_009 0.28
dataset_005 0.3
dataset_003 0.33
dataset_006 0.35
dataset_004 0.43
dataset_007 0.57
dataset_010 0.78

(c) Simulated AA. All MSAs con-
tain 50 taxa and 200 sites.

MSA Difficulty Taxa Sites

alignment_13985_9 0.05 46 149
alignment_10068_0 0.11 32 291
alignment_25084_2 0.12 55 219
alignment_15931_0 0.13 52 119
alignment_18551_1 0.13 78 104
alignment_14979_1 0.16 88 235
alignment_15021_2 0.21 53 285
alignment_21817_1 0.27 81 247
alignment_16190_3 0.55 76 115
alignment_23593_0 0.76 87 268

(d) Empirical AA.

Table 2.1.: MSA properties for the parameter tuning set

Dataset Tool PCC ASDSF USR USRR USRT
Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

Simulated DNA MrBayes 0.996 0.001 0.992 0.998 0.053 0.012 0.033 0.083 0.310 0.110 0.124 0.501 0.232 0.098 0.068 0.417 0.135 0.060 0.061 0.225
IQ-TREE 0.916 0.021 0.876 0.941 0.278 0.039 0.228 0.353 0.598 0.107 0.418 0.721 0.506 0.182 0.197 0.693 0.275 0.047 0.191 0.358

Empirical DNA MrBayes 0.987 0.013 0.961 0.999 0.097 0.058 0.028 0.193 0.614 0.261 0.244 0.932 0.529 0.266 0.168 0.886 0.442 0.291 0.107 0.857
IQ-TREE 0.752 0.218 0.307 0.985 0.454 0.256 0.114 0.863 0.793 0.219 0.472 0.990 0.729 0.312 0.2 0.980 0.487 0.301 0.150 0.982

Simulated AA MrBayes 0.995 0.007 0.976 0.999 0.047 0.039 0.015 0.146 0.239 0.137 0.097 0.567 0.188 0.133 0.071 0.527 0.083 0.043 0.027 0.162
IQ-TREE 0.952 0.015 0.925 0.978 0.198 0.039 0.124 0.260 0.493 0.072 0.377 0.629 0.325 0.108 0.164 0.481 0.329 0.047 0.275 0.434

Empirical AA MrBayes 0.942 0.115 0.620 0.999 0.155 0.178 0.005 0.608 0.347 0.181 0.155 0.671 0.283 0.160 0.109 0.560 0.148 0.123 0.041 0.434
IQ-TREE 0.942 0.095 0.674 0.989 0.189 0.139 0.094 0.562 0.540 0.153 0.363 0.924 0.294 0.283 0.0 0.918 0.397 0.082 0.261 0.493

Combined MrBayes 0.980 0.060 0.620 0.999 0.088 0.102 0.005 0.608 0.378 0.226 0.097 0.932 0.308 0.215 0.068 0.886 0.202 0.211 0.027 0.857
IQ-TREE 0.890 0.141 0.307 0.989 0.280 0.179 0.094 0.863 0.606 0.184 0.363 0.990 0.463 0.286 0.0 0.980 0.372 0.173 0.150 0.982

Table 2.2.: Comparing MrBayes and IQ-TREE on mean, standard deviation, minimum
and maximum values for the metrics PCC, ASDSF, USR, USRR and USRT grouped
by the different parameter tuning datasets.

12

2.5. Data Visualization

2.4.3. Hardware and Software
All experiments were conducted on an AMD Ryzen 5 2600 with 6 cores with hyper-
threading @3.4GHz with 2×8GB of DDR4 RAM @2133MT/s. We use MrBayes
version 3.2, IQ-TREE version 2.1.2, SimPhy version 1.0.2, INDELible version 1.03
and raxml-ng version 1.2.0. neighbo-rs and its metrics and distance-estimator sub-
crates were written in Rust 2021 Edition and compiled using rustc version 1.70 with
RUSTFLAGS=¨C target-cpu=native¨ and a custom cargo profile based on the default
release profile, but with link time optimization enabled to boost performance. The
commit of neighbo-rs is 70c9b7ec636da03bc85eba79757f4a88de0398c2 for all generated
data. The repository contains further information about the versions of libraries used
in neighbo-rs. They are omitted here for sake of simplicity.

MrBayes and IQ-TREE were run sequentially while neighbo-rs was executed sequen-
tially and in parallel with 12 threads, because all steps can be trivially parallelized.
The pre-computation of the distance distributions can be parallelized over the pairs of
sequences, while generating a tree with NJ and evaluating the parsimony score can be
done in parallel for multiple trees at once. We go further into the impact of these steps
and the effect on runtime in Section 4.4. In all other experiments, we focus on solution
quality where runtime has no effect and there are no timeouts.

2.5. Data Visualization
Because all our metrics are normalized to the range [0, 1] (except PCC which is
∈ [−1, 1], but we never observed values < 0), they can be tightly represented in a
single plot with their values on the y-axis and the specific metric on the x-axis. We
chose matplotlib’s categorical boxen-plots (also known as letter-value plots) [HKW11] to
group the data points per tool for most figures (apart from runtime comparisons) to
preserve information about the distribution of the metric values. We use the standard
parameters, so 𝑙𝑜𝑔2(𝑛)−3 levels for the boxen tails and the width of a sub-box represents
the percentile. The largest box contains 50% of the data points with the median as
a black line dividing this box, the second-largest boxes above and bellow the largest
box contain 25% of the data points combined, et cetera. These plots are supplemented
with the tables containing other core features of the constant tools from Section 2.4.2
as well as concrete values for e.g. mean and standard deviation throughout the text.
To compare runtimes in Section 4.4, we use simple scatter-plots and stacked bar-
plots to highlight individual components. Figures also contain the number of MSAs,
their difficulty range and optimal parameters where applicable. For the weighted
minimization of our metrics we use the following weights: PCC : -5.0, ASDSF : 5.0,
UBRR: 1.0, UBRT: 1.0. This is based on the desire to approximate the frequencies
of splits more accurately, while not completely disregarding the amount of splits that
occur in only the reference or the tools. To show how the metrics change across our
parameter grid, we use 3D surface plots with heatmap encoding in Section 3.1.1.

13

3. Methods

To arrive at a set of phylogenetic trees that approximates a distribution through
repeated NJ execution, one has two obvious choices to add perturbation. The first is
to change the pair-wise distances before generating a new tree, which we explore in
Section 3.1, the second is to add randomness to the decision about which nodes to join
in each step, in Section 3.2. In this chapter, we describe multiple variations for both
approaches and discuss their strengths and weaknesses. Each section will contain a
short preliminary evaluation of the respective strategy on our parameter tuning dataset.
For sake of readability in our figures, we use a reduced selection of our metrics described
in Section 2.3 by not showing the Hellinger Distance and Simple Distance, because the
ASDSF offers enough insight into the mismatch in split frequencies. We will revisit the
other two in Chapter 4 for a more in-depth analysis.

3.1. Input Perturbation

As a first step to add perturbation to the input distances, we simply add fixed random
noise onto a fraction of the matrix entries (Section 3.1.1), because this is a very easy
and fast way to arrive at different trees while controlling the width of the distribution
through the amount of noise with parameters. However, this clearly is too simplistic
to produce satisfying results, so we then switch to actual likelihood-based distance
distributions between the sequences (Section 3.1.2).

3.1.1. Random Noise

Method We define 𝑝, 𝑟 ∈ [0, 1] to be the perturbation and rate parameters. Let
further D(0, 𝑝) be a normal distribution with mean 0 and standard deviation 𝑝. We
sample a value 𝑠 from D and multiply a fraction 𝑟 of pair-wise distances with 𝑒𝑠 . This
can be thought of as a percentage change in the distances. While this is very fast and
easy to implement, it has no theoretical support and simply presents a (rather basic)
heuristic to model uncertainty in the distances. Instead of coming up with a reasonable
distribution of trees where trees with higher likelihood are observed more often, this
approach tries to cover a wide set of trees. Our goal is that this set is diverse enough
to contain many trees that would also be observed in the reference distribution, but
not so broad that a large fraction of the trees become unrealistic. Through tuning
the noise parameter 𝑝 of the normal distribution and the fraction 𝑟 of matrix entries
that get perturbed, we can optimize for different metrics. Another parameter for this
method is whether to apply the same percentage change to all selected entries or draw
a new percentage for each one individually. We decided to use the same noise for all
entries because these results were strictly better. Overall, this is a good baseline to
compare the other input perturbation strategy against, because it is rather uninformed
and shows how simple noise performs against the more elaborated method.

15

3. Methods

Evaluation Figure 3.1 shows the comparison of this strategy against the short MrBayes
run and IQ-TREE on the parameter tuning set relative to the long MrBayes run. The
parameters of neighbo-rs are optimized by minimizing the weighted sum of the values
of the PCC, ASDSF, fraction of unique splits in the reference USRR and fraction of
unique splits in the respective tool USRT (see Section 2.5).

This figure already shows the clear weakness of this strategy and what we will
continue to address in this thesis: To closely approximate the reference distribution
in terms of split frequencies, we need to add a lot of noise to the pair-wise distances.
This leads to many of the splits in the reference being hit by neighbo-rs (USRR mean:
0.259, std: 0.257), while simultaneously creating many splits that are unique to our
tool (USRT mean: 0.77, std: 0.154). Figures 3.2a and 3.2b show how the one-sided
USRs behave across our noise parameter grid and that they are almost strictly inversely
correlated. We observe this consistently across all strategies and therefore, the objective
becomes to minimize these trade-offs. From figure 3.2c, and based on the optimization
results in Figure 3.1, we conclude that choosing higher parameter values improves the
important metrics PCC and ASDSF, so we need to find ways to prevent or filter the
occurrence of trees that introduce splits that are not found in the reference.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1
Figure 3.1.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
𝑝 = 0.5, 𝑟 = 0.4. The randomized noise strategy produces high USRT values when
optimized to match split frequencies. Its frequency-based metrics also lack behind the
other tools.

16

3.1. Input Perturbation

p

0.1
0.2

0.3
0.4

0.5

0.6

r

0.1

0.2

0.3

0.4

0.5

0.6

U
S
R

R

0.0

0.2

0.4

0.6

0.8

1.0

0.25 0.30 0.35 0.40 0.45 0.50

1(a) The USRR values are naturally lower with
higher noise parameters. The error bars (min-
imum and maximum values) are notably large,
indicating that the variance is large between
different MSAs.

p

0.1
0.2

0.3
0.4

0.5

0.6

r

0.1

0.2

0.3

0.4

0.5

0.6

U
S
R

T

0.0

0.2

0.4

0.6

0.8

1.0

0.4 0.5 0.6 0.7 0.8

1(b) The USRT values are almost completely
inversely correlated with the USRR values.
Again, the error bars cover a large range.

p

0.1
0.2

0.3
0.4

0.5

0.6

r

0.1

0.2

0.3

0.4

0.5

0.6

PCC

0.0

0.2

0.4

0.6

0.8

1.0

0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85

1(c) The PCC values are consistently high
from moderately high to very high noise pa-
rameters. The ratio 𝑟 is more important for
better PCC values.

Figure 3.2.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
Surface plots of USRR, USRT and PCC values across the noise parameter grid show
that high noise is preferable and trade-offs are unavoidable.

17

3. Methods

3.1.2. Pair-wise Distance Distributions

Method To get more realistic pair-wise distances between sequences, we generate a
distribution of distances for each pair of sequences. To approximate these distributions
we use rejection sampling, but this requires a good prior estimation on the distribution
of distances to get a sufficient number of samples accepted quickly. There is little
literature on generalizations of the distribution of phylogenetic distances. We assume
they generally follow an Exponential or Gamma distribution, which is at least true
for branch lengths in empirical trees [Par16]. Thus, we use a Gamma distribution
with an empirically estimated mean from the input data as a proposition mechanism
for the rejection sampling process to approximate a distribution of distances for each
sequence pair. More formally, let 𝑘 ∈ ℝ+ be the shape parameter and 𝑑 the average
pair-wise Hamming distance of the input MSA. The scale parameter is 𝜃 = 𝑑

𝑘
∈ ℝ+

and Γ(𝑘, 𝜃) the Gamma distribution. We draw samples until we reach 1000 accepted
distances with a burn-in of 10 as a default. The acceptance of a distance is based on a
simplified likelihood calculation by Yang [Yan14] for the pair of sequences (𝑎, 𝑏) where
𝐿𝑎,𝑏 (𝑡) =

∑𝑛
𝑖=1 𝜋 (𝑎𝑖)𝑃𝑎𝑖𝑏𝑖 (𝑡) is the likelihood that 𝑡 is the distance between 𝑎 and 𝑏 under

the prior vector 𝜋 and instantaneous rate matrix 𝑃 (𝑡). Our evaluations show that this
is a solid heuristic to approximate a distribution of distances and works well for most
of our MSAs. The number of samples drawn until enough are accepted rarely exceeds
10,000. However, during the final large experimental runs, especially with difficult,
empirical MSAs, we sometimes saw the number of required samples reach as much as
1,000,000. The offending MSAs contained many duplicate sequences, while the average
pair-wise Hamming distance was relatively high. This means that accurate samples for
both, very similar and very different sequences, are very unlikely to be drawn. This
occurred infrequently enough to not be a concern for the validity of our results, but
needs to be addressed in the future. For example, switching to a uniform distribution
if the sampling reaches a certain threshold without enough accepted distances.

To now compute the trees, we start with the maximum likelihood distances for the
first tree and sample a variable fraction 𝑟 of distances before each new tree as before.
One important thing to note here is that this assumes the distances between pairs of
sequences to be independent of each other, which they are not as soon as the paths
connecting the pairs in the resulting tree have at least one common edge. This is not a
problem we can solve with the methods presented in this thesis, as it is outside the
scope of this project. We try to mitigate it by filtering the resulting trees by their
parsimony score as a proxy for likelihood (see Section 3.3) to discard highly unlikely
trees, and distance re-sampling during NJ steps (see Section 3.2.3). We discuss more
ideas on how to overcome these dependencies in Section 5.1.1. Another way to reduce
the construction of unlikely distance combinations is through limiting the variance of
the individual distributions of distances. This means that we approximate the samples
we gather with normal distributions and scale their standard deviation by a factor
𝛼 ∈ (0, 1] to create a bias towards higher likelihood distances and in extend reduce the
expected amount of distinct tree topologies.
Evaluation To properly analyze this strategy, the plots are split by the type of data.
For both simulated datasets (Figures 3.3a and 3.3c), the results look promising. neighbo-
rs consistently hits more splits from the reference than IQ-TREE and the number of
excess splits USRT is moderate, leading to both tools having very similar USR scores.
However, neighbo-rs lacks behind the other tools in the frequency metrics PCC and

18

3.1. Input Perturbation

ASDSF, indicating that, while we achieve comparable split coverage, the frequencies
do not line up. On the other hand, the empirical datasets (Figures 3.3b and 3.3d)
show increased uncertainty in the datasets even though they have comparable difficulty
(but also contain generally more MSAs of higher difficulty). Most notable, even the
short MrBayes run struggles to cover the splits of the reference distribution, especially
for the empirical DNA data. Nonetheless, the ASDSF and PCC remain relatively
stable, indicating that the splits in the symmetric difference have low frequencies in
both MrBayes runs. Further evaluation showed that the variation in performance
for IQ-TREE and neighbo-rs can be attributed to the difficulty of the MSAs in the
respective datasets. This will be addressed in more detail in Section 4.1.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(a) 10 MSAs (simulated DNA parameter tun-
ing set), difficulty: 0.39–0.54. 𝑝 = 0.5, 𝑟 = 1.0.
neighbo-rs is very comparable in quality to
IQ-TREE on simulated DNA data. There are
slight deficits in the frequency-metrics.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(b) 10 MSAs (empirical DNA parameter tun-
ing set), difficulty: 0.34–0.86. 𝑝 = 0.3, 𝑟 = 1.0.
Empirical DNA data shows increased uncer-
tainty for all tools. USR is high across all
tools. The short MrBayes run still has good
results for the frequency-metrics. neighbo-rs
outperforms IQ-TREE with more consistent
results across the dataset.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(c) 10 MSAs (simulated AA parameter tuning
set), difficulty: 0.16–0.78. 𝑝 = 0.5, 𝑟 = 0.7.
As with DNA, all tools perform well on simu-
lated AA data, with neighbo-rs lacking behind
in all metrics besides USRR.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(d) 10 MSAs (empirical AA parameter tuning
set), difficulty: 0.05–0.76. 𝑝 = 0.7, 𝑟 = 1.0.
Empirical AA data is the most difficult one
for neighbo-rs. Distance estimations are inac-
curate and lead to significantly worse results.

Figure 3.3.: Metrics for the distance distribution strategy on the parameter tuning sets
shows that simulated data are more favorable for neighbo-rs.

19

3. Methods

3.1.3. Comparison

A direct comparison of the two input perturbation strategies favors distance distributions
with significantly lower miss-matching splits USR (0.66 mean compared to 0.8 for
random noise) and a slight advantage for the ASDSF (0.323 versus 0.368 on average)
and PCC (0.878 versus 0.851 on average). We will therefore only consider the distance
distribution strategy in the more detailed evaluation in Chapter 4.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
distance distribution random noise

1Figure 3.4.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
Random noise: 𝑝 = 0.5, 𝑟 = 0.4, Distance distribution 𝑝 = 0.4, 𝑟 = 0.9.
Optimizing across all parameter tuning sets leads to very high USRT values for the
random noise strategies which also leads to worse frequency-metrics compared to using
distance distributions.

3.2. Randomized Neighbor Joining

As an alternative to changing the input before constructing the next tree, we can
also keep the input fixed and look to add randomness to the NJ algorithm. This is
much more likely to produce very suboptimal results, because it breaks the balanced
minimum evolution criterion (with respect to the input). We show that changing the
selection criterion even slightly is not a good idea, but also that combining this idea
with the distance distributions from Section 3.1.2 leads to promising results.

20

3.2. Randomized Neighbor Joining

3.2.1. Weighted Selection
Method By changing the selection criterion for the next nodes to join during the
NJ algorithm (Algorithm 2.1) to a weighted selection with weight function 𝑤 : 𝑞 →
𝑒−𝑞, 𝑞 ∈ 𝑄 instead of the strict minimum of the 𝑄-Matrix, we hope to get similar trees
with small topological changes from preferring pairs that would be joined soon anyway.
However, this is not the case. Rather, highly unlikely trees with a largely disjoint set of
splits compared to reference distribution are the result. Even further weighting small
values in the 𝑄-Matrix through adjusting the weight function to 𝑤 : 𝑞 → 𝑒−𝑞, 𝑞 ∈ 𝑄 did
not lead to acceptable results, leading us to believe that joining even slightly suboptimal
pairs of nodes have a cascading downstream effect.

Evaluation Figure 3.5 shows just how far off this strategy is and highlights that even
small changes to the selection criterion can have a large impact on the constructed
trees. Both, USR and USRT, are beyond 0.8 for all 40 parameter tuning MSAs and as
a result the mean ASDSF is 0.656. This means this method produces widely different
trees than the reference. We refrain from further analyzing this approach and deem it
hopeless to pursue in the future.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1Figure 3.5.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
𝑝 = 0.0, 𝑟 = 0.0. Even without any noise applied to the input, very high USR values for
all MSAs make weighted selection an infeasible strategy to infer reasonable trees.

21

3. Methods

3.2.2. Minimum Sampling
Method Another alternative to using the strict minimum of the 𝑄-Matrix is to take
a fraction 𝑓 of samples from the matrix and choose the minimum of these samples.
This also reduces the runtime by limiting the number of 𝑄-Matrix entries that need to
be evaluated. Similar to weighted selection (Section 3.2.1) this method adds noise to
the selection process, but should still choose relatively small values from the 𝑄-Matrix.
However, after the seeing the results for weighted selection the expectation is that this
strategy would suffer from the same problem, at least for small 𝑓 .

Evaluation We evaluated this strategy with and without noise parameters, meaning
that without noise parameters, the method uses the ML distances for each new tree and
the only variable is the randomness of selecting the samples from the 𝑄-Matrix. As with
weighted selection this strategy suffers from downstream effects of choosing suboptimal
pairs, as can be seen in figure 3.6. It is also to note that while this performs better
than weighted selection, the parameter optimization chooses high 𝑓 -values and noise
parameters similar to the plain distance distributions from Section 3.1.2, so most of the
time the potential runtime improvements from ignoring large parts of the 𝑄-Matrix are
void. We saw further deterioration of the results when evaluating with lower percentile
values or lower noise parameters. Therefore, we conclude this to be another failed
approach not worth considering in the future.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1Figure 3.6.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
𝑝 = 0.5, 𝑟 = 1.0, 𝑓 = 0.75. The optimal fraction 𝑓 of 𝑄-Matrix entries is very high.
Lowering this fraction worsens the results significantly, showing that the potential
benefit of this strategy over plain distance distributions does not apply.

22

3.2. Randomized Neighbor Joining

3.2.3. Distance Re-sampling

Method Instead of re-sampling the matrix before constructing a new tree, the re-
sampling can also be done during execution of the NJ algorithm (Algorithm 2.1). We
use the same distributions of distances as in 3.1.2 but now start with the maximum
likelihood distances and re-sample a fraction of distances each time two nodes are
joined. When two nodes are joined, we fix their distance as the one currently present
in the distance matrix and update the distance distribution to the remaining nodes
by using samples of their pair-wise distance distributions to be used for the standard
NJ update of distances (Algorithm 2.1, Line 14). Afterward, such a distribution is
represented by a set of samples, rather than a normal distribution. Ideally, we would
want to really combine pairs of distributions in this process, respecting covariance and
other dependencies. This, again, is outside the scope of this thesis, but the approach is
discussed in Section 5.1.1.

Evaluation Because this shows similar potential to plain distance distributions (Section
3.1.2), we split the analysis by the type of data. It performs significantly better on
simulated datasets (figures 3.7c and 3.7a) than empirical data (figures 3.7d and 3.7b) on
the optimized metrics PCC (0.89 and 0.886 compared to 0.822 and 0.843 for empirical
data on average) and ASDSF (0.297 and 0.319 compared to 0.4 and 0.373 for empirical
data on average) with performance being very poor on empirical AA data where the
USR is 0.757 on average. As with the other NJ randomization strategies, trying to add
small variations to the selection criterion seems to do more harm than good. Another
downside to this approach is that updating the distributions adds significant runtime.
Therefore, a trade-off has to be made between closely approximating the distributions
by drawing many samples and having reasonable runtime, because this adds a lot of
work to the innermost loop of the program (updating distances in the NJ algorithm).

However, we believe that there is potential for this to produce viable results with
the aforementioned changes to the updating of distance distributions. This would also
eliminate the increased runtime from more distance samples (at the cost of increased
runtime from combining distributions). Although beyond the scope of this thesis, this
is an interesting strategy to consider when trying to create variations in NJ results.

3.2.4. Comparison

Because all randomization strategies apart from distance re-sampling (Section 3.2.3)
have clear negative results, we conclude this section with a short comparison of distance
re-sampling and plain distance distributions (Section 3.1.2) in figure 3.8. Looking at
the combined datasets shows that distance re-sampling performs worse than distance
distributions in all metrics with more negative outliers in total when optimizing for the
combined parameter tuning MSAs. Exact values can be found in Table 3.1. Finally,
distance re-sampling is approximately 7 times slower than plain distance distributions,
while also having an order of magnitude fewer samples per distance (100 compared to
1000 for distance distribution).

23

3. Methods

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(a) 10 MSAs (simulated DNA parameter tun-
ing set), difficulty: 0.39–0.54. 𝑝 = 0.5, 𝑟 = 0.8.
Similar to plain distance distributions, dis-
tance re-sampling produces good results on
simulated DNA data.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(b) 10 MSAs (empirical DNA parameter tun-
ing set), difficulty: 0.34–0.86. 𝑝 = 0.4, 𝑟 = 1.0.
The empirical DNA is difficult to analyze
with distance re-sampling. Again, frequency-
metrics remain relatively stable for neighbo-rs
while the USR is very high.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(c) 10 MSAs (simulated AA parameter tuning
set), difficulty: 0.16–0.78. 𝑝 = 0.5, 𝑟 = 0.9.
As with its DNA counterpart, inferring trees
for simulated AA MSAs works well. neighbo-
rs with distance re-sampling misses about as
many splits as the short MrBayes run (see
USRR), but the frequencies are mismatched
by large USRT values.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs

1(d) 10 MSAs (empirical AA parameter tuning
set), difficulty: 0.05–0.76. 𝑝 = 0.8, 𝑟 = 1.0.
Distance re-sampling does not work very
well for empirical AA data. Especially the
frequency-metrics are highly suboptimal com-
pared to the other datasets.

Figure 3.7.: Metrics for the distance re-sampling strategy on the parameter tuning sets
show that simulated data is again more favorable for neighbo-rs.

24

3.2. Randomized Neighbor Joining

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
distance distribution distance re-sampling

1Figure 3.8.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
Distance distribution: 𝑝 = 0.4, 𝑟 = 0.9, Distance re-sampling: 𝑝 = 0.4, 𝑟 = 0.8.
Distance distribution has a slight edge over distance re-sampling with less deviation
and better means for all metrics besides USRR.

Strategy PCC ASDSF USR USRR USRT
Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

Distance distribution 0.878 0.072 0.645 0.962 0.323 0.097 0.184 0.592 0.660 0.151 0.313 0.914 0.319 0.215 0.054 0.862 0.580 0.180 0.206 0.909
Distance re-sampling 0.860 0.087 0.560 0.961 0.347 0.113 0.187 0.669 0.676 0.157 0.345 0.936 0.319 0.230 0.050 0.899 0.607 0.178 0.267 0.922

Table 3.1.: Comparing distance distribution and distance re-sampling on mean, standard
deviation, minimum and maximum values for the metrics PCC, ASDSF, USR, USRR
and USRT shows that distance distributions are the preferable strategy.

25

3. Methods

3.3. Parsimony Filtering
Method Because the previous methods of this chapter do not use any information
about the overall likelihood of the generated trees, we end up with an over-proportional
number of trees that are highly unlikely, and also fewer trees with high likelihood
when we use parameters that increase the amount of noise applied to the distance
matrices. To mitigate this effect, and still cover most of the reference distribution, we
would ideally want to filter some of the less likely trees. Calculating the parsimony
and likelihood scores has the same asymptotic runtime, but likelihood has significantly
higher constants due to many floating-point operations and matrix multiplications.
Therefore, we propose to use parsimony as a proxy for likelihood in deciding which
trees to keep. Let 𝑛 be the desired number of trees to generate. To have a reasonable
comparison we generate 𝑘𝑛 trees with neighbo-rs and then discard (𝑘 − 1)𝑛 of them
through filtering. For our experiments we choose 𝑘 = 5. For the filtering we explored
three different strategies: strict maximum where only the best 𝑛 trees are kept, rejection
sampling where the distribution is approximated by drawing samples until we have 𝑛

accepted trees, as well as weighted selection of 𝑛 trees based on their parsimony scores.
Strict maximum is superior throughout our evaluation, and therefore we omit figures for
the other two here. We show that not only are parsimony scores a good approximation
of likelihood relations, but also that this filtering process significantly improves our
results.

Evaluation Figure 3.9 shows improvements across all metrics except USRR compared
to distance distributions without parsimony filtering on the combined parameter tuning
data set. We assume this to be a direct result of the reference tree distributions
containing some trees with lower likelihoods which we filter with this method. However,
even other strategies like weighted selection filtering did not improve this, leading us
to believe that while the unlikely trees we generate contain some of the fringe-splits,
others are still missing. We believe missing these splits is not detrimental to the
quality of the filtered distribution because we simultaneously significantly improve the
ASDSF and PCC, so the missed splits have very small frequencies in the reference
distribution. In fact, even though the 50𝑡ℎ percentile of the USRR lies significantly
higher with parsimony filtering, the average is below that without parsimony filtering.
Only for empirical DNA MSAs the mean USRR is higher with parsimony filtering.
Exact numbers can be found in Table 3.2. Overall, the improvements are not very
significant on average except for the USRT which shows large drops in magnitude.
Considering we started with the intention of reducing this as much as possible while
using high noise parameters to cover the reference splits, this strategy already presents
a success. We look further into which splits we miss in Section 4.2 by looking at the
other frequency metrics.

To evaluate how good parsimony scores are as a proxy for likelihoods, we plot the
likelihoods for the tree distributions with boxen-plots in figures 3.10a, 3.10b, 3.10c
and 3.10d for one example MSA per parameter tuning dataset. To eliminate effects
of minor branch length discrepancies in the distributions, we re-estimated the branch
lengths with raxml-ng [Koz+19] and then compute the likelihoods with it as well. The
blue horizontal line is the ML value computed with raxml-ng in search-mode. While
neighbo-rs lacks behind relative to the other tools in some MSAs, the effect of parsimony
filtering is clearly positive. We attribute the discrepancy in likelihoods compared to the

26

3.3. Parsimony Filtering

other tools to our distance estimation from Section 3.1.2. Especially for empirical data
we believe that the distributions of distances are not accurate enough. We observed
substantial improvements in likelihoods for most MSAs, as can be seen throughout the
figures. Even in cases where there was little improvement, the filtering removed the
“tail-end” of the distributions, eliminating trees with very low likelihood scores.

In terms of runtime, parsimony filtering increases the runtime by a factor of 𝑘 to
compute the additional trees. Computing the parsimony scores further adds 𝑘𝑛 ∗𝑂 (𝑠𝑚)
(see Section 2.2.2, 𝑠 = #sequences, 𝑚 = #sites), but can be parallelized by iterating
sites (or trees) in parallel, similar to computing the likelihood (see Section 2.2.4). The
filtering is in 𝑂 (𝑠𝑜𝑟𝑡 (𝑘𝑛)). Computing the scores dominates the runtime of neighbo-rs,
but from the observed results we conclude that this is acceptable (see Section 4.4).

Dataset Strategy PCC ASDSF USR USRR USRT
Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

Simulated DNA neighbo-rs 0.894 0.023 0.848 0.919 0.309 0.036 0.266 0.382 0.594 0.060 0.495 0.684 0.300 0.101 0.092 0.465 0.494 0.108 0.306 0.629
neighbo-rs parsimony-filtered 0.914 0.027 0.858 0.945 0.275 0.046 0.217 0.369 0.552 0.056 0.441 0.634 0.291 0.115 0.08 0.467 0.431 0.111 0.247 0.567

Empirical DNA neighbo-rs 0.908 0.045 0.828 0.954 0.291 0.073 0.207 0.402 0.751 0.128 0.520 0.914 0.543 0.277 0.145 0.862 0.607 0.183 0.216 0.816
neighbo-rs parsimony-filtered 0.914 0.053 0.790 0.965 0.278 0.078 0.182 0.443 0.721 0.160 0.375 0.910 0.553 0.257 0.192 0.855 0.565 0.197 0.259 0.808

Simulated AA neighbo-rs 0.892 0.090 0.649 0.961 0.291 0.117 0.184 0.592 0.567 0.136 0.404 0.867 0.181 0.096 0.054 0.395 0.524 0.156 0.291 0.855
neighbo-rs parsimony-filtered 0.905 0.090 0.661 0.972 0.263 0.116 0.149 0.562 0.480 0.158 0.267 0.737 0.177 0.113 0.054 0.451 0.414 0.183 0.160 0.669

Empirical AA neighbo-rs 0.817 0.074 0.663 0.898 0.402 0.105 0.247 0.587 0.732 0.184 0.281 0.913 0.256 0.150 0.115 0.573 0.702 0.214 0.163 0.909
neighbo-rs parsimony-filtered 0.825 0.073 0.669 0.904 0.388 0.107 0.227 0.580 0.689 0.199 0.258 0.882 0.254 0.150 0.092 0.576 0.641 0.253 0.065 0.876

Combined neighbo-rs 0.878 0.071 0.649 0.961 0.323 0.097 0.184 0.592 0.661 0.153 0.281 0.914 0.320 0.215 0.054 0.862 0.582 0.182 0.163 0.909
neighbo-rs parsimony-filtered 0.890 0.073 0.661 0.972 0.301 0.101 0.149 0.580 0.610 0.177 0.258 0.910 0.319 0.216 0.054 0.855 0.513 0.208 0.065 0.876

Table 3.2.: Comparing distance distribution with and without parsimony filtering on
mean, standard deviation, minimum and maximum values for the metrics PCC, ASDSF,
USR, USRR and USRT grouped by the parameter tuning sets.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs parsimony-filtered neighbo-rs

1
Figure 3.9.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
𝑝 = 0.5, 𝑟 = 0.8. Parsimony filtering significantly reduces our original problem of high
USRT values, while also improving the frequency-metrics.

27

3. Methods

−1175.6

−1500

−1450

−1400

−1350

−1300

−1250

−1200

L
og

L
ik

el
ih

o
o
d

reference MrBayes

MrBayes

iqtree

neighbo-rs

neighbo-rs parsimony-filtered

ML

(a) Simulated DNA MSA dataset_003,
difficulty: 0.54

−1375.73

−1460

−1440

−1420

−1400

−1380

L
og

L
ik

el
ih

o
o
d

reference MrBayes

MrBayes

iqtree

neighbo-rs

neighbo-rs parsimony-filtered

ML

(b) Empirical DNA MSA alignment_15827_1,
difficulty: 0.22

−2448.5

−2520

−2510

−2500

−2490

−2480

−2470

−2460

−2450

L
og

L
ik

el
ih

o
o
d

reference MrBayes

MrBayes

iqtree

neighbo-rs parsimony-filtered

neighbo-rs

ML

(c) Simulated AA MSA dataset_001,
difficulty: 0.26

−8292.4

−8420

−8400

−8380

−8360

−8340

−8320

−8300

L
og

L
ik

el
ih

o
o
d

reference MrBayes

MrBayes

iqtree

neighbo-rs parsimony-filtered

neighbo-rs

ML

(d) Empirical AA MSA alignment_18551_1,
difficulty: 0.12

Figure 3.10.: Across all data types parsimony filtering significantly improves the
likelihoods of the trees generated with neighbo-rs by eliminating highly unlikely trees.

28

4. Detailed Evaluation
In this chapter we present a more detailed analysis of the tree distributions provided
by distance distributions with parsimony filtering from Section 3.3, our best neighbo-rs
configuration. We look at the parameter tuning dataset split by difficulty ranges in
Section 4.1 to assess whether neighbo-rs provides consistent results for more difficult
MSAs. In Section 4.2 we show the best possible results by optimizing the noise
parameters for each MSA individually. Section 4.3 evaluates how the optimal parameters
determined for the parameter tuning sets perform for the full datasets. Finally, Section
4.4 compares the running time of the evaluated tools, as well as the impact of distance
estimations and parsimony filtering on neighbo-rs.

One more thing to look at is the quality of the reference MrBayes distribution.
We will not address this in great detail in this thesis, because more data would be
required to make definitive claims. However, in Figure A.1, we show how the reference
run compares against the other tools. We look at the minimum, mean, maximum
RF-distance as well as the USRT of the trees from the respective distributions to the
“true” tree generated by SimPhy for the simulated parameter tuning set and full dataset.
Overall, these all are very similar, indicating that all tools perform well, and our other
metrics do a good job at highlighting the small variations of the distributions.

4.1. Performance by Difficulty
The per-dataset evaluations throughout Chapter 3 showed large differences between
data types (AA versus DNA, simulated versus empirical). Because all datasets (and
therefore the parameter tuning sets as well) contain different distributions of difficulties,
we are interested in evaluating the effect of difficulty in our results. Throughout this
section we will refer to several classes of difficulty. These are easy (difficulty ∈ [0.0, 0.3]),
medium (difficulty ∈ [0.3, 0.7]) and hard (difficulty ∈ [0.7, 1.0]). We expect that neighbo-
rs parsimony-filtered performs best on easy datasets because there should be fewer
plausible trees and therefore the distances between sequences are expected to have a
clear signal. Figures 4.1a and 4.1b show that neighbo-rs parsimony-filtered performs
very consistent throughout easy and medium MSAs, but contrary to our expectations
lacks behind IQ-TREE in the frequency-metrics PCC (0.895 compared to 0.968 for
IQ-TREE on average for easy MSAs and 0.899 to 0.924 for medium MSAs) and ASDSF
(0.289 compared to 0.15 for IQ-TREE on average for easy MSAs and 0.29 to 0.25 for
medium MSAs). However, already for medium MSAs IQ-TREE begins to struggle
with hitting the reference splits reliably and for hard MSAs (Figure 4.1c) IQ-TREE is
unable to find topologically similar trees to the reference at all, reaching 90% splits in
the symmetric difference on average. In fact, even the short MrBayes run deteriorates
on hard MSAs, although its frequency-based metric values remain relatively stable,
indicating that most splits in the symmetric difference occur very infrequently. This
means both MrBayes runs generally agree on the tree topologies. Again, we see the
positive effect of parsimony filtering, as the PCC (mean: 0.853) and ASDSF (mean:

29

4. Detailed Evaluation

0.356) only slightly worsen compared to easy and medium MSAs. We do not know the
cause for this positive outcome, but in trying to understand it in the future, we hope
to improve the results for easy and medium MSAs, as well as make neighbo-rs a valid
alternative for fast inference of phylogenetic tree distributions on hard MSAs.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs parsimony-filtered neighbo-rs

1(a) 13 MSAs (mostly AA), difficulty: 0.05–0.3.
𝑝 = 0.8, 𝑟 = 0.9. On easy MSAs neighbo-rs is
able to consistently have low USRR values, but
very high USRT values inhibit good frequency-
metrics. Parsimony filtering is not able to
improve this compared to the other tools.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs parsimony-filtered neighbo-rs

1(b) 21 MSAs, difficulty: 0.3–0.57.
𝑝 = 0.6, 𝑟 = 1.0. neighbo-rs results for medium
MSAs improve slightly compared to easy ones,
while especially IQ-TREE starts to get worse.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs parsimony-filtered neighbo-rs

1(c) 7 MSAs (mostly DNA), difficulty: 0.76–0.86.
𝑝 = 0.4, 𝑟 = 1.0. On hard MSAs neighbo-rs
performs worse than on easier MSAs, but the
difference is less than for the other tools, espe-
cially IQ-TREE.

Figure 4.1.: Metrics for distance distribution strategy with parsimony filtering grouped
by difficulty

4.2. Individual Optimization
So far we optimized neighbo-rs parameters for the whole dataset, because in practice
one would want to have one run with fixed parameters instead of many runs. However,
optimal parameters do not only depend on the type of data, but also on difficulty (see
Section 4.1) and possibly other factors, so to gain insight about the best possible results,
we compare the best parameters for each MSA individually to those optimized for the
whole combined parameter tuning set. Unsurprisingly, we see slight improvements to
PCC, ASDSF and USRR, and increases in USR and USRT in Figure 4.2. But unless

30

4.2. Individual Optimization

there is a way to limit the amount of reasonable parameter choices for an MSA through
quick preprocessing in the future, we suggest to stick with the optimized parameters
for the whole dataset, as the increased runtime from evaluating large parts of the noise
parameter grid outweighs the benefits of slightly better results.

We can now also analyze the other frequency-based metrics we overlooked so far:
Simple and Hellinger distance. In Section 2.3 we describe how the different distance
functions weight the frequencies of the mismatching splits differently. It is important
to note that we have not yet fully analyzed how quickly each of the metrics scales
and therefore the conclusions we draw here should be carefully verified once their
exact relationship is established. In Figure 4.3 we see that the difference in Hellinger
distance and Simple distance between the tools are very similar to those of the ASDSF.
However, the differences are slightly larger for these new metrics. Larger differences in
the Hellinger distance indicate that neighbo-rs has more large mismatches for splits
that are infrequent. This means that the high usrt values we have seen throughout our
results for neighbo-rs come from infrequent splits, which is a good sign. However, large
differences in the Simple distance mean that the mismatches across all splits are higher
for neighbo-rs than for the other tools.

PCC ASDSF USR USRR USRT

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
combined optimization individual optimization

Figure 4.2.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
Individual optimization slightly improves most metrics, but because we have not found
a pattern regarding the choice of ideal parameters it is not realistic for large and diverse
sets of MSAs.

31

4. Detailed Evaluation

PCC Simple Distance Hellinger Distance ASDSF

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

MrBayes iqtree neighbo-rs parsimony-filtered neighbo-rs

Figure 4.3.: 40 MSAs (combined parameter tuning set), difficulty: 0.05–0.86.
While the exact relation of the frequency-metrics needs to be verified in the future, the
high Hellinger distance and low Simple distance indicate that mismatching frequencies
have low absolute values.

4.3. Full Dataset Evaluation
After showing in Section 4.2 that optimizing the noise parameters for the whole
parameter tuning set is preferable to individual optimization, we now also want to
evaluate whether these parameters produce acceptable results on the set of all 324
MSAs. Here we again split the data by type and look at different classes of data with
the tuned parameters determined previously. The results can be seen in Figures 4.4b,
4.4a, 4.4d and 4.4c. Throughout all datasets we see very good results where the largest
boxes (50𝑡ℎ percentile) align very well between the parameter tuning set and the full
dataset. However, the proportion of outliers and the standard deviations are very large,
indicating that more information or a finer division of data types is needed. The high
USR and USRT values for empirical data unfortunately remain so for most of the MSAs
of the full dataset and the 50𝑡ℎ percentile boxes extend further than for the parameter
tuning sets. Because these datasets are on the more difficult side of the spectrum, we
assume that the reference distributions are very spread out and hitting all the plausible
trees they identify may be a rather hopeless endeavor.

One potentially interesting next step beyond this thesis would be to look into ways to
use difficulty information for better grouping and parameter optimization. To motivate
this we included mean, standard deviation, min and max values for our key metrics in
Table 4.1 grouped by difficulty. We also conclude that our method works better for
simulated data which is much more “behaved” compared to empirical data, leading to
easier distance estimations. We hope to improve the distance estimation in the future
to shrink this gap between simulated and empirical data.

32

4.3. Full Dataset Evaluation

PC
C

Si
m

pl
e
D
ist

an
ce

H
el
lin

ge
r
D
ist

an
ce

A
SD

SF
U
SR

U
SR

R

U
SR

T

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
parameter tuning set full dataset

(a) 10 MSAs (simulated DNA parameter tun-
ing set), difficulty: 0.39–0.54.
100 MSAs (simulated DNA set), difficulty:
0.33–0.84.
𝑝 = 0.6, 𝑟 = 1.0

PC
C

Si
m

pl
e
D
ist

an
ce

H
el
lin

ge
r
D
ist

an
ce

A
SD

SF
U
SR

U
SR

R

U
SR

T

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
parameter tuning set full dataset

(b) 10 MSAs (empirical DNA parameter tun-
ing set), difficulty: 0.34–0.86.
46 MSAs (empirical DNA set), difficulty: 0.22–
0.87.
𝑝 = 0.4, 𝑟 = 1.0

PC
C

Si
m

pl
e
D
ist

an
ce

H
el
lin

ge
r
D
ist

an
ce

A
SD

SF
U
SR

U
SR

R

U
SR

T

Metrics

0.0

0.2

0.4

0.6

0.8

1.0
parameter tuning set full dataset

(c) 10 MSAs (simulated AA parameter tuning
set), difficulty: 0.16–0.78.
100 MSAs (simulated AA set), difficulty: 0.11–
0.78.
𝑝 = 0.6, 𝑟 = 0.8

PC
C

Si
m

pl
e
D
ist

an
ce

H
el
lin

ge
r
D
ist

an
ce

A
SD

SF
U
SR

U
SR

R

U
SR

T

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

parameter tuning set full dataset

(d) 10 MSAs (empirical AA parameter tuning
set), difficulty: 0.05–0.76.
79 MSAs (empirical AA set), difficulty: 0.0–
0.83.
𝑝 = 0.9, 𝑟 = 0.9

Figure 4.4.: Comparing the metrics for the parameter tuning sets with those of the full
datasets when using the optimal parameters for the parameter tuning sets shows that
the chosen parameters work well for most MSAs.

Difficulty Tool PCC ASDSF USR USRR USRT
Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

Easy (0.0-0.3) MrBayes 0.993 0.021 0.828 0.999 0.047 0.056 0.005 0.390 0.205 0.121 0.020 0.553 0.149 0.103 0.006 0.471 0.084 0.065 0.006 0.330
IQ-TREE 0.962 0.026 0.822 0.992 0.165 0.055 0.073 0.399 0.466 0.066 0.281 0.664 0.181 0.129 0.0 0.574 0.382 0.072 0.236 0.574
neighbo-rs 0.900 0.058 0.765 0.981 0.275 0.101 0.113 0.514 0.524 0.206 0.094 0.958 0.148 0.112 0.0 0.785 0.464 0.244 0.0 0.958

Medium (0.3-0.7) MrBayes 0.989 0.026 0.785 0.999 0.069 0.066 0.014 0.432 0.300 0.139 0.046 0.738 0.226 0.124 0.020 0.667 0.135 0.087 0.0 0.514
IQ-TREE 0.934 0.044 0.723 0.982 0.231 0.078 0.117 0.555 0.565 0.111 0.355 0.889 0.423 0.184 0.029 0.886 0.329 0.088 0.150 0.677
neighbo-rs 0.890 0.064 0.657 0.979 0.305 0.102 0.121 0.685 0.551 0.186 0.101 0.983 0.269 0.147 0.029 0.836 0.438 0.235 0.0 0.982

Hard (0.7-1.0) MrBayes 0.951 0.069 0.620 0.996 0.186 0.111 0.057 0.608 0.765 0.140 0.467 0.963 0.684 0.162 0.391 0.934 0.578 0.224 0.162 0.923
IQ-TREE 0.720 0.155 0.307 0.954 0.523 0.152 0.202 0.863 0.905 0.101 0.629 0.997 0.886 0.130 0.478 0.994 0.598 0.284 0.171 0.995
neighbo-rs 0.844 0.105 0.656 0.978 0.380 0.151 0.148 0.670 0.850 0.083 0.649 0.970 0.692 0.170 0.341 0.920 0.755 0.134 0.396 0.967

Table 4.1.: Key metric values for all tools on combined data grouped by difficulty.
neighbo-rs with parsimony filtering is abbreviated as neighbo-rs to preserve space.

33

4. Detailed Evaluation

4.4. Runtime Analysis
Runtime is also a very important criterion in phylogenetic analysis. In Figure 4.5 we
compare the runtime of all evaluated tools against each other. Starting at 20 seconds,
the y-axis is scaled logarithmically to more compactly represent long runtimes, but
also preserve details about shorter ones. The gap between the clusters (most notably
for MrBayes) comes from AA MSAs taking substantially longer than their DNA
counterparts. We observed no significant difference between empirical and simulated
data that cannot be explained by the different sizes of the MSAs. The runtime of
neighbo-rs is shown for 1 and 12 threads (hyper-threading) and includes the pre- and
post-processing time for the distance distributions as well as parsimony filtering, which
make up a large fraction of the runtime, especially when run sequentially. As a result,
the runtime with 1 thread is very similar to the other tools. Their contribution can
be seen in the detailed runtime evaluation for the simulated parameter tuning set in
Figures 4.6a, 4.6b, 4.6c and 4.6d. These figures highlight the importance of utilizing the
straightforward parallelization options for the computation of the distance distributions
(parallelized over the individual distribution), the parsimony scores (here parallelized
over the trees instead of the sites to have a more fair comparison between sequential
and parallel execution) and generating the trees with NJ (again parallelized over the
trees). The mean relative speedup from running neighbo-rs in parallel with 12 threads
is 7.413 (Efficiency: 0.617). Because we mainly focused on quality and correctness in
our implementation, the runtime still has much room for improvement. We discuss
several options in Section 5.1.

102

103

reference MrBayes

MrBayes

iqtree

neighbo-rs parsimony-filtered 1

neighbo-rs parsimony-filtered 12

0

5

10

15

20T
im

e(
s)

reference MrBayes MrBayes IQ-TREE neighbo-rs parsimony-filtered 1 neighbo-rs parsimony-filtered 12
mean (s) 414.33 39.67 26.11 15.14 2.19
std (s) 358.76 34.34 31.97 9.0 1.32

Figure 4.5.: 324 MSAs (full dataset), difficulty: 0.0–0.87.
In terms of absolute runtimes for the full dataset neighbo-rs is the fastest on average,
even if the compute-intensive pre- and post-processing steps are done sequentially.

34

4.4. Runtime Analysis

d
at

as
et

0
01

.f
as

ta

d
at

as
et

0
02

.f
as

ta

d
at

as
et

0
03

.f
as

ta

d
at

as
et

0
04

.f
as

ta

d
at

as
et

0
05

.f
as

ta

d
at

as
et

0
06

.f
as

ta

d
at

as
et

0
07

.f
as

ta

d
at

as
et

0
08

.f
as

ta

d
at

as
et

0
09

.f
as

ta

d
at

as
et

0
10

.f
as

ta

MSA

0

2

4

6

8

10

12

14

T
im

e
(s

)

NJ distance distributions parsimony filtering

(a) 10 MSAs (simulated DNA parameter tun-
ing set), difficulty: 0.39–0.54. 1 Thread

d
at

a
se

t
0
01

.f
as

ta

d
at

a
se

t
0
02

.f
as

ta

d
at

a
se

t
0
03

.f
as

ta

d
at

a
se

t
0
04

.f
as

ta

d
at

a
se

t
0
05

.f
as

ta

d
at

a
se

t
0
06

.f
as

ta

d
at

a
se

t
0
07

.f
as

ta

d
at

a
se

t
0
08

.f
as

ta

d
at

a
se

t
0
09

.f
as

ta

d
at

a
se

t
0
10

.f
as

ta

MSA

0.0

0.5

1.0

1.5

2.0

T
im

e
(s

)

NJ distance distributions parsimony filtering

(b) 10 MSAs (simulated DNA parameter tun-
ing set), difficulty: 0.39–0.54. 12 Threads

d
at

as
et

00
1.

fa
st

a

d
at

as
et

00
2.

fa
st

a

d
at

as
et

00
3.

fa
st

a

d
at

as
et

00
4.

fa
st

a

d
at

as
et

00
5.

fa
st

a

d
at

as
et

00
6.

fa
st

a

d
at

as
et

00
7.

fa
st

a

d
at

as
et

00
8.

fa
st

a

d
at

as
et

00
9.

fa
st

a

d
at

as
et

01
0.

fa
st

a

MSA

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(s

)

NJ distance distributions parsimony filtering

(c) 10 MSAs (simulated AA parameter tuning
set), difficulty: 0.16–0.78. 1 Thread

d
at

as
et

00
1.

fa
st

a

d
at

as
et

00
2.

fa
st

a

d
at

as
et

00
3.

fa
st

a

d
at

as
et

00
4.

fa
st

a

d
at

as
et

00
5.

fa
st

a

d
at

as
et

00
6.

fa
st

a

d
at

as
et

00
7.

fa
st

a

d
at

as
et

00
8.

fa
st

a

d
at

as
et

00
9.

fa
st

a

d
at

as
et

01
0.

fa
st

a

MSA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
(s

)

NJ distance distributions parsimony filtering

(d) 10 MSAs (simulated AA parameter tuning
set), difficulty: 0.16–0.78. 12 Threads

Figure 4.6.: The sequential and parallel runtimes on simulated DNA and AA data
are split into the time required for pre-computing the distance distribution, generate
the trees with NJ and parsimony filtering. The pre- and post-processing steps add
significant runtime to neighbo-rs, but are required to get good results.

35

5. Conclusion

In this thesis we explored and evaluated multiple ideas on how to approximate phyloge-
netic tree distributions with a distanced-based method, Neighbor Joining. We put a
special focus on simple strategies that perturb the input distances or add randomness
to the NJ algorithm itself. It quickly became apparent that choosing the amount
of noise to put on the pair-wise distances from a random normal-distributed scaling
factor (Section 3.1.1) was not a good enough heuristic, so we switched to pair-wise
distributions of distances supported by likelihood (Section 3.1.2). However, this only
improved the results slightly and still left us with many unlikely trees, as well as
split frequencies not matching those of the reference tree distribution very well. We
mostly attribute this to dependencies in the pair-wise distances that share paths in
the constructed tree, which we cannot account for and fix currently. Our ideas for
adding randomness to the NJ algorithm itself (Section 3.2) did not hold up to the
input perturbation strategies. Messing with the minimum evolution criterion of NJ
had a more detrimental downstream effect than we expected, and if such strategies
are to be explored in the future, there will be the need for mechanism to keep the
chaos at bay. Overall, the results of this thesis show that more information is needed
to approximate distributions inferred under MCMC methods, but because NJ is so fast
to run, especially for small MSAs, there is a lot of breathing room to add pre- and
post-processing steps. We see post-processing with parsimony filtering (Section 3.3)
as the most promising result of this thesis. This method allows for a much broader
exploration of the tree space – that can then be cleaned up afterward by discarding
non-parsimonious trees – which is much faster than computing likelihoods and also
serves as a great proxy for it. We assume that the drop in USRT we saw as a result
of parsimony filtering (see Figure 3.9) comes from eliminating unlikely trees at the
fringes of the pair-wise distance distributions. Another positive result of this thesis
was the increased effectiveness of our best strategy on difficult MSAs compared to the
other tools (Section 4.1). In conclusion, approximating phylogenetic tree distributions
with distance-based methods has by no means be solved in this thesis. However, we
provide clear avenues of further approaches to explore and did our best to address the
weaknesses of the presented strategies, as well as filter out methods that should not be
given further thought.

5.1. Future Work

There are many things we could not address in this thesis due to its goal of keeping
the methods simple and fast. In this section we list ideas we feel should be considered
when doing further research on this topic.

37

5. Conclusion

5.1.1. Distance Distribution

First and foremost, the current approach to estimating the pair-wise distance distribu-
tions has some shortcomings that need to be addressed. Even though our preliminary
evaluation on the parameter tuning datasets led us to believe that rejection sampling
under likelihood scores works well, evaluating the full dataset presented some issues.
Taking the priors from a Gamma distribution works well in most cases, but sometimes
datasets are very spread out with distances clustered at either end, leading to very few
accepted samples. One possible solution is to roughly estimate the distance of a pair
of sequences based on their Hamming distance and then do a more restricted search
around this suggested value. Here it might be beneficial to adjust the proposition
mechanism to not draw from a prior distribution, but be more of a guided walk in the
proximity of that value. This alleviates potential assumptions about the distribution
of distances in the tree as a whole, but also between a single pair of sequences, which
might not hold for especially empirical MSAs in practice. Another consideration is the
interdependency of pair-wise distances. Ideally one would want to use the covariance
between pairs of pair-wise distances such that the joined likelihood of distances sampled
from both distribution remains high. One possible option would be to estimate these
covariances from the (or many in the case of difficult MSAs) tree constructed from the
ML distances and then adjust the distributions accordingly for the other trees. Another
way would build upon our distance re-sampling strategy, but instead of the clunky
mixing of distributions we use currently, have profile-alignments of the inner nodes
from which new distance distributions are estimated. All these proposals would most
likely be very time-consuming, but because the quality of NJ is so very dependent on
accurate distances, it might be worth the effort.

5.1.2. Metrics

While the ASDSF is a commonly used metric in phylogenetic settings, the other
frequency-based metrics are not. Therefore, we do not know how well the Simple
distance Hellinger distance and PCC are suited to make comparisons in quality between
split frequency distributions. Especially for the PCC it would be interesting to look
into defining quality thresholds, because the definition of a “good” PCC value varies
significantly for different applications. Additionally, further metrics for evaluating the
topological similarity between trees of the distributions would be of great value. The
split-based and frequency-based metrics are great for getting a rough idea of how the
trees match overall, but there is a lack of information about the exact trees of the
distributions. However, it is unclear to us how such a metric would look like and
whether it could be computed efficiently.

5.1.3. Parsimony Filtering

Parsimony filtering is great at filtering unlikely trees and has a very positive impact on
our results. However, in its current implementation it contributes a substantial amount
of time to neighbo-rs, even with parallelization. While we haven’t fully optimized this
step in our implementation, simple parallelization is not enough to get reasonable
runtimes. One potential solution could be to reuse results for common subtrees by

38

5.1. Future Work

hashing them and storing their parsimony scores under this hash. Because we can
access our internal tree representation while computing the parsimony scores, these
hashes and scores can already be computed during NJ.

A future application of parsimony filtering could be the replacement of likelihood
scores in other applications, like MCMC and bootstrap methods. Especially if exact
likelihoods are not required, this could present a great opportunity to cut runtime.
However, it is unclear whether the trade-off between quality and speed is worth it for
these applications, and so we would advise careful experimental evaluation to judge
the impact.

5.1.4. Difficult Data
A big problem with our current approach is deciding on the ideal noise parameters for
a specific MSA (or even a set of MSAs). It would be of great value to have a (possibly
machine learning based) predictor that can suggest a good parameter configuration
based on some features of the alignment, like difficulty and type of data. We actively
refrain from making statements about an “ideal” noise amount, because our limited
amount of data is not suited to this. All we can do is optimizing the parameters for
specific metrics on our parameter tuning set and judge the impact on the full data set.
While this worked well enough for the data we used, it may not uphold in the general
case.

On the note of difficulty, we would also like to explore options to use the methods
implemented in neighbo-rs to generate starting trees for more sophisticated phylogenetic
inference tools. For example, these trees could be used as starting trees for an ML tree
search or be refined with local search based on NNI or SPR moves.

39

Bibliography

[BS20] Bastien Boussau and Celine Scornavacca. “Reconciling gene trees with
species trees”. In: Phylogenetics in the genomic era (2020), pp. 3–2.

[CT05] Benny Chor and Tamir Tuller. “Maximum likelihood of evolutionary trees is
hard”. In: Annual International Conference on Research in Computational
Molecular Biology. Springer. 2005, pp. 296–310.

[DJS86] William HE Day, David S Johnson, and David Sankoff. “The computational
complexity of inferring rooted phylogenies by parsimony”. In: Mathematical
biosciences Volume 81 (1986), pp. 33–42.

[Fel73] Joseph Felsenstein. “Maximum likelihood and minimum-steps methods
for estimating evolutionary trees from data on discrete characters”. In:
Systematic Biology Volume 22 (1973), pp. 240–249.

[Fel81] Joseph Felsenstein. “Evolutionary trees from DNA sequences: a maximum
likelihood approach”. In: Journal of molecular evolution Volume 17 (1981),
pp. 368–376.

[Fit77] Walter M Fitch. “On the problem of discovering the most parsimonious
tree”. In: The American Naturalist Volume 111 (1977), pp. 223–257.

[FSS23] Alberto Fernández, Natàlia Segura-Alabart, and Francesc Serratosa. “The
MultiFurcating Neighbor-Joining Algorithm for Reconstructing Polytomic
Phylogenetic Trees”. In: Journal of Molecular Evolution (2023), pp. 1–7.

[FY09] William Fletcher and Ziheng Yang. “INDELible: a flexible simulator of bio-
logical sequence evolution”. In: Molecular biology and evolution Volume 26
(2009), pp. 1879–1888.

[Gas97] Olivier Gascuel. “BIONJ: an improved version of the NJ algorithm based
on a simple model of sequence data.” In: Molecular biology and evolution
Volume 14 (1997), pp. 685–695.

[Hel09] Ernst Hellinger. “Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen.” In: Journal für die reine und angewandte
Mathematik Volume 1909 (1909), pp. 210–271.

[HHBS22] Julia Haag, Dimitri Höhler, Ben Bettisworth, and Alexandros Stamatakis.
“From Easy to Hopeless—Predicting the Difficulty of Phylogenetic Analy-
ses”. In: Molecular Biology and Evolution Volume 39 (2022), msac254.

[HKW11] Heike Hofmann, Karen Kafadar, and Hadley Wickham. Letter-value plots:
Boxplots for large data. had.co.nz, 2011.

[Koz+19] Alexey M Kozlov, Diego Darriba, Tomáš Flouri, Benoit Morel, and Alexan-
dros Stamatakis. “RAxML-NG: a fast, scalable and user-friendly tool for
maximum likelihood phylogenetic inference”. In: Bioinformatics Volume 35
(2019), pp. 4453–4455.

41

Bibliography

[Lak+08] Clemens Lakner, Paul Van Der Mark, John P Huelsenbeck, Bret Larget,
and Fredrik Ronquist. “Efficiency of Markov chain Monte Carlo tree
proposals in Bayesian phylogenetics”. In: Systematic biology Volume 57
(2008), pp. 86–103.

[LDG15] Vincent Lefort, Richard Desper, and Olivier Gascuel. “FastME 2.0: a
comprehensive, accurate, and fast distance-based phylogeny inference
program”. In: Molecular biology and evolution Volume 32 (2015), pp. 2798–
2800.

[LLG08] Si Quang Le, Nicolas Lartillot, and Olivier Gascuel. “Phylogenetic mixture
models for proteins”. In: Philosophical Transactions of the Royal Society
B: Biological Sciences Volume 363 (2008), pp. 3965–3976.

[Min+20] Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf,
Michael D Woodhams, Arndt Von Haeseler, and Robert Lanfear. “IQ-
TREE 2: new models and efficient methods for phylogenetic inference in
the genomic era”. In: Molecular biology and evolution Volume 37 (2020),
pp. 1530–1534.

[MOP16] Diego Mallo, Leonardo de Oliveira Martins, and David Posada. “SimPhy:
phylogenomic simulation of gene, locus, and species trees”. In: Systematic
biology Volume 65 (2016), pp. 334–344.

[Mor+21] Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hüb-
ner, Sarah Lutteropp, Dora Serdari, Evangelia-Georgia Kostaki, Ioannis
Mamais, Alexey M Kozlov, et al. “Phylogenetic analysis of SARS-CoV-2
data is difficult”. In: Molecular biology and evolution Volume 38 (2021),
pp. 1777–1791.

[MWSS23] Benoit Morel, Tom A Williams, Alexandros Stamatakis, and Gergely J
Szöllősi. “AleRax: A tool for gene and species tree co-estimation and
reconciliation under a probabilistic model of gene duplication, transfer,
and loss”. In: bioRxiv (2023), pp. 2023–10.

[Par16] Emmanuel Paradis. “The distribution of branch lengths in phylogenetic
trees”. In: Molecular Phylogenetics and Evolution Volume 94 (2016),
pp. 136–145.

[PDA10] Morgan N Price, Paramvir S Dehal, and Adam P Arkin. “FastTree 2–
approximately maximum-likelihood trees for large alignments”. In: PloS
one Volume 5 (2010), e9490.

[PDS00] WH Piel, MJ Donoghue, and MJ Sanderson. “TreeBASE: a database of
phylogenetic knowledge”. In: To the interoperable “Catalog of Life” with
partners Species (2000), pp. 41–47.

[Pea94] Karl Pearson. “Contributions to the mathematical theory of evolution”. In:
Philosophical Transactions of the Royal Society of London. A Volume 185
(1894), pp. 71–110.

[RF81] David F Robinson and Leslie R Foulds. “Comparison of phylogenetic trees”.
In: Mathematical biosciences Volume 53 (1981), pp. 131–147.

42

[Ron+12] Fredrik Ronquist, Maxim Teslenko, Paul Van Der Mark, Daniel L Ayres,
Aaron Darling, Sebastian Höhna, Bret Larget, Liang Liu, Marc A Suchard,
and John P Huelsenbeck. “MrBayes 3.2: efficient Bayesian phylogenetic
inference and model choice across a large model space”. In: Systematic
biology Volume 61 (2012), pp. 539–542.

[SMP08] Martin Simonsen, Thomas Mailund, and Christian NS Pedersen. “Rapid
neighbour-joining”. In: Algorithms in Bioinformatics: 8th International
Workshop, WABI 2008, Karlsruhe, Germany, September 15-19, 2008.
Proceedings 8. Springer. 2008, pp. 113–122.

[SN87] Naruya Saitou and Masatoshi Nei. “The neighbor-joining method: a new
method for reconstructing phylogenetic trees.” In: Molecular biology and
evolution Volume 4 (1987), pp. 406–425.

[TM86] S Tavaré and Robert M Miura. “Lectures on mathematics in the life
sciences”. In: Am. Math. Soc. Vol. 17. 1986, pp. 57–86.

[Wey+14] Grady Weyenberg, Peter M Huggins, Christopher L Schardl, Daniel K
Howe, and Ruriko Yoshida. “KDETREES: non-parametric estimation of
phylogenetic tree distributions”. In: Bioinformatics Volume 30 (2014),
pp. 2280–2287.

[Yan14] Ziheng Yang. Molecular evolution: a statistical approach. Oxford University
Press, 2014.

[Yan96] Ziheng Yang. “Among-site rate variation and its impact on phylogenetic
analyses”. In: Trends in ecology & evolution Volume 11 (1996), pp. 367–
372.

43

A. Appendix

A.1. SimPhy Configuration

// SPECIES TREE

-RS 1 // number of replicates

-sb f:5e-09

-sd f:0.0

-sl f:50

-st ln:21.25,0.2

-su ln:-21.9,0.1

-gd f:0.0

-gb f:0.0

-gt f:0.0

-gg f:0.0

-ld sl:0.0,1.0,gd

-lb f:ld

-lt sl:0.0,1.0,gt

-lg f:gg

-lk 0

// POPULATION

-SP f:10

// LOCUS

-rl f:100 // locus (gene family) per replicate

// Subsitution rates heterogeneity parameters

-hs ln:1.5,1

-hl ln:1.551533,0.6931472

-hg ln:1.5,1

// GENERAL

-cs 42

-O AA_simulated // output directory

-OM 1 // output the mappings

-OC 1 // log the configuration file

-OD 1 // log the configuration file

-OP 1 // log the configuration file

Listing A.1: Amino Acid Configuration File

// SPECIES TREE

-RS 1 // number of replicates

-sb f:5e-09

-sd f:0.0

-sl f:50

-st ln:21.25,0.2

-su ln:-21.9,0.1

-gd f:0.0

-gb f:0.0

-gt f:0.0

-gg f:0.0

-ld sl:0.0,1.0,gd

-lb f:ld

-lt sl:0.0,1.0,gt

45

A. Appendix

-lg f:gg

-lk 0

// POPULATION

-SP f:10

// LOCUS

-rl f:100 // locus (gene family) per replicate

// Subsitution rates heterogeneity parameters

-hs ln:1.5,1

-hl ln:1.551533,0.6931472

-hg ln:1.5,1

// GENERAL

-cs 42

-O DNA_simulated // output directory

-OM 1 // output the mappings

-OC 1 // log the configuration file

-OD 1 // log the configuration file

-OP 1 // log the configuration file

Listing A.2: DNA Configuration File

A.2. INDELible Configuration

[TYPE] AMINOACID 1

[SETTINGS] [fastaextension] fasta

[SIMPHY-UNLINKED-MODEL] modelA

[submodel] LG // LG model

[rates] 0 $(e:2) 0 // Site-specific rate heterogeneities: 0 p-inv, alpha from an E(2) and using a
↩→ continuous gamma distribution.

[SIMPHY-PARTITIONS] simple [1.0 modelA $(sl:0,0.25,193.8466468952688)]

[SIMPHY-EVOLVE] 1 dataset

Listing A.3: Amino Acid Configuration File

[TYPE] NUCLEOTIDE 1

[SETTINGS] [fastaextension] fasta

[SIMPHY-UNLINKED-MODEL] modelA

[submodel] GTR $(rd:16,3,5,5,6,15) // GTR with rates from a Dirichlet

[statefreq] $(d:36,26,28,32) // frequencies for T C A G sampled from a Dirichlet

[rates] 0 $(e:2) 0 // Site-specific rate heterogeneities: 0 p-inv, alpha from an E(2) and using a
↩→ continuous gamma distribution.

[SIMPHY-PARTITIONS] simple [1.0 modelA $(sl:0,0.25,193.8466468952688)]

[SIMPHY-EVOLVE] 1 dataset

Listing A.4: DNA Configuration File

A.3. MrBayes Configuration

set autoclose=yes nowarn=yes;

set seed=42;

execute alignment.nex;

prset aamodelpr=fixed(lg);

lset rates=equal;

mcmc nruns=1 nchains=2 ngen=100000 samplefreq=100 file=alignment_mr_bayes_out

Listing A.5: Amino Acid Configuration File Short Run

set autoclose=yes nowarn=yes;

set seed=42;

46

A.3. MrBayes Configuration

execute alignment.nex;

prset aamodelpr=fixed(lg);

lset rates=equal;

mcmc nruns=1 nchains=4 ngen=550000 samplefreq=500 file=alignment_mr_bayes_out_ref

Listing A.6: Amino Acid Configuration File Long Reference Run

set autoclose=yes nowarn=yes;

set seed=42;

execute alignment.nex;

lset nst=6 rates=equal;

mcmc nruns=1 nchains=2 ngen=110000 samplefreq=100 file=alignment_mr_bayes_out

Listing A.7: DNA Configuration File Short Run

set autoclose=yes nowarn=yes;

set seed=42;

execute alignment.nex;

lset nst=6 rates=equal;

mcmc nruns=1 nchains=4 ngen=550000 samplefreq=500 file=alignment_mr_bayes_out_ref

Listing A.8: DNA Configuration File Long Reference Run

47

A. Appendix

A.4. Simulated MSA Metrics

Table A.1.: Simulated DNA MSA Difficulty

MSA Difficulty

dataset_001.fasta 0.52
dataset_002.fasta 0.5
dataset_003.fasta 0.54
dataset_004.fasta 0.39
dataset_005.fasta 0.49
dataset_006.fasta 0.39
dataset_007.fasta 0.48
dataset_008.fasta 0.42
dataset_009.fasta 0.47
dataset_010.fasta 0.51
dataset_011.fasta 0.46
dataset_012.fasta 0.41
dataset_013.fasta 0.44
dataset_014.fasta 0.4
dataset_015.fasta 0.42
dataset_016.fasta 0.44
dataset_017.fasta 0.5
dataset_018.fasta 0.37
dataset_019.fasta 0.44
dataset_020.fasta 0.48
dataset_021.fasta 0.47
dataset_022.fasta 0.4
dataset_023.fasta 0.84
dataset_024.fasta 0.37
dataset_025.fasta 0.42
dataset_026.fasta 0.34
dataset_027.fasta 0.42
dataset_028.fasta 0.64
dataset_029.fasta 0.42
dataset_030.fasta 0.47
dataset_031.fasta 0.34
dataset_032.fasta 0.39
dataset_033.fasta 0.46
dataset_034.fasta 0.33
dataset_035.fasta 0.45
dataset_036.fasta 0.46
dataset_037.fasta 0.34
dataset_038.fasta 0.42
dataset_039.fasta 0.45
dataset_040.fasta 0.38
dataset_041.fasta 0.36
dataset_042.fasta 0.49
dataset_043.fasta 0.49
dataset_044.fasta 0.59
dataset_045.fasta 0.47
dataset_046.fasta 0.49
dataset_047.fasta 0.48
dataset_048.fasta 0.53
dataset_049.fasta 0.37
dataset_050.fasta 0.74

MSA Difficulty

dataset_051.fasta 0.44
dataset_052.fasta 0.45
dataset_053.fasta 0.79
dataset_054.fasta 0.47
dataset_055.fasta 0.52
dataset_056.fasta 0.36
dataset_057.fasta 0.44
dataset_058.fasta 0.39
dataset_059.fasta 0.51
dataset_060.fasta 0.38
dataset_061.fasta 0.51
dataset_062.fasta 0.33
dataset_063.fasta 0.34
dataset_064.fasta 0.49
dataset_065.fasta 0.41
dataset_066.fasta 0.78
dataset_067.fasta 0.48
dataset_068.fasta 0.37
dataset_069.fasta 0.5
dataset_070.fasta 0.45
dataset_071.fasta 0.31
dataset_072.fasta 0.45
dataset_073.fasta 0.4
dataset_074.fasta 0.52
dataset_075.fasta 0.49
dataset_076.fasta 0.4
dataset_077.fasta 0.41
dataset_078.fasta 0.35
dataset_079.fasta 0.39
dataset_080.fasta 0.59
dataset_081.fasta 0.39
dataset_082.fasta 0.45
dataset_083.fasta 0.57
dataset_084.fasta 0.33
dataset_085.fasta 0.58
dataset_086.fasta 0.52
dataset_087.fasta 0.4
dataset_088.fasta 0.74
dataset_089.fasta 0.44
dataset_090.fasta 0.54
dataset_091.fasta 0.51
dataset_092.fasta 0.49
dataset_093.fasta 0.46
dataset_094.fasta 0.49
dataset_095.fasta 0.46
dataset_096.fasta 0.43
dataset_097.fasta 0.37
dataset_098.fasta 0.43
dataset_099.fasta 0.48
dataset_100.fasta 0.39

48

A.4. Simulated MSA Metrics

Table A.2.: Simulated AA MSA Difficulty

MSA Difficulty

dataset_001.fasta 0.26
dataset_002.fasta 0.16
dataset_003.fasta 0.33
dataset_004.fasta 0.43
dataset_005.fasta 0.3
dataset_006.fasta 0.35
dataset_007.fasta 0.57
dataset_008.fasta 0.25
dataset_009.fasta 0.28
dataset_010.fasta 0.78
dataset_011.fasta 0.28
dataset_012.fasta 0.26
dataset_013.fasta 0.28
dataset_014.fasta 0.33
dataset_015.fasta 0.41
dataset_016.fasta 0.3
dataset_017.fasta 0.34
dataset_018.fasta 0.74
dataset_019.fasta 0.25
dataset_020.fasta 0.69
dataset_021.fasta 0.32
dataset_022.fasta 0.19
dataset_023.fasta 0.38
dataset_024.fasta 0.25
dataset_025.fasta 0.26
dataset_026.fasta 0.4
dataset_027.fasta 0.37
dataset_028.fasta 0.27
dataset_029.fasta 0.29
dataset_030.fasta 0.28
dataset_031.fasta 0.35
dataset_032.fasta 0.25
dataset_033.fasta 0.25
dataset_034.fasta 0.28
dataset_035.fasta 0.29
dataset_036.fasta 0.3
dataset_037.fasta 0.29
dataset_038.fasta 0.26
dataset_039.fasta 0.78
dataset_040.fasta 0.26
dataset_041.fasta 0.28
dataset_042.fasta 0.34
dataset_043.fasta 0.43
dataset_044.fasta 0.23
dataset_045.fasta 0.47
dataset_046.fasta 0.26
dataset_047.fasta 0.32
dataset_048.fasta 0.27
dataset_049.fasta 0.32
dataset_050.fasta 0.36

MSA Difficulty

dataset_051.fasta 0.26
dataset_052.fasta 0.35
dataset_053.fasta 0.22
dataset_054.fasta 0.28
dataset_055.fasta 0.77
dataset_056.fasta 0.34
dataset_057.fasta 0.25
dataset_058.fasta 0.29
dataset_059.fasta 0.34
dataset_060.fasta 0.35
dataset_061.fasta 0.39
dataset_062.fasta 0.26
dataset_063.fasta 0.3
dataset_064.fasta 0.47
dataset_065.fasta 0.32
dataset_066.fasta 0.22
dataset_067.fasta 0.28
dataset_068.fasta 0.29
dataset_069.fasta 0.26
dataset_070.fasta 0.86
dataset_071.fasta 0.15
dataset_072.fasta 0.26
dataset_073.fasta 0.42
dataset_074.fasta 0.4
dataset_075.fasta 0.32
dataset_076.fasta 0.28
dataset_077.fasta 0.27
dataset_078.fasta 0.51
dataset_079.fasta 0.28
dataset_080.fasta 0.41
dataset_081.fasta 0.25
dataset_082.fasta 0.63
dataset_083.fasta 0.24
dataset_084.fasta 0.19
dataset_085.fasta 0.26
dataset_086.fasta 0.32
dataset_087.fasta 0.25
dataset_088.fasta 0.3
dataset_089.fasta 0.25
dataset_090.fasta 0.17
dataset_091.fasta 0.36
dataset_092.fasta 0.45
dataset_093.fasta 0.38
dataset_094.fasta 0.24
dataset_095.fasta 0.26
dataset_096.fasta 0.11
dataset_097.fasta 0.25
dataset_098.fasta 0.24
dataset_099.fasta 0.29
dataset_100.fasta 0.17

49

A. Appendix

A.5. Empirical MSA Metrics

Table A.3.: Empirical DNA MSA Metrics

MSA Difficulty Taxa Sites

alignment_19682_0 0.22 42 229
alignment_14876_1 0.23 36 272
alignment_10148_2 0.34 73 138
alignment_15827_1 0.36 30 117
alignment_21988_0 0.41 51 289
alignment_20312_4 0.43 33 133
alignment_21988_1 0.46 51 291
alignment_10264_0 0.49 34 103
alignment_16855_5 0.50 39 283
alignment_12630_5 0.54 44 290
alignment_15750_3 0.54 30 251
alignment_16855_3 0.54 51 277
alignment_17791_1 0.54 45 276
alignment_604_0 0.54 39 145
alignment_10102_2 0.56 55 282
alignment_15021_7 0.56 43 173
alignment_11178_23 0.59 43 135
alignment_22509_1 0.59 37 243
alignment_27596_28 0.60 30 295
alignment_10264_3 0.62 39 187
alignment_10102_1 0.63 46 271
alignment_10943_1 0.63 35 274
alignment_21888_4 0.66 41 288

MSA Difficulty Taxa Sites

alignment_22503_1 0.66 70 288
alignment_15654_1 0.67 37 289
alignment_15750_2 0.68 31 279
alignment_11642_2 0.70 91 297
alignment_10464_0 0.71 81 157
alignment_12828_0 0.76 49 150
alignment_10644_4 0.78 42 265
alignment_27108_0 0.78 41 229
alignment_12145_0 0.79 50 149
alignment_20997_2 0.79 76 100
alignment_15442_4 0.81 42 240
alignment_21656_0 0.81 49 286
alignment_25465_1 0.81 33 293
alignment_26579_5 0.81 49 280
alignment_15070_4 0.82 80 171
alignment_15621_0 0.83 65 278
alignment_16634_1 0.83 52 197
alignment_20997_1 0.83 58 100
alignment_11949_2 0.85 65 225
alignment_27596_42 0.85 71 281
alignment_18144_1 0.86 74 277
alignment_27596_24 0.86 65 187
alignment_23738_1 0.87 87 216

50

A.5. Empirical MSA Metrics

Table A.4.: Empirical AA MSA Metrics

MSA Difficulty Taxa Sites

alignment_11802_1 0.00 35 290
alignment_14994_0 0.00 32 209
alignment_19998_1 0.00 32 191
alignment_20196_7 0.00 41 239
alignment_21817_2 0.01 51 276
alignment_20145_1 0.02 37 109
alignment_22408_2 0.02 31 229
alignment_17168_0 0.03 60 226
alignment_17171_0 0.03 60 226
alignment_21560_1 0.03 35 228
alignment_21188_0 0.04 39 122
alignment_22408_5 0.04 47 271
alignment_13985_0 0.05 46 149
alignment_13985_1 0.05 46 149
alignment_13985_9 0.05 46 149
alignment_20196_9 0.05 37 229
alignment_15931_4 0.06 52 136
alignment_15865_1 0.07 38 197
alignment_20196_20 0.08 42 212
alignment_17486_0 0.09 38 250
alignment_10068_0 0.11 32 291
alignment_17164_1 0.11 44 240
alignment_25084_2 0.12 55 219
alignment_15931_0 0.13 52 119
alignment_18551_1 0.13 78 104
alignment_10148_0 0.15 73 230
alignment_20196_10 0.15 62 234
alignment_14979_1 0.16 88 235
alignment_14979_0 0.18 76 283
alignment_20196_15 0.18 33 249
alignment_21362_0 0.18 68 123
alignment_14407_0 0.19 37 217
alignment_14408_0 0.19 37 217
alignment_14212_0 0.20 43 279
alignment_16190_4 0.20 80 201
alignment_15021_2 0.21 53 285
alignment_27836_0 0.21 37 189
alignment_20196_19 0.23 41 205
alignment_10791_7 0.24 58 126

MSA Difficulty Taxa Sites

alignment_28360_7 0.26 65 219
alignment_13444_2 0.27 81 284
alignment_13878_1 0.27 38 193
alignment_21817_1 0.27 81 247
alignment_28360_31 0.27 68 222
alignment_13882_0 0.28 46 133
alignment_13878_0 0.29 52 196
alignment_20145_0 0.29 39 107
alignment_10521_0 0.30 38 179
alignment_10791_0 0.31 33 144
alignment_28360_30 0.31 55 164
alignment_13985_11 0.32 96 114
alignment_20196_2 0.33 41 101
alignment_21817_9 0.33 85 240
alignment_13985_2 0.35 98 114
alignment_13985_3 0.35 98 114
alignment_12306_0 0.40 99 268
alignment_12306_10 0.40 84 127
alignment_16190_0 0.42 55 121
alignment_12306_3 0.43 100 199
alignment_11894_0 0.46 59 164
alignment_28360_18 0.47 67 222
alignment_12306_7 0.50 100 138
alignment_23036_0 0.50 82 162
alignment_16190_3 0.55 76 115
alignment_20196_16 0.56 77 206
alignment_23593_2 0.57 51 268
alignment_28360_16 0.57 68 125
alignment_28360_17 0.58 67 168
alignment_23745_0 0.59 42 250
alignment_20196_22 0.61 96 170
alignment_28360_8 0.62 68 123
alignment_15522_0 0.68 51 208
alignment_23745_2 0.69 39 250
alignment_23745_1 0.70 41 250
alignment_28360_27 0.71 67 182
alignment_23593_1 0.74 79 256
alignment_23593_0 0.76 87 268
alignment_19516_1 0.83 70 173

51

A. Appendix

A.6. Reference Distribution

USRT RFmin RFmean RFmax

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

reference MrBayes

MrBayes

iqtree

neighbo-rs parsimony-filtered

neighbo-rs

(a) Reference tree metrics for simulated parameter tuning data.

USRT RFmin RFmean RFmax

Metrics

0.0

0.2

0.4

0.6

0.8

1.0

reference MrBayes

MrBayes

iqtree

neighbo-rs parsimony-filtered

neighbo-rs

(b) Reference tree metrics for the full simulated dataset.

Figure A.1.: Comparing the fraction of missed splits, as well as minimum, mean and
maximum RF-distance between the tools for the “true” tree generated by SimPhy
shows that while the other metrics show large discrepancies between the distributions,
all reliably hit the splits of the reference tree and the RF-distances are very similar
overall.

52

	Introduction
	Motivation
	Related Work
	Contribution
	Outline

	Preliminaries
	Phylogenetic Trees
	Phylogenetic Inference
	Input Data
	Parsimony
	Substitution Models
	Likelihood
	Markov-Chain Monte-Carlo Methods
	Bootstrapping
	Neighbor Joining

	Metrics
	Difficulty

	Experimental Setup
	Input Data
	Tool Parameters
	Hardware and Software

	Data Visualization

	Methods
	Input Perturbation
	Random Noise
	Pair-wise Distance Distributions
	Comparison

	Randomized Neighbor Joining
	Weighted Selection
	Minimum Sampling
	Distance Re-sampling
	Comparison

	Parsimony Filtering

	Detailed Evaluation
	Performance by Difficulty
	Individual Optimization
	Full Dataset Evaluation
	Runtime Analysis

	Conclusion
	Future Work
	Distance Distribution
	Metrics
	Parsimony Filtering
	Difficult Data

	Bibliography
	Appendix
	SimPhy Configuration
	INDELible Configuration
	MrBayes Configuration
	Simulated MSA Metrics
	Empirical MSA Metrics
	Reference Distribution

