

How Many Bootstrap Replicates are Necessary?

Nicholas D. Pattengale(*)¹, Masoud Alipour², Olaf R.P. Bininda-Emonds³, Bernard M.E. Moret^{2,4}, Alexandros Stamatakis⁵

¹Department of Computer Science, University of New Mexico, Albuquerque NM, USA ²Laboratory for Computational Biology and Bioinformatics, EPFL, Switzerland ³ AG Systematik und Evolutionsbiologie, Institut für Biologie und Umweltwissenschaften, University of Oldenburg, Germany ⁴ Swiss Institute of Bioinformatics, Lausanne, Switzerland ⁵The Exelixis Lab, Department of Computer Science, TU München, Germany

Main Result/Contribution

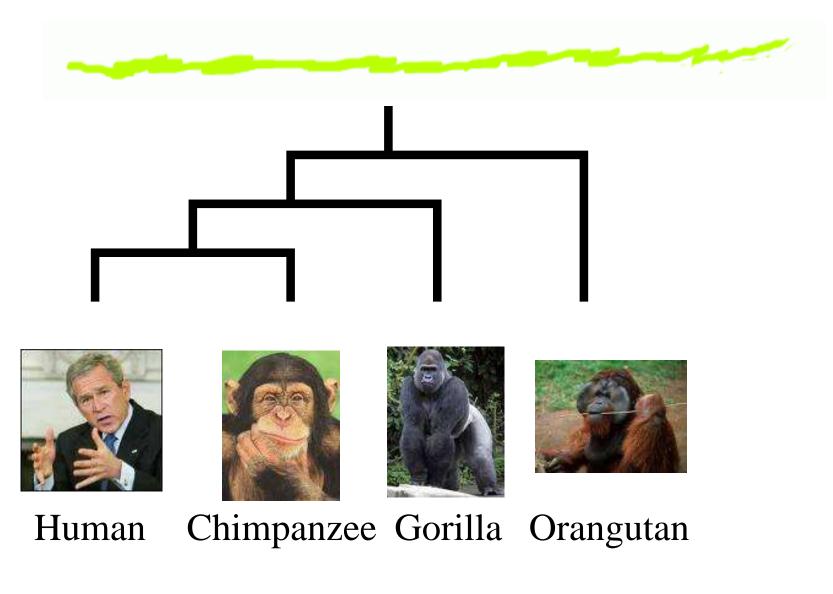
Two criteria for *stopping numbers* in phylogenetic bootstrapping

- First empirical assessment of variability in support value, as a function of replicate count, in bootstrapping
- 6 Validate our proposals for stopping criteria

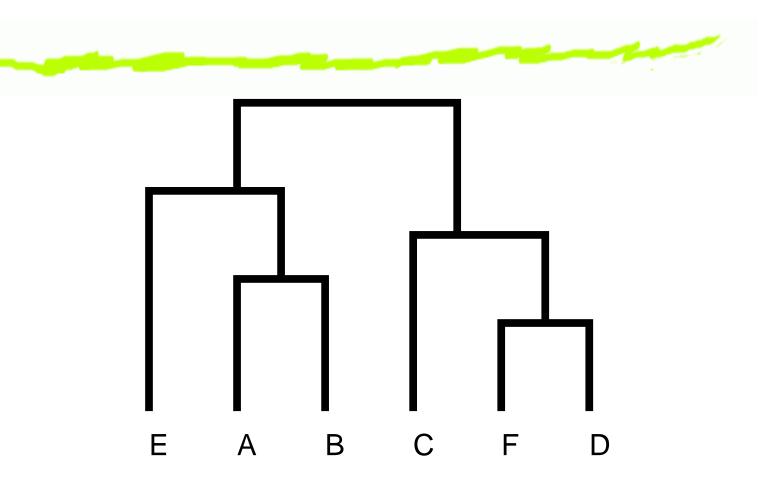
Table of Content

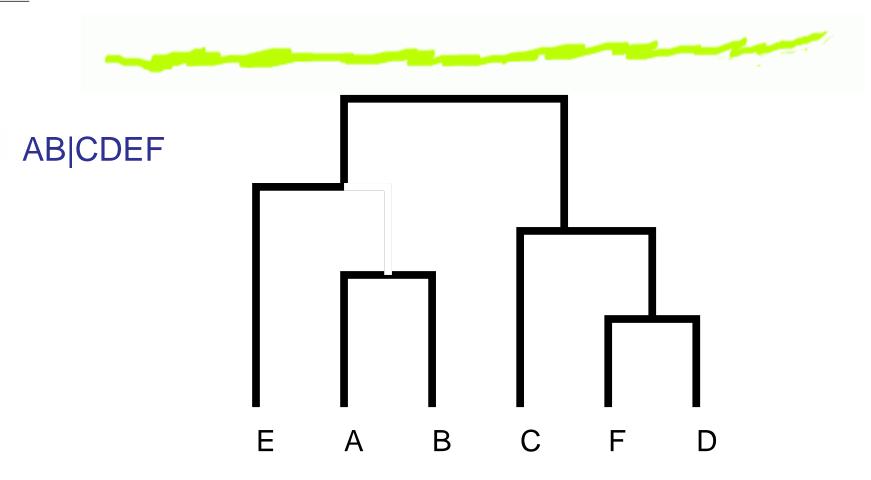
- 6 Background
 - A Phylogeny and Splits
 - The Phylogenetic Bootstrap
 - Stopping Numbers
- 6 Our Technique
 - The Framework
 - Motivation Permutation Test
 - Frequency Criterion (FC)
 - Weighted Criterion(WC)
 - The Experiment(s)
- 6 Conclusion

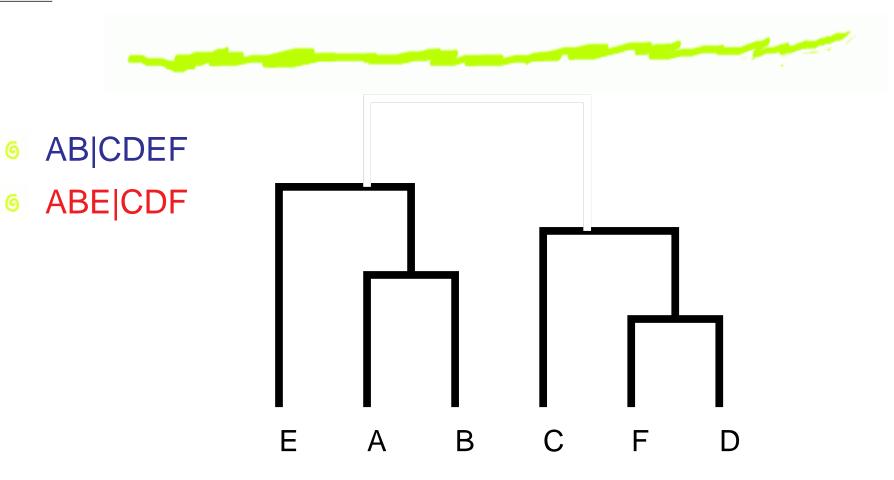
Phylogenetic Reconstruction

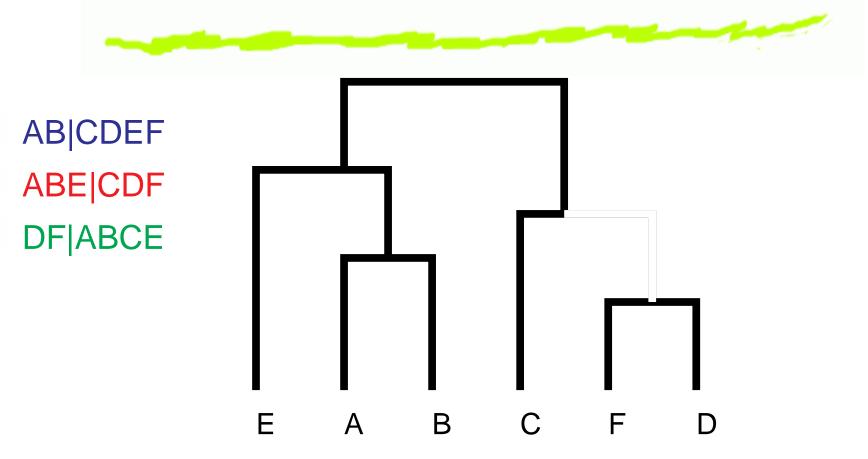


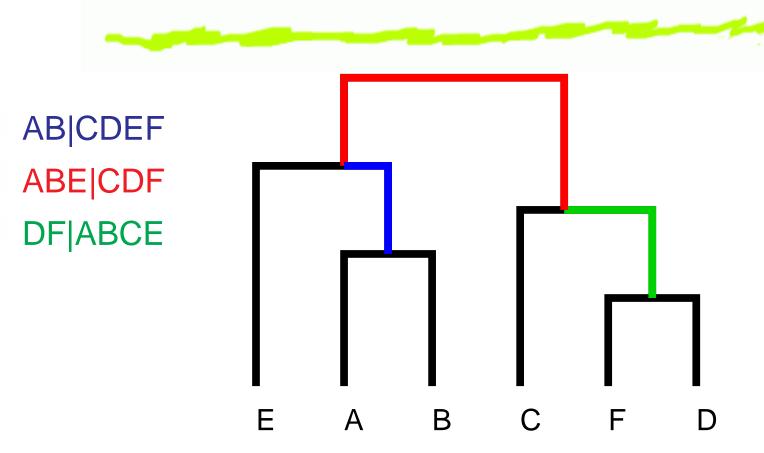
Human Chimpanzee Gorilla Orangutan


How Many BootstrapReplicates are Necessary? - p. 4


Phylogenetic Reconstruction







6 So you've reconstructed a tree via MP, or ML...

- 6 So you've reconstructed a tree via MP, or ML...
- 6 and you'd like to asses how well your data supports your tree

- 6 So you've reconstructed a tree via MP, or ML...
- 6 and you'd like to asses how well your data supports your tree
- 6 One answer: the phylogenetic bootstrap

Original Data	0	1	2	3	
Species A	С	С	Τ	С	
Species B	Α	С	Т	G	
Species C	С	-	-	G	
Species D	Α	С	С	С	D
Species E	Α	G	-	С	
	-		-		

	-		_		
Original Data	a C) 1	2	2 3	
Species A	C	C C	7 C	- C	
Species B	A	A C) T	G	
Species C	C) -		G	
Species D	A	A C) (C (
Species E	A	A (- F	С	
Bootstrap 1	1	3	1	3	E
Species A	С	С	С	C	
Species B	С	G	С	G	
Species C	-	G	-	G	
Species D	С	С	С	С	
Species E	G	С	G	С	

	_		_		
Original Data) 1	2	2 3	
Species A	C) C) T		
Species B	A	V C) T	G	
Species C	C) -	· -	G	
Species D	A	V C) C	C C	
Species E	A) -	С	
Bootstrap 1	1	3	1	3	
Species A	С	C	C	C	
Species B	C	G	C	G	
Species C	-	G	-	G	
Species D	С	C	С	C	
Species E	G	C	G	C	A
					└─── B ───

	_				
Original Data	ı∥ C) 1		2 3	A
Species A			7	Г С	
Species B	A		7	Г G	
Species C	C	; -		- G	
Species D	A) (C C	
Species E	A		3 -	- C	
Bootstrap 2	2	1	0	0	- $ -$
Species A	 т	С	C	C	A
Species B	T	C	A	A	B
Species C	-	-	C	C	
Species D	С	С	A	A	
Species E	-	G	A	A	
				,,	∟ E

	-				
			.		
Original Data) [^	1 2	2 3	
Species A	C) (2 7	ГС	
Species B	A	A (2 7	ГG	
Species C	C) -		- G	
Species D	A) (C C	
Species E	A	4 (3 -	- C	
Bootstrap 3	0	0	3	0	- E
Species A	С	C	C	C	
Species B	A	A	G	A	
Species C		C	G	C	
Species D	<u>A</u>	A	C	A	B
· · ·	A			A	D
Species E	A	A			

	-				
Original Data					
Original Data) 1		2 3	
Species A			ר כ		
Species B	A		ר (G	
Species C	C) -		G	☐
Species D	A			C	
Species E	A		} -	- C	
Bootstrap 4	2	1	0	2	
Species A	Т	С	С	Т	
Species B	Т	C	A	T	
Species C	-	_	С	-	
Species D	С	С	Α	С	
Species E	-	G	Α	-	
	1	1	1	LI	└──── B ───

	-				
			. .		
Original Data) ^	1 2	2 3	
Species A) (ר כ		
Species B	A		ר כ	G	
Species C	C) -		G	
Species D	A	A () (C C	
Species E	A		3 -	· C	
Bootstrap 5	2	2	1	3	- E
Species A	Т	T	C	C	A
Species B	T	T	C	G	
Species C	-	-	-	G	B
Species D	С	С	С	C	
Species E	-	-	G	C	
					∟ E

Original Data	0	1	2	3	
Species A	С	С	Т	С	0.6 A
Species B	Α	С	Т	G	
Species C	С	-	-	G	
Species D	Α	С	С	С	
Species E	Α	G	I	С	

- 6 Motivated by *resampling* technique from statistics
 - Used to assess the stability of simple summary statistics
- 6 Computationally expensive days to months

Stopping Numbers

- 6 Question we address: How many replicates?
- 6 Theory exists for simpler estimators
 - In phylogeny, estimator is not only complex, but number of bipartitions grow
- State of the art in phylogeny: choose arbitrarily
- 6 Hedges chooses a priori for a given level of significance
 - but ignores factors which greatly influence the estimator (the tree search algorithm) and hence the stability of BS replicates

- 6 Major goal: not be biased by current best tree
- 6 Devise an *adaptive* criterion to be used at run time
- 6 Based on a *Permutation Test*
 - Typically used to reject that two samples arise from same distribution
 - We use to assess when a population subset sufficiently resembles full population

- 6 Bootstop()
 - △ With *m* replicates
 - Repeat p = 100 times
 - · randomly split into two sets (of size $\frac{m}{2}$)
 - score similarity between two sets
 - Assess -
 - · If $\frac{99}{100}$ scores beat threshold DONE
 - · Else increment m (by, e.g. 50)

- 6 Bootstop()
 - ▲ With *m* replicates
 - Repeat p = 100 times
 - randomly split into two sets (of size $\frac{m}{2}$)
 - score similarity between two sets

Assess –

- · If $\frac{99}{100}$ scores beat threshold DONE
- \cdot Else increment m (by, e.g. 50)
- 6 Well less than 2^n possible

- 6 Bootstop()
 - ▲ With *m* replicates
 - Repeat p = 100 times
 - · randomly split into two sets (of size $\frac{m}{2}$)
 - score şimilarity between two sets
 - Assess -
 - · If $\frac{99}{100}$ scores beat threshold DONE
 - · Else increment m (by, e.g. 50)
- 6 Well less than 2^n possible
- 6 Our two approaches differ in their defn. of similarity

Scoring (Dis)similarity

6 Frequency Criterion (FC)

- Build vectors of edge support for the two subsets
- Take Pearson's Correlation Coefficient between the two vectors

Scoring (Dis)similarity

- 6 Frequency Criterion (FC)
 - Build vectors of edge support for the two subsets
 - Take Pearson's Correlation Coefficient between the two vectors
- Weighted Criterion(WC)
 - Build (Majority Rules) Consensus trees for the two subsets
 - Take Weighted RF distance between the two trees

Scoring (Dis)similarity

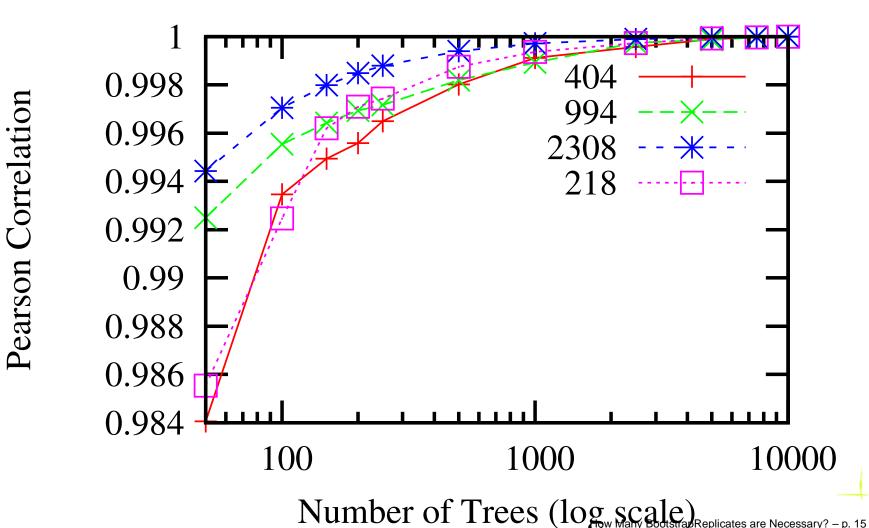
- 6 Frequency Criterion (FC)
 - Build vectors of edge support for the two subsets
 - Take Pearson's Correlation Coefficient between the two vectors
- Weighted Criterion(WC)
 - Build (Majority Rules) Consensus trees for the two subsets
 - Take Weighted RF distance between the two trees
- 6 What is the difference?
 - WC takes into account phylogenetically meaningful
 - ▲ WC is more conservative, but also sensitive

- 6 For 17 diverse, real-world datasets with
 - △ 125 to 2,554 taxa
 - hudreds to tens of thousands of columns
- 6 we did the following:

- 6 For 17 diverse, real-world datasets with
 - 125 to 2,554 taxa
 - hudreds to tens of thousands of columns
- 6 we did the following:
 - △ Generated $\geq 10,000$ BS replicates (serves $m \to \infty$)

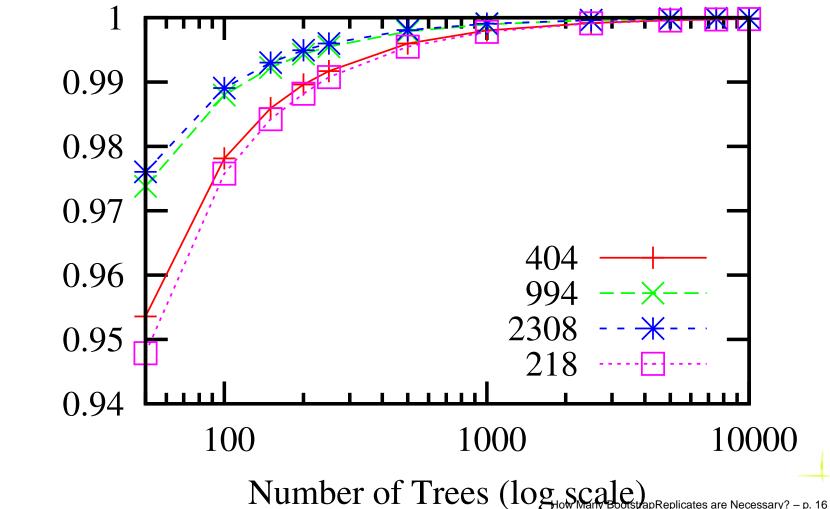
- 6 For 17 diverse, real-world datasets with
 - △ 125 to 2,554 taxa
 - hudreds to tens of thousands of columns
- we did the following:
 - △ Generated $\geq 10,000$ BS replicates (serves $m \to \infty$)
 - Applied our criteria to generate stopping numbers

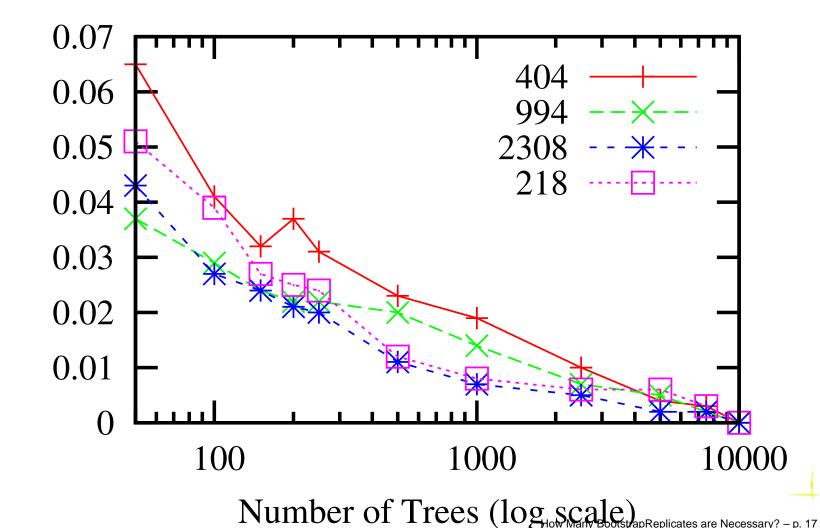
- 6 For 17 diverse, real-world datasets with
 - 125 to 2,554 taxa
 - hudreds to tens of thousands of columns
- we did the following:
 - △ Generated $\geq 10,000$ BS replicates (serves $m \to \infty$)
 - Applied our criteria to generate stopping numbers
 - ▲ Assessed quality of our stopping numbers w.r.t. $\geq 10,000$ tree set



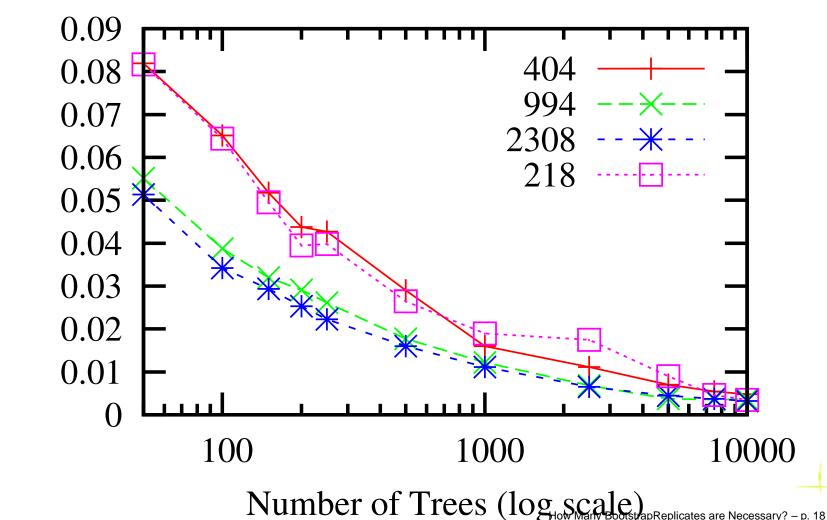
- Stopping numbers

 - WC: 50, 200, 300, 350, 400, 400, 400, 400, 450, 450, 500, 550, 600, 600, 650, 700, 1200
- Widely varying, dataset dependent (especially with WC)
- 6 Correlation of support values always exceeds 99.5%
- 6 WRF is smaller than the specified WC threshold value in all cases





FC criterion value



WC criterion value

- First large-scale empirical study of bootstrapping convergence
- Used biological datasets that cover a wide range of input alignment sizes and a broad variety of organisms and genes
- Overloped and assessed two bootstopping criteria

- Two criteria
 - Can be computed at run time
 - Do not rely on externally provided reference trees
 - Designed to capture stopping point providing sufficient accuracy for unambigoous biological interpretation of the resulting consensus trees or best-known ML trees with support values

- 6 WC criterion yields better performance and higher accuracy than FC
 - Correlates very well with the mean error of support values on the best-scoring tree.
- 6 Advocate the use of WC over FC
 - Takes into account the BS support of "important" bipartitions which are subject to biological interpretation

- 6 Highly dataset dependent
- 6 Only compute as many trees as needed
- Better methods (and ideally, some supporting theory) may exist

That's All Folks

- 6 Thanks
 - to my collaborators
 - to the organizers
 - ▲ for listening!
- 6 Stopping Criteria are part of RAxML 7.1.0 alpha
 - http://wwwkramer.in.tum.de/exelixis/software.html
- 6 Data for this study is also available
 - http://lcbb.epfl.ch/BS.tar.bz2