Introduction to Bioinformatics for Computer Scientists

Lecture 10

Plan for next lectures

- Today (Alexis):
- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations
- Lecture 11 (Pierre): Discrete Operations on Trees

Protein Substitution Models

- The GTR Q matrix for protein data has 189 free parameters instead of just 5 (DNA)
- Estimating 189 rate parameters is difficult, time-consuming, and may lead to overparameterizing the model
- Instead, empirical models such as JTT, LG, WAG, MTMAM, etc. are used
- The Q matrices are obtained by jointly optimizing model parameters on a large collection of reference alignments
- The models differ with respect to:
- the amount of data used to obtain them
- the type of data on which the models have been optimized
- e.g., dedicated models for HIV, FLU, Mammals
- the numerical optimization methods used
- Examples of general models:
- LG: Le \& Gascuel: "An Improved General Amino Acid Replacement Matrix"
- WAG: Whelan \& Goldman: "A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach"

Rate Heterogeneity among Sites

- Among-site rate heterogeneity
- Biological phenomenon
\rightarrow different sites/columns evolve at different speeds
- Need to accommodate this in our models

Г-Distribution

Г-Distribution

Discrete Г-Distribution

An Abstract View of Γ

This is the integral of the likelihood we approximate via discretization

$$
\operatorname{LnL}(i)=\log \left(1 / 4 *\left(L_{0}+L_{1}+L_{2}+L_{3}\right)\right)
$$

Log likelihood $8^{\text {at site i }}$

All Γ rates have equal probability

An Abstract View of Γ

4 times higher memory consumption

An Abstract View of Γ

4 times more floating point operations

「 Model of Rate Heterogeneity with 4 discrete rates

․

Mixture Models

- The of rate heterogeneity is a simple example of so-called mixture models
- From Wikipedia: "In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population."
- The 「 model gives us 4 discrete evolutionary rates over which we integrate (add) the likelihood for each site, without assigning a specific rate to a specific site

Mixture Models

- We can also imagine to integrate the likelihood over a set of
- distinct Q matrices
- distinct base frequencies
- or combinations thereof
- The LG protein substitution model is an example thereof:
- It uses 4 distinct empirical Q matrices and 4 distinct sets of base frequencies π over which we integrate just like for the Γ model

An example

[^0]Taken from: "Measuring Service Reliability Using Automatic Vehicle Location Data" \rightarrow bus service reliability

Heterotachous Models

One GTR model for the entire tree

Heterotachous Models

Heterotachous Models

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

Multi-gene or whole-genome alignment

What is a partitioned dataset?

Gene 0	Gene 1	Gene 2	Gene 3	Gene 4
a_{0}	a_{1}	a_{2}		
GTR $_{0}$	GTR $_{1}$	GTR $_{2}$	GTR $_{3}$	a_{4}
				GTR $_{4}$

What is a partitioned dataset?

Joint branch length estimate

What is a partitioned dataset?

What is a partitioned dataset?

What is a partitioned dataset?

Models and Parameters

- If we add an additional parameter to a model, the likelihood will become better
- However, this does not mean anything, as
- We might be over-parameterizing
- The key question is if the more complex model yields a different tree topology
- So, how do we determine the best-fit model for a given dataset?

Nested models

- A particular model is said to be nested within a more complex model only if constraining parameter values of the later yields the former!
- So, the model can only be constrained in one direction to determine if its nested!
- If I need to constrain both models for which I intend to assess nesting, they are not nested.
- Example: The F81 (equal rates, unequal stationary frequencies) and K2P (2 distinct rates, equal stationary frequencies) models are not nested within each other.
\rightarrow This is because fixing the parameter values of either model does not yield the other model
- However, they are both nested within GTR

Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the parameters in model B
- For instance: the Jukes Cantor (JC) model is nested in the General Time Reversible (GTR) model of nucleotide substitution
- $L R=P(D \mid A) / P(D \mid B)=L(A) / L(B)$
- $\Delta=\ln \left(L R^{2}\right)=2(\ln (L(A))-\ln (L(B))$
- Compare Δ to x^{2} distribution with $k_{A}-k_{B}$ degrees of freedom to determine if the Δ is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the JC and GTR models have?

Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the paramet We are only allowed to compare
- For instance likelihoods on the same data D!

Time Reversible (G C of nucleotide substitution

- $L R=P(D \mid A) / P(D, L(A) / L(B)$
- $\Delta=\ln \left(L R^{2}\right)=2(\ln (L(A))-\ln (L(B))$
- Compare Δ to x^{2} distribution with $k_{A}-k_{B}$ degrees of freedom to determine if the Δ is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the JC and GTR models have?

What if Models are not nested?

- One can use other criteria such as
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- I will spare you the details, but the basic idea always is:
- Compute likelihood of alternative models
- Penalize the more parameter-rich models

Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations

Data Structures for unrooted Trees

- Unrooted trees with dynamically changing virtual roots need a dedicated tree data structure
- Why can the virtual root positions change dynamically?
- If we apply a topological move (NNI, SPR, TBR) will we have to re-compute all conditional likelihood vectors?

Memory Organization: Conditional Likelihood Vectors with an Unrooted View

Memory Organization: Conditional Likelihood Vectors with a Rooted View

Memory Organization: CLVs with a Rooted View

Memory Organization: Ancestral Vectors with a Rooted View

New Virtual Root

Memory Organization: Tip Vectors

Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations

Optimization of Likelihood Calculations

- Use SSE3 \& AVX vector intrinsics
- Also: GPUs, FPGAs, the Intel Xeon PHI
- Special implementations (why?) for computing CLVs:

Repeating Patterns

Identical values, two times pattern AG
A.... A....
G G

Repeating Patterns

Detect identical patterns and omit second computation
A.... A....
G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

A.... A....

G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

Challenge: Efficient data structure to
 detect \& store repeats Up to 10-fold run-time improvements
A.... A....
G G

Floating Point Numbers

- Machine numbers are an imperfect mapping of the infinite real numbers to a finite number of machine values!

Floating Point Arithmetics: The Root of All Evil

- Computational science mostly relies on floating-point intensive codes
- How do we verify these codes?
- We stand on shaky grounds
- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
\rightarrow Please have a look at:
J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer. and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

Floating Point Arithmetics: The Root of All Evil

- Computational science mostly reli

Why is this relevant when e codes Talking about Maximum

- How do we verify these codes?
- We stand on shaky grounds Likelihood?
- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
\rightarrow Please have a look at:
J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer. and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

Post-order Traversal

Post-order Traversal

Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations

Loop Level Parallelism

 virtual root
$P[i]=f(Q[i], R[i])$

Loop Level Parallelism

virtual root

$P[i]=f(Q[i], R[i])$

Loop Level Parallelism

 virtual root

Loop Level Parallelism

 virtual root

Loop Level Parallelism

virtual root

Parallel Post-order Traversal

Only need to synchronize at the root \rightarrow MPI_Reduce() to calculate: $\Sigma \log \left(l_{i}\right)$
virtual root

Parallel Post-order Traversal

Overall Score Δ
 $\rightarrow+\square$

$\Sigma \log \left(\mathrm{l}_{\mathrm{i}}\right)$

Classic Fork-Join with Busy-Wait

Synchronizations in RAxML with Pthreads

- RAxML Pthreads for a run time of about 10 seconds on 16 cores/threads
- 404 taxa 7429 sites: 194,000 Barriers
- 1481 taxa 1241 sites: 739,000 Barriers
- A paper on performance of alternative PThreads barrier implementations:
S.A. Berger, A. Stamatakis: "Assessment of Barrier Implementions for Fine-Grain Parallel Regions on Current Multi-core Architectures", IEEE Cluster 2010.

Classic Fork-Join with Busy-Wait

Classic Fork-Join with Busy-Wait

Problems start with partitioned datasets!

Gene 0
Gene 1
Gene 2
Gene 3
Gene 4

Parallel Performance Problems

- They all start with partitioned datasets!
- How do we distribute partitions to processors?
- How do we calculate parameter changes?
- How much time does our broadcast take?
- Goal: Keep all processors busy all the time
\rightarrow minimize communication and synchronization!

Example

Blue Gene Red Gene

Sequence 1

Sequence 5

Data Distribution

Orangutan Gorilla Chimp Homo Sapiens AGGA TTTT

Data Distribution

Orangutan Gorilla Chimp Homo Sapiens AGGA TTTT

Data Distribution

Data Distribution I

Data Distribution I

Orangutan Gorilla Chimp Homo Sapiens

AACG TTTT AAGG TTT-A-GG TTTT AGGA TTTT

Works well when we have more partitions than processors:
May lead to load imbalance not all processors obtain equal number of sites!

Data Distribution II

Orangutan Gorilla Chimp Homo Sapiens

AACG TTTT
 AAGG TTT-
 A-GG TTTT AGGA TTTT

Works well when we have more processors than partitions:
However we will need to compute: $P(t)=e Q t$ for each partition at each processor!

Data Distribution II

Orangutan Gorilla Chimp Homo Sapiens

Works well when we have more processors than partitions:
However we will need to compute: $P(t)=e Q t$ for each partition at each processor!

Data Distribution II

Orangutan Gorilla

Performance impact depends on number of states in data/dimension of Q

Data Distribution II

Orangutan Gorilla

How do we distribute partitions to processors?

Load Balance I

G0	G1	G2	G3

Load Balance I

Load Balance I

Load Balance I

- The multiprocessor job scheduling problem in phylogenetics
- Problem when \#partitions >> \#cores
- Tested per-site (cyclic/modulo) data distribution versus per partition data distribution
- We used the Longest Processing Time (LPT) heuristics for assigning partitions to processors
- 25 taxa, 220,000 sites, 100 genes
- GAMMA model
naïve: 613 secs

LPT: 550 secs

- CAT model
naïve: 298 secs
LPT: 127 secs
- Larger protein dataset under Γ model of rate heterogeneity: 10-fold performance improvement!
J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 11th IEEE HICOMB workshop (in conjunction with IPDPS 2012).

LPT heuristics for multi-processor scheduling

- Sort jobs (partitions) by processing length (partition length) in decreasing order
- Remove a job (partition) from the sorted list and assign it to the processor with the earliest end time (the smallest sum of partition lengths)
- Repeat until the sorted list is empty
- Upper bound: $4 / 3-1 /(3 p)$ * OPT, where p is the number of processors
- Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies". SIAM Journal on Applied Mathematics 17 (2): 416-429, 1969.
- Remark: LPT works surprisingly well (see our paper on the phylogenetic problem where we also tested other heuristics)

Partitioned Branch Lengths \& other parameters

Load-Balance II

Synchronization Points

- Assume 10 branches
- Each branch requires 10 Newton-Raphson Iterations
- Each NR Iteration requires a synchronization via a reduction operation
- One branch/partition at a time: 100 sync. points, less work (only one partition) per sync. point
- All branches concurrently: 10 sync. points, more work per sync. point
- Branches will need distinct number of operations
- Add convergence state \rightarrow bit vector

Synchronization Points

$$
\begin{aligned}
& \text { Org1 AC GT } \\
& \text { Org2 AC TT }
\end{aligned}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\hline \text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT }
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \mathrm{AC} & \mathrm{GT} \\
\text { Org2 } & \mathrm{AC} & \mathrm{TT}
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT } \\
\hline
\end{array}
$$

Synchronization Points

$$
\begin{array}{ll|l}
\text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT } \\
\hline
\end{array}
$$

01

Synchronization Points

$$
\begin{array}{ll|l}
\hline \text { Org1 } & \text { AC } & \text { GT } \\
\text { Org2 } & \text { AC } & \text { TT } \\
\hline
\end{array}
$$

In this example: 4 instead of 7 sync points!

Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". Proceedings of ICPP 2009, Vienna, Austria, September 2009.

Classic Fork-Join with

Alternative MPI parallelization

Alternative MPI parallelization

ExaML

- New code implementing this new parallelization scheme
- https://github.com/stamatak/ExaML
- A. Stamatakis, A. J. Aberer: "Novel Parallelization Schemes for Large-Scale Likelihood-based Phylogenetic Inference", accepted for publication at IPDPS 2013, Boston, USA, 2013.
- Up to 3 times faster than RAxML-Light (2012) on large, partitioned datasets
- Tested with up to 1536 cores on our cluster at HITS
- Future developments
- 20,000,000 CPU hors on SuperMUC for
- Improving scalability
- Implementing fault tolerance
- Execute 1KITE tree inferences
- Further details \rightarrow ask Andre Aberer

[^0]: ω Travel time observation --- Single model_Weibull
 _- Mixture model_GMM2 Single model_log-normal

