

1

Introduction to Bioinformatics for
Computer Scientists

Lecture 10

2

Plan for next lectures

● Today (Alexis):

● More on Models
● Data Structures for unrooted Phylogenetic Trees
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations

● Lecture 11 (Pierre): Discrete Operations on Trees

3

Protein Substitution Models

● The GTR Q matrix for protein data has 189 free parameters instead of just 5 (DNA)

● Estimating 189 rate parameters is difficult, time-consuming, and may lead to over-
parameterizing the model

● Instead, empirical models such as JTT, LG, WAG, MTMAM, etc. are used

● The Q matrices are obtained by jointly optimizing model parameters on a large
collection of reference alignments

● The models differ with respect to:

● the amount of data used to obtain them

● the type of data on which the models have been optimized

– e.g., dedicated models for HIV, FLU, Mammals
● the numerical optimization methods used

● Examples of general models:

● LG: Le & Gascuel: “An Improved General Amino Acid Replacement Matrix”

● WAG: Whelan & Goldman: “A General Empirical Model of Protein Evolution
Derived from Multiple Protein Families Using a Maximum-Likelihood Approach”

4

Rate Heterogeneity among Sites

● Among-site rate heterogeneity

● Biological phenomenon

→ different sites/columns evolve at different speeds

● Need to accommodate this in our models

ACGGGGGGGGGGGTTTTCCCCC
ATGGGGGGGGGGGTTTCCCCCC
ACCGGGGGGGGGGTTTTGCCCC
AGGGGGGGGGGGCTTTTCCCCC

Gene

5

Γ-Distribution

6

Γ-Distribution
Small α high rate heterogeneity
Large α low rate heterogeneity

7

Discrete Γ-Distribution

r0

r1
r2

r3

8

An Abstract View of Γ

rate 0
P(t) =e^Qr0t

length 7

LnL(i) = log(¼ * (L0 + L1 + L2 + L3))

Log likelihood
at site i

All Γ rates have equal probability

This is the integral of the likelihood we approximate via discretization

rate 1
P(t) =e^Qr1t

rate 2
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t

9

An Abstract View of Γ

rate 0
P(t) =e^Qr0t

length 7

rate 1
P(t) =e^Qr1t

rate 2
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t

4 times higher memory consumption

10

An Abstract View of Γ

rate 0
P(t) =e^Qr0t

length 7

rate 1
P(t) =e^Qr1t

rate 2
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t

4 times more floating point operations

11

Γ Model of Rate Heterogeneity with 4 discrete rates

r0

r1

r2

r3

 ...

 ...

 ...

 ..

α

r0

r1

r2

r3

12

Mixture Models

● The of rate heterogeneity is a simple example of so-called
mixture models

● From Wikipedia: “In statistics, a mixture model is a probabilistic
model for representing the presence of subpopulations within
an overall population, without requiring that an observed data
set should identify the sub-population to which an individual
observation belongs. Formally a mixture model corresponds to
the mixture distribution that represents the probability
distribution of observations in the overall population.”

● The Γ model gives us 4 discrete evolutionary rates over which
we integrate (add) the likelihood for each site, without assigning
a specific rate to a specific site

13

Mixture Models

● We can also imagine to integrate the likelihood over a set of

● distinct Q matrices
● distinct base frequencies
● or combinations thereof

● The LG protein substitution model is an example thereof:

● It uses 4 distinct empirical Q matrices and 4 distinct sets of
base frequencies π over which we integrate just like for the Γ
model

14

An example

Taken from: “Measuring Service Reliability Using Automatic Vehicle Location Data”
→ bus service reliability

15

Heterotachous Models

One GTR model for the entire tree

16

Heterotachous Models

Maybe two GTR models describe this better?

GTR
1

GTR
2

17

Heterotachous Models

Maybe two GTR models describe this better?

GTR
1

GTR
2

Why is heterotachy difficult?

18

What is a partitioned dataset?

Multi-gene or whole-genome alignment

19

What is a partitioned dataset?

Multi-gene or whole-genome alignment

Gene 0 Gene 1 Gene 4Gene 3Gene 2

20

What is a partitioned dataset?

Multi-gene or whole-genome alignment

Gene 0 Gene 1 Gene 4Gene 3Gene 2

We may also partition
by 1st, 2nd, and 3rd

codon position

21

What is a partitioned dataset?

Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

22

What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Joint branch length
estimate

23

What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

per-partition branch length
estimate

24

What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!

25

What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Per-partition branch length estimate
Increases the number of parameters

in the likelihood model by 4 * (2n – 3),
where n is the number of taxa

26

Models and Parameters

● If we add an additional parameter to a model, the likelihood will
become better

● However, this does not mean anything, as

● We might be over-parameterizing
● The key question is if the more complex model yields a

different tree topology
● So, how do we determine the best-fit model for a given dataset?

27

Nested models

● A particular model is said to be nested within a more complex model
only if constraining parameter values of the later yields the former!

● So, the model can only be constrained in one direction to determine
if its nested!

● If I need to constrain both models for which I intend to assess
nesting, they are not nested.

● Example: The F81 (equal rates, unequal stationary frequencies) and
K2P (2 distinct rates, equal stationary frequencies) models are not
nested within each other.

→ This is because fixing the parameter values of either model does
not yield the other model

● However, they are both nested within GTR

28

Model Testing

● If models are nested we can use a likelihood ratio test

● Model A is nested in model B if parameters in model A are a subset of
the parameters in model B

● For instance: the Jukes Cantor (JC) model is nested in the General
Time Reversible (GTR) model of nucleotide substitution

● LR = P(D|A) / P(D|B) = L(A) / L(B)

● Δ = ln(LR2) = 2 (ln(L(A)) – ln(L(B))

● Compare Δ to χ2 distribution with kA – kB degrees of freedom to
determine if the Δ is significant or not

● The degrees of freedom difference is the difference in the number of
free parameters in the models

● How many free parameters do the JC and GTR models have?

29

Model Testing

● If models are nested we can use a likelihood ratio test

● Model A is nested in model B if parameters in model A are a subset of
the parameters in model B

● For instance: the Jukes Cantor (JC) model is nested in the General
Time Reversible (GTR) model of nucleotide substitution

● LR = P(D|A) / P(D|B) = L(A) / L(B)

● Δ = ln(LR2) = 2 (ln(L(A)) – ln(L(B))

● Compare Δ to χ2 distribution with kA – kB degrees of freedom to
determine if the Δ is significant or not

● The degrees of freedom difference is the difference in the number of
free parameters in the models

● How many free parameters do the JC and GTR models have?

We are only allowed to compare
likelihoods on the same data D!

30

What if Models are not nested?

● One can use other criteria such as

● Akaike Information Criterion (AIC)
● Bayesian Information Criterion (BIC)

● I will spare you the details, but the basic idea always is:

● Compute likelihood of alternative models
● Penalize the more parameter-rich models

31

Outline

● More on Models
● Data Structures for unrooted Phylogenetic Trees
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations

32

Data Structures for unrooted Trees

● Unrooted trees with dynamically changing virtual roots need a
dedicated tree data structure

● Why can the virtual root positions change dynamically?

● If we apply a topological move (NNI, SPR, TBR) will we have to
re-compute all conditional likelihood vectors?

33

Memory Organization: Conditional Likelihood
Vectors with an Unrooted View

34

Memory Organization: Conditional Likelihood
Vectors with a Rooted View

Virtual Root

NULL

NULL

NULL

NULL

35

Memory Organization: CLVs with a Rooted
View

New Virtual Root

NULL

NULL

NULL

NULL

Relocate & Re-compute
Ancestral Vector

36

Memory Organization: Ancestral Vectors with a
Rooted View

New Virtual Root

NULL

NULL

NULL

NULL

37

Memory Organization:
Tip Vectors

NULL

NULL

NULL

NULL

ACGG

AGCC
ATCC

ACGT

A G C C
1 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0

Constant values!

38

Outline

● More on Models
● Data Structures for unrooted Phylogenetic Trees
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations

39

Optimization of
Likelihood Calculations

● Use SSE3 & AVX vector intrinsics

● Also: GPUs, FPGAs, the Intel Xeon PHI

● Special implementations (why?) for computing CLVs:

TIP TIPTIP
INNER INNERINNER

40

Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG

41

Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation

42

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

43

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

44

Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real
numbers to a finite number of machine values!

45

Floating Point Arithmetics:
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● We stand on shaky grounds

● Scientists using those codes assume that there are no bugs

● Double precision arithmetics required for certain applications

● Who knows what de-normalized floating point numbers are?

→ Please have a look at:

J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your
benchmarks really data-independent?” Applied Parallel Computing.
State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

https://github.com/stamatak/denormalizedFloatingPointNumbers

46

Floating Point Arithmetics:
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● We stand on shaky grounds

● Scientists using those codes assume that there are no bugs

● Double precision arithmetics required for certain applications

● Who knows what de-normalized floating point numbers are?

→ Please have a look at:

J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your
benchmarks really data-independent?” Applied Parallel Computing.
State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at:
https://github.com/stamatak/denormalizedFloatingPointNumbers

Why is this relevant when
Talking about Maximum

Likelihood?

https://github.com/stamatak/denormalizedFloatingPointNumbers

47

Post-order Traversal

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root

0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

48

Post-order Traversal

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root →
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply
numerical scaling techniques

to avoid underflow!

49

Outline

● More on Models
● Data Structures for unrooted Phylogenetic Trees
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations

50

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

51

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 95% of total
execution time !

52

Loop Level Parallelism

P

Q
R

virtual root

53

Loop Level Parallelism

P

Q
R

virtual root

54

Loop Level Parallelism

P

Q
R

virtual root

55

Parallel Post-order Traversal

virtual root

Only need to synchronize at the root
→ MPI_Reduce() to calculate: Σ log(li)

56

Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score

57

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Busy
wait

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

58

Synchronizations in RAxML with
Pthreads

● RAxML Pthreads for a run time of about 10 seconds on 16
cores/threads

● 404 taxa 7429 sites: 194,000 Barriers

● 1481 taxa 1241 sites: 739,000 Barriers

● A paper on performance of alternative PThreads barrier
implementations:

S.A. Berger, A. Stamatakis: "Assessment of Barrier
Implementions for Fine-Grain Parallel Regions on Current
Multi-core Architectures", IEEE Cluster 2010.

59

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

60

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the
broadcast must be fast!

61

Problems start with partitioned
datasets!

Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!

62

Parallel Performance Problems

● They all start with partitioned datasets!

● How do we distribute partitions to processors?

● How do we calculate parameter changes?

● How much time does our broadcast take?

● Goal: Keep all processors busy all the time

→ minimize communication and synchronization!

63

Example

Blue Gene Red Gene

Sequence 1

Sequence 5

64

Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Shared memory

65

Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

66

Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Partitioned data distribution is not
that trivial!

67

Data Distribution I

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

68

Data Distribution I

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more partitions
than processors:
May lead to load imbalance not all
processors obtain equal number of sites!

69

Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to compute:
P(t)=eQt for each partition at each
processor!

70

Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to compute:
P(t)=eQt for each partition at each
processor!

eQ
1
t eQ

2
t eQ

2
teQ

1
t

71

Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to compute:
P(t)=eQt for each partition at each
processor!

eQ
1
t eQ

2
t eQ

2
teQ

1
t

Performance impact depends
on number of states in
data/dimension of Q

72

Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT
Gorilla Gorilla AAGG TTT- AAGG TTT-
ChimpChimp A-GG TTTT A-GG TTTT
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to compute:
P(t)=eQt for each partition at each
processor!

eQ
1
t eQ

2
t eQ

2
teQ

1
t

How do we distribute partitions to
processors?

73

Load Balance I

P0 P1

G0 G1 G2 G3

74

Load Balance I

P0 P1

75

Load Balance I

P0 P1

Find the partition-to-processor
assignment such that the
maximum number of sites per
processor is minimized
→ this is NP-hard

76

Load Balance I

● The multiprocessor job scheduling problem in phylogenetics

– Problem when #partitions >> #cores

– Tested per-site (cyclic/modulo) data distribution versus per partition data distribution

– We used the Longest Processing Time (LPT) heuristics for assigning partitions to
processors

– 25 taxa, 220,000 sites, 100 genes
● GAMMA model

naïve: 613 secs

LPT: 550 secs
● CAT model

naïve: 298 secs

LPT: 127 secs

– Larger protein dataset under Г model of rate heterogeneity: 10-fold performance
improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics",
11th IEEE HICOMB workshop (in conjunction with IPDPS 2012).

77

LPT heuristics for multi-processor
scheduling

● Sort jobs (partitions) by processing length (partition length) in
decreasing order

● Remove a job (partition) from the sorted list and assign it to the
processor with the earliest end time (the smallest sum of
partition lengths)

● Repeat until the sorted list is empty

● Upper bound: 4/3 – 1/(3p) * OPT, where p is the number of
processors

● Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies".
SIAM Journal on Applied Mathematics 17 (2): 416–429, 1969.

● Remark: LPT works surprisingly well (see our paper on the
phylogenetic problem where we also tested other heuristics)

78

Partitioned Branch Lengths & other
parameters

79

Load-Balance II

Zoom

80

Synchronization Points

● Assume 10 branches

● Each branch requires 10 Newton-Raphson Iterations

● Each NR Iteration requires a synchronization via a reduction operation

● One branch/partition at a time: 100 sync. points, less work (only one
partition) per sync. point

● All branches concurrently: 10 sync. points, more work per sync. point

● Branches will need distinct number of operations

● Add convergence state → bit vector

81

Synchronization Points

Org1 AC GT
Org2 AC TT

82

Synchronization Points

Org1 AC GT
Org2 AC TT

83

Synchronization Points

00

Org1 AC GT
Org2 AC TT

84

Synchronization Points

00

00

Org1 AC GT
Org2 AC TT

85

Synchronization Points

00

01

00

Org1 AC GT
Org2 AC TT

86

Synchronization Points

00

01

00

11

In this example: 4 instead of 7 sync points!

Org1 AC GT
Org2 AC TT

87

Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel".
Proceedings of ICPP 2009, Vienna, Austria, September 2009.

88

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the
broadcast must be fast!
Remember: 10 secs 16 cores approx
500,000 times.
What happens if we have 1000
partitions and propose 1000 new
alpha parameters?

89

Alternative MPI parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000
-55000

-55001 -55001

P0 P1

E
xecut ion

tim
e

90

Alternative MPI parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000
-55001

-55001 -55000

P0 P1

E
xecut ion

tim
e

I think this is the way we will have to
do it in the future.

91

ExaML

● New code implementing this new parallelization scheme

● https://github.com/stamatak/ExaML

● A. Stamatakis, A. J. Aberer: "Novel Parallelization Schemes for Large-Scale
Likelihood-based Phylogenetic Inference", accepted for publication at IPDPS 2013,
Boston, USA, 2013.

● Up to 3 times faster than RAxML-Light (2012) on large, partitioned datasets

● Tested with up to 1536 cores on our cluster at HITS

● Future developments

● 20,000,000 CPU hors on SuperMUC for

– Improving scalability

– Implementing fault tolerance

– Execute 1KITE tree inferences

– Further details → ask Andre Aberer

https://github.com/stamatak/ExaML

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Memory Organization: Inner Vectors with Unrooted View
	Memory Organization: Inner Vectors with Rooted View
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

