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Introduction to Bioinformatics for 
Computer Scientists

Lecture 10
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Plan for next lectures

 

● Today (Alexis): 

● More on Models 
● Data Structures for unrooted Phylogenetic Trees 
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations 

● Lecture 11 (Pierre): Discrete Operations on Trees 
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Protein Substitution Models

● The GTR Q matrix for protein data has 189 free parameters instead of just 5 (DNA) 

● Estimating 189 rate parameters is difficult, time-consuming, and may lead to over-
parameterizing the model

● Instead, empirical models such as JTT, LG, WAG, MTMAM, etc. are used

● The Q matrices are obtained by jointly optimizing model parameters on a large 
collection of reference alignments

● The models differ with respect to:

● the amount of data used to obtain them

● the type of data on which the models have been optimized

– e.g., dedicated models for HIV, FLU, Mammals
● the numerical optimization methods used

● Examples of general models:

● LG: Le & Gascuel: “An Improved General Amino Acid Replacement Matrix”

● WAG: Whelan & Goldman: “A General Empirical Model of Protein Evolution 
Derived from Multiple Protein Families Using a Maximum-Likelihood Approach”
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Rate Heterogeneity among Sites

● Among-site rate heterogeneity

● Biological phenomenon 

→ different sites/columns evolve at different speeds

● Need to accommodate this in our models

ACGGGGGGGGGGGTTTTCCCCC
ATGGGGGGGGGGGTTTCCCCCC
ACCGGGGGGGGGGTTTTGCCCC
AGGGGGGGGGGGCTTTTCCCCC

Gene
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Γ-Distribution



  
6

Γ-Distribution
Small α high rate heterogeneity
Large α low rate heterogeneity
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Discrete Γ-Distribution

r0

r1
r2

r3
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An Abstract View of Γ

rate 0 
P(t) =e^Qr0t

length 7

LnL(i) = log(¼ * (L0 + L1 + L2 + L3))

Log likelihood
at site i

All Γ rates have equal probability

This is the integral of the likelihood we approximate via discretization 

rate 1 
P(t) =e^Qr1t

rate 2 
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t
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An Abstract View of Γ

rate 0 
P(t) =e^Qr0t

length 7

rate 1 
P(t) =e^Qr1t

rate 2 
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t

4 times higher memory consumption
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An Abstract View of Γ

rate 0 
P(t) =e^Qr0t

length 7

rate 1 
P(t) =e^Qr1t

rate 2 
P(t) =e^Qr2t

rate 3
P(t) =e^Qr3t

4 times more floating point operations
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Γ Model of Rate Heterogeneity with 4 discrete rates 

r0

r1

r2

r3

  ...........................................................................

  ...........................................................................

  ...........................................................................

  ..........................................................................

α

r0

r1

r2

r3
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Mixture Models

● The of rate heterogeneity is a simple example of so-called 
mixture models

● From Wikipedia: “In statistics, a mixture model is a probabilistic 
model for representing the presence of subpopulations within 
an overall population, without requiring that an observed data 
set should identify the sub-population to which an individual 
observation belongs. Formally a mixture model corresponds to 
the mixture distribution that represents the probability 
distribution of observations in the overall population.”

● The Γ model gives us 4 discrete evolutionary rates over which 
we integrate (add) the likelihood for each site, without assigning 
a specific rate to a specific site
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Mixture Models

● We can also imagine to integrate the likelihood over a set of

● distinct Q matrices 
● distinct base frequencies 
● or combinations thereof 

● The LG protein substitution model is an example thereof: 

● It uses 4 distinct empirical Q matrices and 4 distinct sets of 
base frequencies π over which we integrate just like for the Γ 
model 
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An example

 

Taken from: “Measuring Service Reliability Using Automatic Vehicle Location Data”
→ bus service reliability 



  
15

Heterotachous Models

One GTR model for the entire tree
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Heterotachous Models

Maybe two GTR models describe this better?

GTR
1

GTR
2
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Heterotachous Models

Maybe two GTR models describe this better?

GTR
1

GTR
2

Why is heterotachy difficult?
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What is a partitioned dataset?

Multi-gene or whole-genome alignment
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What is a partitioned dataset?

Multi-gene or whole-genome alignment

Gene 0 Gene 1 Gene 4Gene 3Gene 2
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What is a partitioned dataset?

Multi-gene or whole-genome alignment

Gene 0 Gene 1 Gene 4Gene 3Gene 2

We may also partition 
by 1st, 2nd, and 3rd 

codon position
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What is a partitioned dataset?

Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1
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What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Joint branch length
estimate
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What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

per-partition branch length
estimate
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What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!
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What is a partitioned dataset?
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Per-partition branch length estimate 
Increases the number of parameters

in the likelihood model by 4 * (2n – 3),
where n is the number of taxa
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Models and Parameters

● If we add an additional parameter to a model, the likelihood will 
become better 

● However, this does not mean anything, as 

● We might be over-parameterizing 
● The key question is if the more complex model yields a 

different tree topology
● So, how do we determine the best-fit model for a given dataset?
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Nested models

● A particular model is said to be nested within a more complex model 
only if constraining parameter values of the later yields the former!

● So, the model can only be constrained in one direction to determine 
if its nested!

● If I need to constrain both models for which I intend to assess 
nesting, they are not nested.

● Example: The F81 (equal rates, unequal stationary frequencies) and 
K2P (2 distinct rates, equal stationary frequencies)  models are not 
nested within each other. 

→ This is because fixing the parameter values of either model does 
not yield the other model 

● However, they are both nested within GTR  
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Model Testing

● If models are nested we can use a likelihood ratio test

● Model A is nested in model B if parameters in model A are a subset of 
the parameters in model B

● For instance: the Jukes Cantor (JC) model is nested in the General 
Time Reversible (GTR) model of nucleotide substitution

● LR = P(D|A) / P(D|B) = L(A) / L(B)

● Δ = ln(LR2) = 2 (ln(L(A)) – ln(L(B))

● Compare Δ to χ2 distribution with kA – kB degrees of freedom to 
determine if the Δ is significant or not 

● The degrees of freedom difference is the difference in the number of 
free parameters in the models

● How many free parameters do the JC and GTR models have? 
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Model Testing

● If models are nested we can use a likelihood ratio test

● Model A is nested in model B if parameters in model A are a subset of 
the parameters in model B

● For instance: the Jukes Cantor (JC) model is nested in the General 
Time Reversible (GTR) model of nucleotide substitution

● LR = P(D|A) / P(D|B) = L(A) / L(B)

● Δ = ln(LR2) = 2 (ln(L(A)) – ln(L(B))

● Compare Δ to χ2 distribution with kA – kB degrees of freedom to 
determine if the Δ is significant or not 

● The degrees of freedom difference is the difference in the number of 
free parameters in the models

● How many free parameters do the JC and GTR models have? 

We are only allowed to compare 
likelihoods on the same data D!
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What if Models are not nested?

● One can use other criteria such as

● Akaike Information Criterion (AIC) 
● Bayesian Information Criterion (BIC) 

● I will spare you the details, but the basic idea always is: 

● Compute likelihood of alternative models 
● Penalize the more parameter-rich models 
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Outline

● More on Models 
● Data Structures for unrooted Phylogenetic Trees 
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations 
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Data Structures for unrooted Trees

● Unrooted trees with dynamically changing virtual roots need a 
dedicated tree data structure

● Why can the virtual root positions change dynamically?

● If we apply a topological move (NNI, SPR, TBR) will we have to 
re-compute all conditional likelihood vectors?
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Memory Organization: Conditional Likelihood 
Vectors with an Unrooted View
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Memory Organization: Conditional Likelihood 
Vectors with a Rooted View

Virtual Root

NULL

NULL

NULL

NULL
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Memory Organization: CLVs with a Rooted 
View

New Virtual Root

NULL

NULL

NULL

NULL

Relocate & Re-compute 
Ancestral Vector
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Memory Organization: Ancestral Vectors with a 
Rooted View

New Virtual Root

NULL

NULL

NULL

NULL
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Memory Organization: 
Tip Vectors

NULL

NULL

NULL

NULL

ACGG

AGCC
ATCC

ACGT

A G C C
1 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0

Constant values!
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Outline

● More on Models 
● Data Structures for unrooted Phylogenetic Trees 
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations 
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Optimization of 
Likelihood Calculations

● Use SSE3 & AVX vector intrinsics

● Also: GPUs, FPGAs, the Intel Xeon PHI

● Special implementations (why?) for computing CLVs:

TIP TIPTIP
INNER INNERINNER
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Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG
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Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation



  
42

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required



  
43

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats 
Up to 10-fold run-time improvements
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Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real 
numbers to a finite number of machine values!
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Floating Point Arithmetics:
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● We stand on shaky grounds

● Scientists using those codes assume that there are no bugs

● Double precision arithmetics required for certain applications

● Who knows what de-normalized floating point numbers are?

→ Please have a look at: 

J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your 
benchmarks really data-independent?” Applied Parallel Computing. 
State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at: 
https://github.com/stamatak/denormalizedFloatingPointNumbers 

https://github.com/stamatak/denormalizedFloatingPointNumbers
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Floating Point Arithmetics:
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● We stand on shaky grounds

● Scientists using those codes assume that there are no bugs

● Double precision arithmetics required for certain applications

● Who knows what de-normalized floating point numbers are?

→ Please have a look at: 

J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your 
benchmarks really data-independent?” Applied Parallel Computing. 
State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at: 
https://github.com/stamatak/denormalizedFloatingPointNumbers 

Why is this relevant when 
Talking about Maximum 

Likelihood?

https://github.com/stamatak/denormalizedFloatingPointNumbers
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Post-order Traversal

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root 

0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0
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Post-order Traversal

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root → 
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply 
numerical scaling techniques

to avoid underflow!
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Outline

● More on Models 
● Data Structures for unrooted Phylogenetic Trees 
● Implementing and Optimizing Likelihood Calculations
● Parallel Likelihood Calculations 
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 95% of total 
execution time !



  
52

Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Parallel Post-order Traversal

virtual root

Only need to synchronize at the root
→ MPI_Reduce() to calculate: Σ log(li)
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Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Busy
wait

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)
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Synchronizations in RAxML with 
Pthreads

● RAxML Pthreads for a run time of about 10 seconds on 16 
cores/threads

● 404 taxa 7429 sites: 194,000 Barriers

● 1481 taxa 1241 sites: 739,000 Barriers

● A paper on performance of alternative PThreads barrier 
implementations: 

S.A. Berger, A. Stamatakis: "Assessment of Barrier 
Implementions for Fine-Grain Parallel Regions on Current 
Multi-core Architectures", IEEE Cluster 2010. 
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the 
broadcast must be fast!
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Problems start with partitioned 
datasets!

Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!
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Parallel Performance Problems

● They all start with partitioned datasets!

● How do we distribute partitions to processors?

● How do we calculate parameter changes?

● How much time does our broadcast take?

● Goal: Keep all processors busy all the time 

→ minimize communication and synchronization!
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Example

Blue Gene      Red Gene 

Sequence 1

Sequence 5
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Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Shared    memory



  
65

Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory
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Data Distribution

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Partitioned data distribution is not 
that trivial!
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Data Distribution I

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory
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Data Distribution I

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more partitions
than processors:
May lead to load imbalance not all 
processors obtain equal number of sites!
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 

eQ
1
t eQ

2
t eQ

2
teQ

1
t
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 

eQ
1
t eQ

2
t eQ

2
teQ

1
t

Performance impact depends 
on number of states in 
data/dimension of Q
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Data Distribution II

OrangutanOrangutan AACG TTTT AACG TTTT 
Gorilla Gorilla AAGG TTT- AAGG TTT- 
ChimpChimp A-GG TTTT A-GG TTTT 
Homo SapiensHomo Sapiens AGGA TTTT AGGA TTTT 

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we 
have more processors
than partitions:
However we will need to compute: 
P(t)=eQt for each partition at each 
processor! 

eQ
1
t eQ

2
t eQ

2
teQ

1
t

How do we distribute partitions to 
processors?
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Load Balance I

P0 P1

G0 G1 G2 G3
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Load Balance I

P0 P1
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Load Balance I

P0 P1

Find the partition-to-processor 
assignment such that the 
maximum number of sites per 
processor is minimized 
→ this is NP-hard
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Load Balance I

● The multiprocessor job scheduling problem in phylogenetics

– Problem when #partitions >> #cores

– Tested per-site (cyclic/modulo) data distribution versus per partition data distribution

– We used the Longest Processing Time (LPT) heuristics for assigning partitions to 
processors

– 25 taxa, 220,000 sites, 100 genes
● GAMMA model

naïve: 613 secs

LPT: 550 secs
● CAT model

naïve: 298 secs

LPT: 127 secs

– Larger protein dataset under Г model of rate heterogeneity: 10-fold performance 
improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 
11th IEEE HICOMB workshop (in conjunction with IPDPS 2012). 
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LPT heuristics for multi-processor 
scheduling

● Sort jobs (partitions) by processing length (partition length) in 
decreasing order

● Remove a job (partition) from the sorted list and assign it to the 
processor with the earliest end time (the smallest sum of 
partition lengths)

● Repeat until the sorted list is empty

● Upper bound: 4/3 – 1/(3p) * OPT, where p is the number of 
processors

● Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies". 
SIAM Journal on Applied Mathematics 17 (2): 416–429, 1969.

● Remark: LPT works surprisingly well (see our paper on the 
phylogenetic problem where we also tested other heuristics)
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Partitioned Branch Lengths & other 
parameters
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Load-Balance II

Zoom
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Synchronization Points

● Assume 10 branches 

● Each branch requires 10 Newton-Raphson Iterations

● Each NR Iteration requires a synchronization via a reduction operation

● One branch/partition at a time: 100 sync. points, less work (only one 
partition) per sync. point

● All branches concurrently: 10 sync. points, more work per sync. point

● Branches will need distinct number of operations

● Add convergence state → bit vector
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Synchronization Points

Org1 AC GT
Org2 AC TT
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Synchronization Points

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

01

00

Org1 AC GT
Org2 AC TT
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Synchronization Points

00

01

00

11

In this example: 4 instead of 7 sync points!

Org1 AC GT
Org2 AC TT
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Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". 
Proceedings of ICPP 2009, Vienna, Austria, September 2009.
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Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)

Broadcast Traversal

Reduce Σ log(li)

Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel performance: the 
broadcast must be fast!
Remember: 10 secs 16 cores approx 
500,000 times.
What happens if we have 1000 
partitions and propose 1000 new 
alpha parameters?
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Alternative MPI parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000
-55000

-55001 -55001

P0 P1

E
xecut ion 

tim
e
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Alternative MPI parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000
-55001

-55001 -55000

P0 P1

E
xecut ion 

tim
e

I think this is the way we will have to 
do it in the future.
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ExaML

● New code implementing this new parallelization scheme

● https://github.com/stamatak/ExaML 

● A. Stamatakis, A. J. Aberer: "Novel Parallelization Schemes for Large-Scale 
Likelihood-based Phylogenetic Inference", accepted for publication at IPDPS 2013, 
Boston, USA, 2013. 

● Up to 3 times faster than RAxML-Light (2012) on large,  partitioned datasets

● Tested with up to 1536 cores on our cluster at HITS 

● Future developments

● 20,000,000 CPU hors on SuperMUC for

– Improving scalability

– Implementing fault tolerance

– Execute 1KITE tree inferences

– Further details → ask Andre Aberer

https://github.com/stamatak/ExaML
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