#### Introduction to Bioinformatics for Computer Scientists

## Lecture 10

#### Plan for next lectures

- Today (Alexis):
  - More on Models
  - Data Structures for unrooted Phylogenetic Trees
  - Implementing and Optimizing Likelihood Calculations
  - Parallel Likelihood Calculations
- Lecture 11 (Pierre): Discrete Operations on Trees

## **Protein Substitution Models**

- The GTR *Q* matrix for protein data has 189 free parameters instead of just 5 (DNA)
- Estimating **189** rate parameters is difficult, time-consuming, and may lead to overparameterizing the model
- Instead, empirical models such as JTT, LG, WAG, MTMAM, etc. are used
- The *Q* matrices are obtained by jointly optimizing model parameters on a large collection of reference alignments
- The models differ with respect to:
  - the amount of data used to obtain them
  - the type of data on which the models have been optimized
    - e.g., dedicated models for HIV, FLU, Mammals
  - the numerical optimization methods used
- Examples of general models:

3

- LG: Le & Gascuel: "An Improved General Amino Acid Replacement Matrix"
- WAG: Whelan & Goldman: "A General Empirical Model of Protein Evolution
- Derived from Multiple Protein Families Using a Maximum-Likelihood Approach"

#### Rate Heterogeneity among Sites

Gene



- Among-site rate heterogeneity
  - Biological phenomenon
    - $\rightarrow$  different sites/columns evolve at different speeds
  - Need to accommodate this in our models

#### **Γ-Distribution**



#### **Γ-Distribution**



#### Discrete Γ-Distribution



#### An Abstract View of $\Gamma$



This is the integral of the likelihood we approximate via discretization

$$LnL(i) = log(\frac{1}{4} * (L_0 + L_1 + L_2 + L_3))$$

Log likelihood All  $\Gamma$  rates have equal probability  $_{8}$  at site i

#### An Abstract View of $\Gamma$



9

#### An Abstract View of $\Gamma$



4 times more floating point operations

#### Γ Model of Rate Heterogeneity with 4 discrete rates



## Mixture Models

- The of rate heterogeneity is a simple example of so-called mixture models
- From Wikipedia: "In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population."
- The Γ model gives us 4 discrete evolutionary rates over which we integrate (add) the likelihood for each site, without assigning a specific rate to a specific site

## Mixture Models

- We can also imagine to integrate the likelihood over a set of
  - distinct *Q* matrices
  - distinct base frequencies
  - or combinations thereof
- The LG protein substitution model is an example thereof:
- It uses 4 distinct empirical Q matrices and 4 distinct sets of base frequencies  $\pi$  over which we integrate just like for the  $\Gamma$  model

#### An example



Taken from: "Measuring Service Reliability Using Automatic Vehicle Location Data"  $\rightarrow$  bus service reliability

#### Heterotachous Models



#### Heterotachous Models



#### Heterotachous Models



Multi-gene or whole-genome alignment



Multi-gene or whole-genome alignment



Multi-gene or whole-genome alignment







Joint branch length estimate









#### Models and Parameters

- If we add an additional parameter to a model, the likelihood will become better
- However, this does not mean anything, as
  - We might be over-parameterizing
  - The key question is if the more complex model yields a different tree topology
- So, how do we determine the best-fit model for a given dataset?

#### Nested models

- A particular model is said to be nested within a more complex model only if constraining parameter values of the later yields the former!
- So, the model can only be constrained in one direction to determine if its nested!
- If I need to constrain both models for which I intend to assess nesting, they are not nested.
- Example: The F81 (equal rates, unequal stationary frequencies) and K2P (2 distinct rates, equal stationary frequencies) models are not nested within each other.

 $\rightarrow$  This is because fixing the parameter values of either model does not yield the other model

• However, they are both nested within GTR

# Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the parameters in model B
- For instance: the *Jukes Cantor (JC)* model is nested in the *General Time Reversible (GTR)* model of nucleotide substitution
- LR = P(D|A) / P(D|B) = L(A) / L(B)
- $\Delta = ln(LR^2) = 2 (ln(L(A)) ln(L(B)))$
- Compare  $\Delta$  to  $x^2$  distribution with  $k_A k_B$  degrees of freedom to determine if the  $\Delta$  is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the *JC* and *GTR* models have?

# Model Testing

- If models are nested we can use a likelihood ratio test
- Model A is nested in model B if parameters in model A are a subset of the parameters we are only allowed to compare
- For instance likelihoods on the same data D! General Time Reversible (G of nucleotide substitution
- LR = P(D|A) / P(D = L(A) / L(B))
- $\Delta = ln(LR^2) = 2 (ln(L(A)) ln(L(B)))$
- Compare  $\Delta$  to  $x^2$  distribution with  $k_A k_B$  degrees of freedom to determine if the  $\Delta$  is significant or not
- The degrees of freedom difference is the difference in the number of free parameters in the models
- How many free parameters do the *JC* and *GTR* models have?

## What if Models are not nested?

- One can use other criteria such as
  - Akaike Information Criterion (AIC)
  - Bayesian Information Criterion (BIC)
- I will spare you the details, but the basic idea always is:
  - Compute likelihood of alternative models
  - Penalize the more parameter-rich models

# Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations

#### Data Structures for unrooted Trees

- Unrooted trees with dynamically changing virtual roots need a dedicated tree data structure
- Why can the virtual root positions change dynamically?
- If we apply a topological move (NNI, SPR, TBR) will we have to re-compute all conditional likelihood vectors?

#### Memory Organization: Conditional Likelihood Vectors with an Unrooted View



#### Memory Organization: Conditional Likelihood Vectors with a Rooted View



# Memory Organization: CLVs with a Rooted View



# Memory Organization: Ancestral Vectors with a Rooted View

New Virtual Root


### Memory Organization: Tip Vectors



# Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations

# Optimization of Likelihood Calculations

- Use SSE3 & AVX vector intrinsics
- Also: GPUs, FPGAs, the Intel Xeon PHI
- Special implementations (why?) for computing CLVs:





Detect identical patterns and omit second computation







# **Floating Point Numbers**

• Machine numbers are an imperfect mapping of the infinite real numbers to a finite number of machine values!



# Floating Point Arithmetics: The Root of All Evil

- Computational science mostly relies on floating-point intensive codes
- How do we verify these codes?
- We stand on shaky grounds
- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
  - $\rightarrow$  Please have a look at:

J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at: https://github.com/stamatak/denormalizedFloatingPointNumbers

# Floating Point Arithmetics: The Root of All Evil

- Computational science mostly reli
- How do we verify these codes?
- We stand on shaky grounds

Why is this relevant when Talking about Maximum Likelihood?

- Scientists using those codes assume that there are no bugs
- Double precision arithmetics required for certain applications
- Who knows what de-normalized floating point numbers are?
  - $\rightarrow$  Please have a look at:

J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer.

and at my micro-benchmark at: https://github.com/stamatak/denormalizedFloatingPointNumbers

### **Post-order Traversal**



Values in conditional likelihood vectors get smaller and smaller as we move to the root



# Outline

- More on Models
- Data Structures for unrooted Phylogenetic Trees
- Implementing and Optimizing Likelihood Calculations
- Parallel Likelihood Calculations



#### P[i] = f(Q[i], R[i])



#### P[i] = f(Q[i], R[i])



# Loop Level Parallelism

virtual root





### Parallel Post-order Traversal

Only need to synchronize at the root  $\rightarrow$  MPI\_Reduce() to calculate:  $\Sigma \log(I_i)$ 





# Classic Fork-Join with Busy-Wait



# Synchronizations in RAxML with Pthreads

- RAxML Pthreads for a run time of about 10 seconds on 16 cores/threads
- 404 taxa 7429 sites: **194,000** Barriers
- 1481 taxa 1241 sites: **739,000** Barriers
- A paper on performance of alternative PThreads barrier implementations:

S.A. Berger, A. Stamatakis: "Assessment of Barrier Implementions for Fine-Grain Parallel Regions on Current Multi-core Architectures", *IEEE Cluster* 2010.

# Classic Fork-Join with Busy-Wait



# Classic Fork-Join with Busy-Wait



60

# Problems start with partitioned datasets!



# Parallel Performance Problems

- They all start with partitioned datasets!
- How do we distribute partitions to processors?
- How do we calculate parameter changes?
- How much time does our broadcast take?
- Goal: Keep all processors busy all the time
  - $\rightarrow$  minimize communication and synchronization!

### Example

Blue Gene Red Gene

Sequence 1 Sequence 5







66












| G0 | G1 | G2 | G3 |
|----|----|----|----|
|    |    |    |    |

P0 P1







- The multiprocessor job scheduling problem in phylogenetics
  - Problem when #partitions >> #cores
  - Tested per-site (cyclic/modulo) data distribution versus per partition data distribution
  - We used the Longest Processing Time (LPT) heuristics for assigning partitions to processors
  - 25 taxa, 220,000 sites, 100 genes
    - GAMMA model
      - naïve: 613 secs
      - LPT: **550** secs
    - CAT model
      - naïve: 298 secs
      - LPT: **127** secs
  - Larger protein dataset under Γ model of rate heterogeneity: 10-fold performance improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 11th IEEE HICOMB workshop (in conjunction with IPDPS 2012).

# LPT heuristics for multi-processor scheduling

- Sort jobs (partitions) by processing length (partition length) in decreasing order
- Remove a job (partition) from the sorted list and assign it to the processor with the earliest end time (the smallest sum of partition lengths)
- Repeat until the sorted list is empty
- Upper bound: 4/3 1/(3p) \* OPT, where p is the number of processors
- Graham, R. L.: "Bounds on Multiprocessing Timing Anomalies". *SIAM Journal on Applied Mathematics* 17 (2): 416–429, 1969.
- Remark: LPT works surprisingly well (see our paper on the phylogenetic problem where we also tested other heuristics)

# Partitioned Branch Lengths & other parameters



separate estimate of Q-Matrix alpha-shape Branch Lengths separate estimate of Q–Matrix alpha–shape Branch Lengths separate estimate of Q-Matrix alpha-shape Branch Lengths

#### Load-Balance II



- Assume 10 branches
- Each branch requires 10 Newton-Raphson Iterations
- Each NR Iteration requires a synchronization via a reduction operation
- One branch/partition at a time: 100 sync. points, less work (only one partition) per sync. point
- All branches concurrently: 10 sync. points, more work per sync. point
- Branches will need distinct number of operations
- Add convergence state → bit vector

Org1 AC GT Org2 AC TT









| <br>00 |
|--------|
| <br>00 |
| <br>01 |



In this example: 4 instead of 7 sync points!



A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". Proceedings of ICPP 2009, Vienna, Austria, September 2009.



#### Alternative MPI parallelization



time

89

Execution

## Alternative MPI parallelization



Execution time

# ExaML

- New code implementing this new parallelization scheme
- https://github.com/stamatak/ExaML
- A. Stamatakis, A. J. Aberer: "Novel Parallelization Schemes for Large-Scale Likelihood-based Phylogenetic Inference", accepted for publication at *IPDPS 2013*, Boston, USA, 2013.
- Up to 3 times faster than RAxML-Light (2012) on large, partitioned datasets
- Tested with up to 1536 cores on our cluster at HITS
- Future developments
  - 20,000,000 CPU hors on SuperMUC for
    - Improving scalability
    - Implementing fault tolerance
    - Execute 1KITE tree inferences
    - Further details  $\rightarrow$  ask Andre Aberer