Introduction to Bioinformatics for Computer Scientists

Lecture 6

Plan for next lectures

- Today: Introduction to phylogenetics
- Lecture 7 (Alexis): Phylogenetic search algorithms

The story so far

- Biological Terminology: RNA, DNA, genes, genomes, etc
- Pair-wise Sequence Alignment
- Sequence Comparison
- Genome Assembly
- Multiple Sequence Alignment

The story so far

- Biological Terminology: RNA, DNA, genes, genomes, etc
- Pair-wise Sequence Alignment
- Sequence Comparison
- Genome Assembly
- Multiple Sequence Alignment
- Phylogenetic Inference

A Taxonomy

First systematic classification of living beings by Aristotele 384-382 BC Some terms still in use today, e.g., classification of animals into Vertebrates versus Invertebrates

Wirbeltiere

Taxonomy

- Group biological organisms (species) into groups with similar characteristics
- Define characteristics of groups at different hierarchy levels, e.g., animals > mammals > great apes
- Taxonomic ranks
- Domain \rightarrow three domains of life
- Kingdom
- Phylum
- Class
- Order
- Family
- Genus
- Species

A Phylogeny or Phylogenetic Tree

A Phylogeny or Phylogenetic Tree

Phylogeny

- An unrooted strictly binary tree
- Leafs are labeled by extant "übrig geblieben" (currently living) organisms represented by their DNA/Protein sequences
\rightarrow we can also sequence ancient DNA, see, for instance, the neandertal genome: "The complete genome sequence of a Neanderthal from the Altai Mountains", Nature 2013
\rightarrow depends on temperature, time, and other environmental conditions
\rightarrow up to 300,000 years back, see http://www.pnas.org/content/110/39/15758.abstract
- Inner nodes represent hypothetical common ancestors
- Outgroup: one or more closely related, but different species \rightarrow allows to root the tree

Taxon

- Used to denote clades/subtrees in phylogenies or taxonomies
- A group of one or more species that form a biological unit
- As defined by taxonomists
\rightarrow subject of controversial debates
\rightarrow part of the culture/fuzziness of Biology
- In phylogenetics we often refer to a single leaf as taxon
\rightarrow the plural of taxon is taxa
\rightarrow we often say that a tree with n leaves (sequences) has n taxa

Some more terminology

This phylogeny has a root!

B and C are a monophyletic group; they are sister species

Some more terminology

($\mathbf{A}, \mathbf{B}, \mathbf{C}$) is a monophyletic group; it is sister to (\mathbf{D}, E)

Some more terminology

(A, B, C, D) is paraphyletic $\rightarrow E$ is excluded

Some more terminology

(A, D) is a polyphyletic group \rightarrow their most recent common ancestor (MRCA) is excluded

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:
A $\leftrightarrow \mathrm{B}: 0.2$

Some more terminology

Tree-based or patristic distance between two taxa:
Sum over branch lengths along the path in the tree, e.g.:
A \leftrightarrow B: 0.2
A $\leftrightarrow \mathbf{D}: 0.35$

Tree Rooting

Outgroup species 1

Ingroup species 3
Outgroup species 2

Ingroup species 2
Ingroup species 1

Tree Rooting

Tree Rooting

Tree Rooting

Outgroup Choice

Ingroup species 4

Ingroup species 2

Ingroup species 3

Ingroup species 1
Clear signal

Close Outgroup

Tree Inference

Tree Inference

Tree Inference

Tree Inference

Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT

Taxon 4:AGGGTTT \rightarrow\begin{tabular}{c}
MSA

Program

\rightarrow

Taxon 1:ACGTTT-

Taxon 2:ACGTT-

Taxon 3:ACCCT-

Taxon 4:AGGGTTT

\quad

Tree inference

program
\end{tabular}

Tree Inference

Tree Inference

Newick format with branch lengths:
(Taxon1:0.1,Taxon2:0.2,(Taxon3:0.15,Taxon4:0.15):0.3);

Problems with Newick tree format

- Except for branch length values: no way to associate meta-data to branch lengths
- However, there is important meta-data, e.g., branch support: how well is a branch in the tree supported?
\rightarrow ad hoc solution: represent branch support values as node meta-data!
\rightarrow this causes problems

Problems with Newick tree format

Branch support values represented as node meta-data can be assigned incorrectly to branches after re-rooting.

About 50% of the tools we checked had this Problem. For details see:
https://academic.oup.com/mbe/article/34/6/1535/3077051

Which representation is correct?

A real example

a) original tree
b) re-rooted tree with shifted support values
c) re-rooted tree with correct support values

Tree Shapes

Tree Shapes

Non-ultrametric tree

Tree Shapes

Tree Shapes

Dating Trees

Dating Trees

Dating Trees

Dating Trees

We need a rooted \& ultrametric tree!
\rightarrow rooting with outgroups
\rightarrow ultrametricity with programs for divergence time estimation
\rightarrow active research area
\rightarrow most codes rely on the phylogenetic likelihood function and Bayesian Statistics (MCMC methods)

Dating Trees

But how do we place the fossil?
\rightarrow typically no DNA data available
Fossil placement:
\rightarrow ad hoc using empirical knowledge
\rightarrow computationally using morphological data

The input for a phylogenetic analysis need not be molecular data!

We can also use sequences of morphological traits ("Merkmale")!

Remember that we deal with extant species!

Morphological Traits

```
t1: 1000
t2: 0100
t3: 0010
T4: 0001
or:
t1: 0
t2: 1
t3: 2
t4: 3
```

t1: 1000
t2: 0100
t3: 0010
T4: 0001
or:
t1: 0
t2: 1
t3: 2
t4: 3
without hair removal)?

Morphological Traits

What image best matches the extent of your natural brow line
t1: 1000
t2: 0100
t3: 0010
T4: 0001
or:

Traits need not be discrete, they can also be continuous, e.g., bone ratios

Alignment-Free Tree Inference

Alignment-Free Tree Inference

How many unrooted 4-taxon trees exist?

How many rooted 4-taxon trees exist?

Tree Counts

- Unrooted binary trees
- 4 taxa $\rightarrow 3$ distinct trees
- A tree with n taxa has $n-2$ inner nodes
- And 2n-3 branches
- Rooted binary trees
- 4 taxa $\rightarrow 3$ unrooted trees * 5 branches each (rooting points) $=15$ trees
- n-1 inner nodes
- $2 n-2$ branches

The number of trees

3 taxa $=1$ tree

The number of trees

4 taxa: 3 trees
u: \# trees of size 4-1 := 1
v : \# branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * $v=3$

The number of trees

5 taxa: 15 trees
$\mathrm{u}=3$
$v=5$
Number of unrooted trees with 5 taxa: $3 * 5=15$

The number of trees

The number of trees explodes!

Some Numbers

Number of Organisms	Number of alternative Trees
3	1
4	3
5	15
6	105
7	945
10	2.027 .025
15	$7.905,853.580 .625$
20	$2.21 * 10^{20}$
50	$2.84 * 10^{76}$

Table 2.1: Number of possible trees for phylogenies with 3-50 organisms

Equation for the number of unrooted trees

- Simple proof via induction

$$
\prod_{i=3}^{n}(2 i-5)
$$

- The number of rooted trees for n taxa simply is the number of unrooted trees for $n+1$ taxa
- The additional $\left(n+1^{\text {th }}\right)$ taxon represents all possible rootings for all unrooted trees with n taxa

\# trees with 2000 tips

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$./treeCounter -n 2000

GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis

 350341796875

A side-note The treeCounter tool

- Evidently, the tree count can not be computed using normal integers
\rightarrow we need an arbitrary precision library
\rightarrow I used the GNU GMP (Multiple Precision Arithmetic) library
\rightarrow treeCounter available as open-source code at https://github.com/stamatak
\rightarrow Has anybody already used GNU GMP?

Scoring Trees

- Now we know how many unrooted candidate trees there exist for n taxa
- How do we chose among them?
\rightarrow we need some scoring criterion $f()$ to evaluate them
\rightarrow finding the optimal tree under most criteria is NP-Hard

What can we do with Phylogenies?

reference phylogeny

What can we do with Phylogenies?

What can we do with Phylogenies?

Note that, this is similar to placing an outgroup into the tree!

reference phylogeny

Diversification Rates

From: Charles C. Davis, Hanno Schaefer: "Plant Evolution: Pulses of Extinction and Speciation in Gymnosperm Diversity", Current Biology, 2011.

Diversification Rates

- With former PostDoc Stephen Smith: "Understanding angiosperm diversification using small and large phylogenetic trees", American Journal of Botany 98 (3), 404-414, 2011.
- Largest tree of angiosperms computed to date
- 55,000 taxa

Diversification Rates

- With former PostDoc Stephen Smith: "Understanding angiosperm diversification using small and large phylogenetic trees", American Journal of Botany 98 (3), 404-414, 2011.
- Largest tree of angiosperms computed to date
- 55,000 taxa

Influenza Outbreaks

Host Taxa

- Galliformes

Anseriformes
Passeriformes - Charadriformes

Human
Columbidae
Artiodactyla
Accipitriformes
Ardeidae
Carnivora
O Corvidae
Arthropoda
Ambiguous

And of course SARS-CoV-2

Phylogenetic analysis of SARS-CoV-2 data is difficult

Benoit Morel ${ }^{+1}$, , Pierre Barbera ${ }^{*-1}$, Lucas Czech ${ }^{1}$, Ben Bettisworth ${ }^{1}$, Lukas Hübner ${ }^{12}$, Sarah Lutteropp ${ }^{1}$, Dora Serdarl ${ }^{17}$, Evangelia-Georgia Kostaki', loannis Mamais', Alexey M Kozlov', Pavios Pavilidis ${ }^{4}$, Dimittios Paraskevis', and Alexandros Stamatakis ${ }^{1,2}$

[^0]
Snakebites

Australia has more poisonous snakes than any other continent, and many people die from snakebites each year. Developing effective antivenins is thus a high priority, but little is known about the venins of most species.
Phylogenetic analysis is helping with this task because venin properties correlate strongly with evolutionary relationships.
Although the red-bellied black snake looks very different from the king brown, it is actually closely related and can be treated with the same antivenin.
Conversely, the western brown looks very similar to the king brown, but it is only distantly related and thus responds best to different antivenin.
The phylogeny is also predictive: the recent demonstration that the poorlyknown barclick is closely related to the death adder (orange lineage) predicts that the former is also highly dangerous and might respond to widely-available death adder antivenin.

Snakebites

Australia has more poisonous snakes than any other continent, and many people die from snakebites each year. Developing effective antivenins is thus a high priority, but little is known about the venins of most species.
Phylogenetic analysis is helping with this task because venin properties correlate strongly with evolutionary relationships.
Although the red-bellied black snake looks very different from the king brown, it is actually closely related and can be treated with the same antivenin. Conversely, the western brown looks very similar to the king brown, but it only distantly related and thus resp/ as best to different antivenin. The phylogeny is also predictive: the recent demonstration that the poorlyknown barclick is closely related to the death adder (orange lineage) predicts that the former is also highly dangerous and might respond to widely-available death adder antivenin.

What can we do with phylogenetic trees?

- identifying unknown species
- divergence time estimates
- diversification rates
- viral outbreaks
- forensics \rightarrow M.L. Metzker, D.P. Mindell, X.M. Liu, R.G. Ptak, R.A. Gibbs, D.M. Hillis: "Molecular evidence of HIV-1 transmission in a criminal case" PNAS: 99(22):14292-7, 2002.

"Nothing in Biology makes sense, except in the light of evolution"

Why this increase in Phylogenetics papers? Advances in:
-Sequencing technology

- Hardware
- Methods \& Tools

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f()$ operate directly on the MSA \& tree
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f()$ operate directly on the MSA \& tree
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
Slow, but more accurate
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetic Mean: UPGMA
\rightarrow least-squares method: explicit optimality criterion
- Character-based methods
\rightarrow optimality criteria $f()$ operate directly on the MSA
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
Memory-intensive!
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchicd lustering methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arith Lean: UPGMA
\rightarrow least-squares method: explicit optimality

Less accurate, but faster

- Character-based methods
\rightarrow optimality criteria $f($) operate direct

What could be the computational limitation here?
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
Memory-intensive!
\rightarrow take the current tree topology \& MSA to calculate a score
\rightarrow the score tells us how well the MSA data fits the tree

Slow, but more accurate

Building Trees

- We distinguish between
- Distance-based methods
\rightarrow use MSA to compute a matrix of pair-wise distances
\rightarrow build a tree using these distances
\rightarrow Heuristics (essentially hierarchical clu ring methods)
\rightarrow Neighbor Joining: NJ
\rightarrow Unweighted Pair Group Method with Arithmetid
\rightarrow least-squares method: explicit optimality crite

Less accurate, but faster

- Character-based methods
\rightarrow optimality criteria $f()$ operate directly on
\rightarrow parsimony
\rightarrow maximum likelihood
\rightarrow Bayesian inference
\rightarrow take the current tree topology \& MSA to
\rightarrow the score tells us how well the MSA data fits the tree

Out-of-core Algorithms

- Definition from Wikipedia:

Out-of-core or External memory algorithms are algorithms that are designed to process data that is too large to fit into a computer's main memory at one time. Such algorithms must be optimized to efficiently fetch and access data stored in slow bulk memory such as hard drive or tape drives.

- We do the data transfer RAM \leftrightarrow disk explicitly from within the application code by using application-specific knowledge (e.g., about the data access patterns)
- This is to circumvent the paging procedure that would normally be initiated by the OS
- Out-of-core algorithms are typically much faster than the applicationagnostic paging procedure carried out by the OS
- For an example from phylogenetics see:

Fernando Izquierdo-Carrasco, Alexandros Stamatakis: "Computing the Phylogenetic Likelihood Function Out-of-Core", IEEE HICOMB 2011 workshop, Anchorage, USA, May 2011.

NP-Hardness

- Because of the super-exponential increase in the number of possible trees for n taxa ...
- all interesting criteria on trees are NP-hard:
- Least squares
- Parsimony \rightarrow discrete criterion
- Likelihood \rightarrow statistical criterion
- Bayesian \rightarrow integrate likelihood over entire tree space

Search Space

Neighbor Joining \rightarrow Principle

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$

Neighbor Joining \rightarrow Principle

min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$ Find minimum and merge taxa

Neighbor Joining \rightarrow Principle

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum

Neighbor Joining \rightarrow Principle

min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa

Neighbor Joining \rightarrow Principle

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa
Etc.
Space complexity: $O\left(n^{2}\right)$
Time complexity: $O\left(n^{3}\right)$
Key question: how do we compute distance between X and A or X and B respectively
\rightarrow for progressive alignment we may align the profile of X with all remaining sequences

Neighbor Joining Algorithm

- For each tip compute

$$
u_{i}=\Sigma_{j} D_{i j} /(n-2)
$$

\rightarrow this is in principle the average distance to all other tips
\rightarrow the denominator is $n-2$ instead of n, see below why

- Find the pair of tips, (i, j) for which $D_{i j}-u_{i}-u_{j}$ is minimal
- Connect the tips (i,j) to build a new ancestral node X
- The branch lengths from the ancestral node X to i and j are:

$$
\begin{aligned}
& b_{i}=0.5 D_{i j}+0.5\left(u_{i}-u_{j}\right) \\
& b_{j}=0.5 D_{i j}+0.5\left(u_{j}-u_{i}\right)
\end{aligned}
$$

- Update the distance matrix:
\rightarrow Compute distance between the new node X and each remaining tip as follows:

$$
D_{i j, k}=\left(D_{i k}+D_{j k}-D_{i j}\right) / 2
$$

- Replace tips i and j by the new node X which is now treated as a tip
- Repeat until only two nodes remain
\rightarrow connect the remaining two nodes with each other

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

Distance matrix, usually denoted as D

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
4 C			-	-39
D				-
$\mathrm{D}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{j}}$				

Usually denoted as Q matrix

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C		-	14	
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39
D				-
	$\mathrm{D}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{j}}$			

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39

D

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C		-	14	
D				-

i	u_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	A	B	C	D
A	-	-39	-35	-35
B		-	-35	-35
C			-	-39

D

$$
\begin{aligned}
& b_{c}=0.5 \times 14+0.5 \times(23.5-29.5)=4 \\
& b_{D}=0.5 \times 14+0.5 \times(29.5-23.5)=10
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	
B		-	12	18	
C			-	14	
D				-	
X					-

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	
B		-	12	18	
C			-	14	
D				-	
X					-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
& \\
D_{\text {XB }} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D	X
A	-	17	21	27	17
B		-	12	18	8
C			-	14	
D				-	
X					-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
D_{\text {XB }} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

$$
\begin{aligned}
D_{X A} & =\left(D_{C A}+D_{D A}-D_{C D}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
D_{\text {XB }} & =\left(D_{C B}+D_{D B}-D_{C D}\right) / 2 \\
& =(12+18-14) / 2
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

Neighbor Joining Algorithm

	A	B	X
A	-	17	17
B		-	8
X			-

i	u_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

	A	B	X
A	-	-42	-28
B		-	-28
X			-

$$
D_{i j}-u_{i}-u_{j}
$$

$$
\begin{aligned}
& b_{A}=0.5 \times 17+0.5 \times(34-25)=13 \\
& b_{D}=0.5 \times 17+0.5 \times(25-34)=4
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	X	Y
A	-	17	17	
B		-	8	
X			-	
Y				

Neighbor Joining Algorithm

	A	B	X	Y
A	-	17	17	
B		-	8	
X			-	4
Y				

$$
\begin{aligned}
D_{Y X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

$$
\begin{array}{ccc}
& X & Y \\
X & - & 4 \\
Y & & -
\end{array}
$$

$$
\begin{aligned}
D_{Y X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

$$
\begin{array}{ccc}
& X & Y \\
X & - & 4 \\
Y & & -
\end{array}
$$

$$
\begin{aligned}
D_{Y X} & =\left(D_{A X}+D_{B X}-D_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =1
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

[^0]: - A (103)

 ㄷ.. A. 1 (393)
 A. $2(60)$
 A. 3 (68)

 - A. 4 (9)
 A. 5 (28)
 A. $6(6)$
 $B(15)$

 B (15)
 B. $1(3068)$

 - B. 1 (3068)
 B. $2(446)$
 B. $2(446)$
 B. $3(70)$
 B. $3(70)$
 B. $4(100)$

 ㅁ. $\begin{gathered}\text { B. } 4(100) \\ \text { B. } 6(76)\end{gathered}$
 B. $6(76)$
 B. $9(5)$
 B. $9(5)$
 B. $10(1)$
 B. 10 (1)
 B. 11 (344)
 B. 11 (34
 B. 12 (2)
 B. 12 (2)
 B. 15 (6)
 B. 15 (6)
 B. 16 (23)
 B. 16 (23
 B. 17 (5)
 $8.17(5)$
 $8.18(2)$
 B. 18 (2)
 B. 21 (2)
 B. $21(2)$
 $-8.23(21)$
 $-\quad 8$
 B. $23(21$
 B.
 B.
 (5)
 B. 26 (8)

 - 8.27 (3)

