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Introduction to Bioinformatics for 
Computer Scientists

Lecture 6
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Plan for next lectures

● Today: Introduction to phylogenetics

● Lecture 7 (Alexis): Phylogenetic search algorithms
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The story so far

● Biological Terminology: RNA, DNA, genes, genomes, etc

● Pair-wise Sequence Alignment

● Sequence Comparison 

● Genome Assembly

● Multiple Sequence Alignment 
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The story so far

● Biological Terminology: RNA, DNA, genes, genomes, etc

● Pair-wise Sequence Alignment

● Sequence Comparison 

● Genome Assembly

● Multiple Sequence Alignment

● Phylogenetic Inference 
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A Taxonomy
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A Taxonomy
First systematic classification of living beings by Aristotele 384 -382 BC
Some terms still in use today, e.g., classification of animals into 
Vertebrates versus Invertebrates
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A Taxonomy
First systematic classification of living beings by Aristotele 384 -382 BC
Some terms still in use today, e.g., classification of animals into 
Vertebrates versus Invertebrates

Wirbeltiere
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Taxonomy

● Group biological organisms (species) into groups with similar characteristics

● Define characteristics of groups at different hierarchy levels, e.g., animals > 
mammals > great apes

● Taxonomic ranks

● Domain → three domains of life
● Kingdom
● Phylum
● Class
● Order 
● Family
● Genus 
● Species
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A Phylogeny or Phylogenetic Tree

A taxonomic
subclass

This tree is unrooted

The outgroup

The ingroup
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A Phylogeny or Phylogenetic Tree

In Phylogenetics
such a subtree is
often also called 
Lineage!
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Phylogeny

● An unrooted strictly binary tree 

● Leafs are labeled by extant “übrig geblieben” (currently living) 
organisms represented by their DNA/Protein sequences

→ we can also sequence ancient DNA, see, for instance, the 
neandertal genome: “The complete genome sequence of a 
Neanderthal from the Altai Mountains”, Nature 2013

→ depends on temperature, time, and other environmental conditions

→ up to 300,000 years back, see

 http://www.pnas.org/content/110/39/15758.abstract  

● Inner nodes represent hypothetical common ancestors

● Outgroup: one or more closely related, but different species → allows 
to root the tree

http://www.pnas.org/content/110/39/15758.abstract
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Taxon

● Used to denote clades/subtrees in phylogenies or taxonomies

● A group of one or more species that form a biological unit 

● As defined by taxonomists

→ subject of controversial debates

→ part of the culture/fuzziness of Biology
● In phylogenetics we often refer to a single leaf as taxon

→ the plural of taxon is taxa

→ we often say that a tree with n leaves (sequences) has n 
taxa
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Some more terminology

A B C
D E

B and C are a monophyletic group; they are sister species

This phylogeny has a root!
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Some more terminology

A B C
D E

(A,B,C) is a monophyletic group; it is sister to (D, E)
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Some more terminology

A B C
D E

(A,B,C,D) is paraphyletic → E is excluded
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Some more terminology

A B C
D E

(A,D) is a polyphyletic group →  their most recent common ancestor (MRCA) is excluded  
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
A ↔ B: 0.2
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Some more terminology

A B C
D E

0.1

0.1 0.1

0.05

0.050.05

0.050.05

Tree-based or patristic distance between two taxa: 
Sum over branch lengths along the path in the tree, e.g.:
A ↔ B: 0.2
A ↔ D: 0.35
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Tree Rooting

Ingroup species 1Ingroup species 2

Ingroup species 3

Outgroup species 1

Outgroup species 2
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Tree Rooting

Ingroup species 1Ingroup species 2

Ingroup species 3

Outgroup species 1

Outgroup species 2

Pull up
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Tree Rooting

Ingroup species 1

Ingroup species 2

Ingroup species 3
Outgroup species 1

Outgroup species 2

root
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Tree Rooting

Ingroup species 1

Ingroup species 2

Ingroup species 3
Outgroup species 1

Outgroup species 2

root

This is just a drawing option!
Tree inference algorithms treat

ingroup and outgroup sequences 
mathematically in the same way!
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Outgroup Choice

Ingroup species 1

Ingroup species 2

Ingroup species 3

Distant Outgroup

Ingroup species 4

Ingroup species 1Ingroup species 2

Ingroup species 3Ingroup species 4

Fuzzy signal

?

Close Outgroup

Clear signal
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Obtain homologous sequences from the same gene 
(e.g., 16S RNA) of different species from a sequence database 
(e.g., GenBank)
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Most widely-used alignment formats: 
●PHYLIP 
●NEXUS
●FASTA
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Most widely-used tree formats: 
●NEWICK
●NEXUS
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Newick example: Remember that this is an 
unrooted tree!
(Taxon1, Taxon2, (Taxon3,Taxon4));
or
((Taxon1, Taxon2), Taxon3,Taxon4);

Top level trifurcation



  
29

Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

((Taxon1, Taxon2), (Taxon3,Taxon4));

root
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

0.1

0.2
0.3

0.15

0.15Trees may have relative
branch lengths, depending
on the tree inference method
that was used
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Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

0.1

0.2
0.3

0.15

0.15Trees may have relative
branch lengths, depending
on the tree inference method
that was used

Newick format with branch lengths:
(Taxon1:0.1,Taxon2:0.2,(Taxon3:0.15,Taxon4:0.15):0.3);

Trees may have relative
branch lengths, depending
on the tree inference method
that was used
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Problems with Newick tree format

● Except for branch length values: no way to associate meta-data 
to branch lengths 

● However, there is important meta-data, e.g., branch support: 
how well is a branch in the tree supported? 

→ ad hoc solution: represent branch support values as node 
meta-data!

→ this causes problems 



  
33

Problems with Newick tree format
Branch support values represented as node
meta-data can be assigned incorrectly to 
branches after re-rooting.

About 50% of the tools we checked had this
Problem. For details see: 
https://academic.oup.com/mbe/article/34/6/1535/3077051 

Which representation is 
correct? 

https://academic.oup.com/mbe/article/34/6/1535/3077051
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A real example

a) original tree
b) re-rooted tree with shifted support values 
c) re-rooted tree with correct support values 
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t3

t4

root root

Ultrametric tree
Non-ultrametric tree

t2
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

Most tree inference
models/algorithms/programs
produce non-ultrametric trees
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

This is still relative time, for instance
the mean substitution rate per site
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Tree Shapes

E
volutionary tim

e

t1 t2 t3 t4

t1

t2
t3

t4

root root

Ultrametric tree
Non-ultrametric tree

How do we get real times?
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

root

Ultrametric tree

dated fossil
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

root

Ultrametric tree

dated fossil 2 million years
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years

We need a rooted & 
ultrametric tree!
→ rooting with outgroups
→ ultrametricity with programs 
for divergence time estimation
→ active research area
→ most codes rely on the phylogenetic
likelihood function and Bayesian 
Statistics (MCMC methods)
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Dating Trees

E
volutionary tim

e

t1 t2 t3 t4

Root: 3 million years

Ultrametric tree

dated fossil 2 million years

1 million years

2 million years

But how do we place the fossil?
→ typically no DNA data available

Fossil placement: 
→ ad hoc using empirical knowledge
→ computationally using 
morphological data

The input for a phylogenetic analysis 
need not be molecular data!

We can also use sequences of 
morphological traits (“Merkmale”)!
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Remember that we deal with extant 
species!

E
volutionary tim

e

t1 t2 t3 t4

Ultrametric tree

2018
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Morphological Traits

t1: 1000
t2: 0100
t3: 0010
T4: 0001

or:

t1: 0
t2: 1
t3: 2
t4: 3
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Morphological Traits

t1: 1000
t2: 0100
t3: 0010
T4: 0001

or:

t1: 0
t2: 1
t3: 2
t4: 3

Traits need not be discrete, 
they can also be continuous, e.g., bone ratios
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Alignment-Free Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

Pair-wise distances
e.g., pair-wise sequence

alignment scores

Tree inference
program

Taxon 1

Taxon 2

Taxon 3

Taxon 4
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Alignment-Free Tree Inference

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

Tree inference
program

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Alignment-free
tree inference 
is typically less
accurate → we have 
not established homology
via a MSA

Pair-wise distances
e.g., pair-wise sequence

alignment scores
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How many unrooted 4-taxon trees 
exist?

A

D

B

C

A

C

B

D

A

B

C

D
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How many rooted 4-taxon trees 
exist?

A

D

B

C

A

C

B

D

A

B

C

D
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Tree Counts

● Unrooted binary trees

● 4 taxa → 3 distinct trees
● A tree with n taxa has n-2 inner nodes
● And 2n-3 branches

● Rooted binary trees

● 4 taxa → 3 unrooted trees * 5 branches each 
(rooting points) = 15 trees

● n-1 inner nodes 
● 2n-2 branches
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The number of trees

3 taxa = 1 tree



  
53

The number of trees

4 taxa: 3 trees
u: # trees of size 4-1 := 1
v: # branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * v = 3
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The number of trees

5 taxa: 15 trees
u = 3
v = 5 
Number of unrooted trees with 5 taxa: 3 * 5 = 15
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The number of trees

6 taxa: 105 trees
u = 15
v = 7
u * v = 105
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The number of trees explodes!

BANG !
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Some Numbers
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Equation for the number of unrooted 
trees

● Simple proof via induction

● The number of rooted trees for n taxa simply is the number of 
unrooted trees for n+1 taxa

● The additional (n+1th) taxon represents all possible rootings for 
all unrooted trees with n taxa
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# trees with 2000 tips
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A side-note
The treeCounter tool

● Evidently, the tree count can not be computed using normal 
integers

→ we need an arbitrary precision library

→ I used the GNU GMP (Multiple Precision Arithmetic) library 

→ treeCounter available as open-source code at

 https://github.com/stamatak 

→ Has anybody already used GNU GMP? 

https://github.com/stamatak


  
61

Scoring Trees

● Now we know how many unrooted candidate trees there exist for n 
taxa

● How do we chose among them?

→ we need some scoring criterion f() to evaluate them

→ finding the optimal tree under most criteria is NP-Hard  

A

D

B

C

A

C

B

D

A

B

C

D
f() f() f()

1.0 2.0 3.0

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Phylogenetic placement for 
identifying anonymous 
sequences
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Phylogenetic placement for 
identifying anonymous 
sequences
Examples:
• Bird strike
• Bacteria
• Viral strains
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What can we do with Phylogenies?

Known Species 2Known Species 2 Known Species 4Known Species 4

Known Species 1Known Species 1 Known Species 3Known Species 3

Unknown/anonymous sequence/species

?

reference phylogeny

Note that, this is similar to 
placing an outgroup into the 
tree!
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Diversification Rates

Time

From: Charles C. Davis, Hanno Schaefer: “Plant Evolution: Pulses of Extinction 
and Speciation in Gymnosperm Diversity”, Current Biology, 2011.



  
66

Diversification Rates

● With former PostDoc Stephen Smith: “Understanding angiosperm 
diversification using small and large phylogenetic trees”, American 
Journal of Botany 98 (3), 404-414, 2011.

● Largest tree of angiosperms computed to date

● 55,000 taxa



  
67

Diversification Rates

● With former PostDoc Stephen Smith: “Understanding angiosperm 
diversification using small and large phylogenetic trees”, American 
Journal of Botany 98 (3), 404-414, 2011.

● Largest tree of angiosperms computed to date

● 55,000 taxa

Visualizing big trees 
also represents a
challenge → graph
drawing & layout
algorithms.
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Influenza Outbreaks
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And of course SARS-CoV-2
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Snakebites

Australia has more poisonous snakes 
than any other continent, and many 
people die from snakebites each year. 
Developing effective antivenins is thus a 
high priority, but little is known about the 
venins of most species.
Phylogenetic analysis is helping with 
this task because venin properties 
correlate strongly with evolutionary 
relationships.
Although the red-bellied black snake 
looks very different from the king brown, 
it is actually closely related and can be 
treated with the same antivenin. 
Conversely, the western brown looks
very similar to the king brown, but it is 
only distantly related and thus responds 
best to different antivenin. 
The phylogeny is also predictive: the 
recent demonstration that the poorly-
known barclick is closely related to the 
death adder (orange lineage) predicts 
that the former is also highly dangerous 
and might respond to widely-available 
death adder antivenin. 
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Snakebites

Australia has more poisonous snakes 
than any other continent, and many 
people die from snakebites each year. 
Developing effective antivenins is thus a 
high priority, but little is known about the 
venins of most species.
Phylogenetic analysis is helping with 
this task because venin properties 
correlate strongly with evolutionary 
relationships.
Although the red-bellied black snake 
looks very different from the king brown, 
it is actually closely related and can be 
treated with the same antivenin. 
Conversely, the western brown looks
very similar to the king brown, but it is 
only distantly related and thus responds 
best to different antivenin. 
The phylogeny is also predictive: the 
recent demonstration that the poorly-
known barclick is closely related to the 
death adder (orange lineage) predicts 
that the former is also highly dangerous 
and might respond to widely-available 
death adder antivenin. 

Potentially: convergent evolution
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What can we do with phylogenetic 
trees?

● identifying unknown species

● divergence time estimates

● diversification rates

● viral outbreaks

● forensics → M.L. Metzker, D.P. Mindell, X.M. Liu, R.G. Ptak, 
R.A. Gibbs, D.M. Hillis: “Molecular evidence of HIV-1 
transmission in a criminal case” PNAS: 99(22):14292-7, 2002.
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“Nothing in Biology makes sense, 
except in the light of evolution”

Why this increase in 
Phylogenetics papers?
Advances in:
●Sequencing technology
●Hardware
●Methods & Tools
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Building Trees

● We distinguish between

● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA & tree 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree
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Building Trees

● We distinguish between

● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA & tree 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate
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Building Trees

● We distinguish between

● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Memory-intensive!
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Building Trees

● We distinguish between

● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Memory-intensive!

What could be the computational limitation 
here?
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Building Trees

● We distinguish between

● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Storing this matrix can become 
problematic memory-wise 
→ out-of-core/external memory algorithms
→ e.g.: NINJA tool for Neighbor joining
“Large-scale neighbor-joining with ninja”
T Wheeler, 
Algorithms in Bioinformatics, 2009 
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Out-of-core Algorithms

● Definition from Wikipedia:

Out-of-core or External memory algorithms are algorithms that are designed 
to process data that is too large to fit into a computer's main memory at one 
time. Such algorithms must be optimized to efficiently fetch and access data 
stored in slow bulk memory such as hard drive or tape drives.

● We do the data transfer RAM ↔ disk explicitly from within the application 
code by using application-specific knowledge (e.g., about the data access 
patterns)

● This is to circumvent the paging procedure that would normally be initiated 
by the OS

● Out-of-core algorithms are typically much faster than the application-
agnostic paging procedure carried out by the OS

● For an example from phylogenetics see: 

Fernando Izquierdo-Carrasco, Alexandros Stamatakis: "Computing the 
Phylogenetic Likelihood Function Out-of-Core", IEEE HICOMB 2011 
workshop, Anchorage, USA, May 2011.
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NP-Hardness

● Because of the super-exponential increase in the number of 
possible trees for n taxa ...

● all interesting criteria on trees are NP-hard:

● Least squares
● Parsimony → discrete criterion
● Likelihood → statistical criterion
● Bayesian → integrate likelihood over entire tree space 
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Search Space

good

bad → random trees

Search Space

Best tree according to f()
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4 

C

B
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa 

C

B

C D

min

X
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum

X

B

C D

min

X
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa

X

B

C D

min

X

A B

Y
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa
Etc.
Space complexity: O(n2)
Time complexity: O(n3)
Key question: how do we compute distance between X and A or X and B respectively
→ for progressive alignment we may align the profile of X with all remaining sequences

X

B

C D

min

X

A B

Y



  

Neighbor Joining Algorithm
● For each tip compute 

ui = j Dij/(n-2) 

→ this is  in principle the average distance to all other tips

→ the denominator is n-2 instead of n, see below why

● Find the pair of tips, (i, j) for which Dij-ui-uj is minimal
● Connect the tips (i,j) to build a new ancestral node X
● The branch lengths from the ancestral node X to i and j are:

bi = 0.5 Dij + 0.5 (ui-uj)

bj = 0.5 Dij + 0.5 (uj-ui) 

● Update the distance matrix:
→ Compute distance between the new node X and each remaining tip as follows:

Dij,k = (Dik+Djk-Dij)/2

● Replace tips i and j by the new node X which is now treated as a tip
● Repeat until only two nodes remain

→ connect the remaining two nodes with each other



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

Average distance

Distance matrix, usually denoted as D



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

Usually denoted as Q matrix



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

C D

X



  

Neighbor Joining Algorithm

A B C D

A - 17 21 27

B - 12 18

C - 14

D -

i ui

A (17+21+27)/2=32.5

B (17+12+18)/2=23.5

C (21+12+14)/2=23.5

D (27+18+14)/2=29.5

A B C D

A - -39 -35 -35

B - -35 -35

C - -39

D -

Dij-ui-uj

C D

bC = 0.5 x 14 + 0.5 x (23.5-29.5) = 4
bD = 0.5 x 14 + 0.5 x (29.5-23.5) = 10

4 10
X



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27

B - 12 18

C - 14

D -

X -

C D

4 10
X



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27

B - 12 18

C - 14

D -

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B C D X

A - 17 21 27 17

B - 12 18 8

C - 14

D -

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

DXA = (DCA + DDA - DCD)/2
   = (21 + 27 - 14)/2
   = 17

DXB = (DCB + DDB - DCD)/2
   = (12 + 18 - 14)/2
   = 8



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

A B X

A - -42 -28

B - -28

X -

Dij-ui-uj

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

Dij-ui-uj

A B X

A - -42 -28

B - -28

X -

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25



  

Neighbor Joining Algorithm

A B X

A - 17 17

B - 8

X -

C D

4 10
X

Dij-ui-uj

A B X

A - -42 -28

B - -28

X -

i ui

A (17+17)/1 = 34

B (17+8)/1 = 25

X (17+8)/1 = 25

bA = 0.5 x 17 + 0.5 x (34-25) = 13
bD = 0.5 x 17 + 0.5 x (25-34) = 4

A B

Y
413



  

Neighbor Joining Algorithm

A B X Y

A - 17 17

B - 8

X -

Y

C D

4 10
X

A B

Y
413



  

Neighbor Joining Algorithm

A B X Y

A - 17 17

B - 8

X - 4

Y

C D

4 10
X

A B

Y
413

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

X Y

X - 4

Y -

C D

4 10
X

A B

Y
413

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

X Y

X - 4

Y -

C D

4 10

A B

413

4

DYX = (DAX + DBX - DAB)/2
   = (17 + 8 - 17)/2
   = 4



  

Neighbor Joining Algorithm

C

D

A

BA B C D

A - 17 21 27

B - 12 18

C - 14

D -
10

4

13

4

4


